
Coleen M Atkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9440380/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Early Life Stress Exacerbates Outcome after Traumatic Brain Injury. Journal of Neurotrauma, 2021, 38, 555-565.	3.4	20
2	Glycogen synthase kinaseâ€3 inhibition rescues sexâ€dependent contextual fear memory deficit in human immunodeficiency virusâ€1 transgenic mice. British Journal of Pharmacology, 2020, 177, 5658-5676.	5.4	5
3	EphB3 interacts with initiator caspases and FHL-2 to activate dependence receptor cell death in oligodendrocytes after brain injury. Brain Communications, 2020, 2, fcaa175.	3.3	3
4	Positive allosteric modulation of the α7 nicotinic acetylcholine receptor as a treatment for cognitive deficits after traumatic brain injury. PLoS ONE, 2019, 14, e0223180.	2.5	16
5	Title is missing!. , 2019, 14, e0223180.		0
6	Title is missing!. , 2019, 14, e0223180.		0
7	Title is missing!. , 2019, 14, e0223180.		0
8	Title is missing!. , 2019, 14, e0223180.		0
9	A negative allosteric modulator of PDE4D enhances learning after traumatic brain injury. Neurobiology of Learning and Memory, 2018, 148, 38-49.	1.9	17
10	ls temperature an important variable in recovery after mild traumatic brain injury?. F1000Research, 2017, 6, 2031.	1.6	8
11	Therapeutic benefits of phosphodiesterase 4B inhibition after traumatic brain injury. PLoS ONE, 2017, 12, e0178013.	2.5	23
12	Traumatic Brain Injury Upregulates Phosphodiesterase Expression in the Hippocampus. Frontiers in Systems Neuroscience, 2016, 10, 5.	2.5	22
13	Chronic Cognitive Dysfunction after Traumatic Brain Injury Is Improved with a Phosphodiesterase 4B Inhibitor. Journal of Neuroscience, 2016, 36, 7095-7108.	3.6	46
14	Emergence of cognitive deficits after mild traumatic brain injury due to hyperthermia. Experimental Neurology, 2015, 263, 254-262.	4.1	36
15	Phosphodiesterase Inhibitors as Therapeutics for Traumatic Brain Injury. Current Pharmaceutical Design, 2014, 21, 332-342.	1.9	21
16	Effects of early rolipram treatment on histopathological outcome after controlled cortical impact injury in mice. Neuroscience Letters, 2013, 532, 1-6.	2.1	32
17	Age-dependent alterations in cAMP signaling contribute to synaptic plasticity deficits following traumatic brain injury. Neuroscience, 2013, 231, 182-194.	2.3	45
18	Phosphodiesterase Inhibition Rescues Chronic Cognitive Deficits Induced by Traumatic Brain Injury. Journal of Neuroscience, 2013, 33, 5216-5226.	3.6	71

COLEEN M ATKINS

#	Article	IF	CITATIONS
19	Mild Hyperthermia Worsens the Neuropathological Damage Associated with Mild Traumatic Brain Injury in Rats. Journal of Neurotrauma, 2012, 29, 313-321.	3.4	51
20	Phosphodiesterase isoformâ€specific expression induced by traumatic brain injury. Journal of Neurochemistry, 2012, 123, 1019-1029.	3.9	24
21	Postinjury treatment with rolipram increases hemorrhage after traumatic brain injury. Journal of Neuroscience Research, 2012, 90, 1861-1871.	2.9	18
22	Proinflammatory cytokine regulation of cyclic AMPâ€phosphodiesterase 4 signaling in microglia <i>in vitro</i> and following CNS injury. Glia, 2012, 60, 1839-1859.	4.9	74
23	STAT3 signaling after traumatic brain injury. Journal of Neurochemistry, 2012, 120, 710-720.	3.9	98
24	Posttraumatic hypothermia increases doublecortin expressing neurons in the dentate gyrus after traumatic brain injury in the rat. Experimental Neurology, 2012, 233, 821-828.	4.1	49
25	Biochemical and Molecular Biological Assessments of Traumatic Brain Injury. Springer Protocols, 2012, , 331-345.	0.3	2
26	Fluid-percussion brain injury induces changes in aquaporin channel expression. Neuroscience, 2011, 180, 272-279.	2.3	22
27	Decoding Hippocampal Signaling Deficits After Traumatic Brain Injury. Translational Stroke Research, 2011, 2, 546-555.	4.2	48
28	Post-Traumatic Seizures Exacerbate Histopathological Damage after Fluid-Percussion Brain Injury. Journal of Neurotrauma, 2011, 28, 35-42.	3.4	46
29	Postâ€ŧraumatic seizure susceptibility is attenuated by hypothermia therapy. European Journal of Neuroscience, 2010, 32, 1912-1920.	2.6	72
30	Protection in Animal Models of Brain and Spinal Cord Injury with Mild to Moderate Hypothermia. Journal of Neurotrauma, 2009, 26, 301-312.	3.4	128
31	Deficits in ERK and CREB activation in the hippocampus after traumatic brain injury. Neuroscience Letters, 2009, 459, 52-56.	2.1	69
32	Modulation of the cAMP signaling pathway after traumatic brain injury. Experimental Neurology, 2007, 208, 145-158.	4.1	127
33	Alterations in Mammalian Target of Rapamycin Signaling Pathways after Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 939-949.	4.3	89
34	Hypothermia treatment potentiates ERK1/2 activation after traumatic brain injury. European Journal of Neuroscience, 2007, 26, 810-819.	2.6	52
35	Activation of Calcium/Calmodulin-Dependent Protein Kinases after Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 1507-1518.	4.3	64
36	Activated c-Jun N-Terminal Kinase Is Required for Axon Formation. Journal of Neuroscience, 2006, 26, 9462-9470.	3.6	140

COLEEN M ATKINS

#	Article	IF	CITATIONS
37	Bidirectional Regulation of Cytoplasmic Polyadenylation Element-Binding Protein Phosphorylation by Ca2+/Calmodulin-Dependent Protein Kinase II and Protein Phosphatase 1 during Hippocampal Long-Term Potentiation. Journal of Neuroscience, 2005, 25, 5604-5610.	3.6	82
38	Cytoplasmic Polyadenylation Element Binding Protein-Dependent Protein Synthesis Is Regulated by Calcium/Calmodulin-Dependent Protein Kinase II. Journal of Neuroscience, 2004, 24, 5193-5201.	3.6	141
39	Increased Phosphorylation of Myelin Basic Protein During Hippocampal Long-Term Potentiation. Journal of Neurochemistry, 2002, 68, 1960-1967.	3.9	23
40	An Important Role of Neural Activity-Dependent CaMKIV Signaling in the Consolidation of Long-Term Memory. Cell, 2001, 106, 771-783.	28.9	253
41	Leitmotifs in the biochemistry of LTP induction: amplification, integration and coordination. Journal of Neurochemistry, 2001, 77, 961-971.	3.9	48
42	Regulation of Myelin Basic Protein Phosphorylation by Mitogen-Activated Protein Kinase During Increased Action Potential Firing in the Hippocampus. Journal of Neurochemistry, 2001, 73, 1090-1097.	3.9	39
43	Activation of ERK/MAP Kinase in the Amygdala Is Required for Memory Consolidation of Pavlovian Fear Conditioning. Journal of Neuroscience, 2000, 20, 8177-8187.	3.6	602
44	A Role for the β Isoform of Protein Kinase C in Fear Conditioning. Journal of Neuroscience, 2000, 20, 5906-5914.	3.6	166
45	A Necessity for MAP Kinase Activation in Mammalian Spatial Learning. Learning and Memory, 1999, 6, 478-490.	1.3	312
46	Mitochondria Mediate Tumor Necrosis Factor- <i>α</i> /NF- <i>κ</i> B Signaling in Skeletal Muscle Myotubes. Antioxidants and Redox Signaling, 1999, 1, 97-104.	5.4	78
47	The MAPK cascade is required for mammalian associative learning. Nature Neuroscience, 1998, 1, 602-609.	14.8	1,007
48	Mutation of the Angelman Ubiquitin Ligase in Mice Causes Increased Cytoplasmic p53 and Deficits of Contextual Learning and Long-Term Potentiation. Neuron, 1998, 21, 799-811.	8.1	767
49	Protectedâ€Site Phosphorylation of Protein Kinase C in Hippocampal Longâ€Term Potentiation. Journal of Neurochemistry, 1998, 71, 1075-1085.	3.9	54