Samuel Asfaha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/943737/publications.pdf

Version: 2024-02-01

43 papers 5,137 citations

32 h-index 254184 43 g-index

43 all docs 43 docs citations

times ranked

43

7904 citing authors

#	Article	IF	CITATIONS
1	The Origin and Contribution of Cancer-Associated Fibroblasts in Colorectal Carcinogenesis. Gastroenterology, 2022, 162, 890-906.	1.3	63
2	Atoh1 ⁺ secretory progenitors possess renewal capacity independent of Lgr5 ⁺ cells during colonic regeneration. EMBO Journal, 2019, 38, .	7.8	56
3	BHLHA15-Positive Secretory Precursor Cells Can Give Rise to Tumors in Intestine and Colon in Mice. Gastroenterology, 2019, 156, 1066-1081.e16.	1.3	34
4	Bone marrow-derived epithelial cells and hair follicle stem cells contribute to development of chronic cutaneous neoplasms. Nature Communications, 2018, 9, 5293.	12.8	9
5	Nerve Growth Factor Promotes Gastric Tumorigenesis through Aberrant Cholinergic Signaling. Cancer Cell, 2017, 31, 21-34.	16.8	332
6	Performance report cards increase adenoma detection rate. Endoscopy International Open, 2017, 05, E675-E682.	1.8	16
7	Bone Marrow Myeloid Cells Regulate Myeloid-Biased Hematopoietic Stem Cells via a Histamine-Dependent Feedback Loop. Cell Stem Cell, 2017, 21, 747-760.e7.	11.1	68
8	CXCR4-expressing <i>Mist1</i> + progenitors in the gastric antrum contribute to gastric cancer development. Oncotarget, 2017, 8, 111012-111025.	1.8	30
9	Dclk1 Defines Quiescent Pancreatic Progenitors that Promote Injury-Induced Regeneration and Tumorigenesis. Cell Stem Cell, 2016, 18, 441-455.	11.1	196
10	Macrophage-derived extracellular vesicle-packaged WNTs rescue intestinal stem cells and enhance survival after radiation injury. Nature Communications, 2016, 7, 13096.	12.8	190
11	Neural innervation stimulates splenic TFF2 to arrest myeloid cell expansion and cancer. Nature Communications, 2016, 7, 10517.	12.8	86
12	Krt19+/Lgr5â^ Cells Are Radioresistant Cancer-Initiating Stem Cells in the Colon and Intestine. Cell Stem Cell, 2015, 16, 627-638.	11.1	161
13	Intestinal stem cells and inflammation. Current Opinion in Pharmacology, 2015, 25, 62-66.	3.5	13
14	Mist1 Expressing Gastric Stem Cells Maintain the Normal and Neoplastic Gastric Epithelium and Are Supported by a Perivascular Stem Cell Niche. Cancer Cell, 2015, 28, 800-814.	16.8	245
15	Nkx2.2 is expressed in a subset of enteroendocrine cells with expanded lineage potential. American Journal of Physiology - Renal Physiology, 2015, 309, G975-G987.	3.4	18
16	Gremlin 1 Identifies a Skeletal Stem Cell with Bone, Cartilage, and Reticular Stromal Potential. Cell, 2015, 160, 269-284.	28.9	535
17	CCK2R identifies and regulates gastric antral stem cell states and carcinogenesis. Gut, 2015, 64, 544-553.	12.1	87
18	Long-lived intestinal tuft cells serve as colon cancer–initiating cells. Journal of Clinical Investigation, 2014, 124, 1283-1295.	8.2	324

#	Article	IF	Citations
19	Stromal cell-derived factor-1 overexpression induces gastric dysplasia through expansion of stromal myofibroblasts and epithelial progenitors. Gut, 2013, 62, 192-200.	12.1	61
20	Progastrin Stimulates Colonic Cell Proliferation via CCK2R- and β-Arrestin–Dependent Suppression of BMP2. Gastroenterology, 2013, 145, 820-830.e10.	1.3	37
21	Mice That Express Human Interleukin-8 Have Increased Mobilization of Immature Myeloid Cells, Which Exacerbates Inflammation and Accelerates Colon Carcinogenesis. Gastroenterology, 2013, 144, 155-166.	1.3	167
22	Bile Acid and Inflammation Activate Gastric Cardia Stem Cells in a Mouse Model of Barrett-Like Metaplasia. Cancer Cell, 2012, 21, 36-51.	16.8	395
23	Spectral Characterization and Unmixing of Intrinsic Contrast in Intact Normal and Diseased Gastric Tissues Using Hyperspectral Two-Photon Microscopy. PLoS ONE, 2011, 6, e19925.	2.5	38
24	Histamine deficiency promotes inflammation-associated carcinogenesis through reduced myeloid maturation and accumulation of CD11b+Ly6G+ immature myeloid cells. Nature Medicine, 2011, 17, 87-95.	30.7	193
25	In vivo analysis of mouse gastrin gene regulation in enhanced GFP-BAC transgenic mice. American Journal of Physiology - Renal Physiology, 2011, 300, G334-G344.	3.4	22
26	Thrombin receptor: An endogenous inhibitor of inflammatory pain, activating opioid pathways. Pain, 2009, 146, 121-129.	4.2	42
27	Fibroblastic Colony-Forming Unit Bone Marrow Cells Delay Progression to Gastric Dysplasia in a <i>Helicobacter</i> Model of Gastric Tumorigenesis. Stem Cells, 2009, 27, 2301-2311.	3.2	19
28	Assessment of endoscopic training of general surgery residents in a North American health region. Gastrointestinal Endoscopy, 2008, 68, 1056-1062.	1.0	38
29	Involvement of Syk protein tyrosine kinase in LPS-induced responses in macrophages. Journal of Endotoxin Research, 2007, 13, 117-125.	2.5	29
30	Plasmapheresis for hemolytic crisis and impending acute liver failure in Wilson disease. Journal of Clinical Apheresis, 2007, 22, 295-298.	1.3	44
31	Protease-activated receptor-4: a novel mechanism of inflammatory pain modulation. British Journal of Pharmacology, 2007, 150, 176-185.	5.4	111
32	Involvement of Syk kinase in TNF-induced nitric oxide production by airway epithelial cells. Biochemical and Biophysical Research Communications, 2006, 351, 431-437.	2.1	28
33	Antihypertensive drugs and incidence of type 2 diabetes: Evidence and implications for clinical practice. Current Hypertension Reports, 2005, 7, 314-322.	3.5	22
34	Proteinase-activated receptor-1 agonists attenuate nociception in response to noxious stimuli. British Journal of Pharmacology, 2002, 135, 1101-1106.	5.4	98
35	Persistent epithelial dysfunction and bacterial translocation after resolution of intestinal inflammation. American Journal of Physiology - Renal Physiology, 2001, 281, G635-G644.	3.4	65
36	Wound collagen deposition in rats: effects of an NO-NSAID and a selective COX-2 inhibitor. British Journal of Pharmacology, 2000, 129, 681-686.	5.4	104

#	Article	IF	CITATIONS
37	Selective cycloâ€oxygenaseâ€2 inhibition with celecoxib elevates blood pressure and promotes leukocyte adherence. British Journal of Pharmacology, 2000, 129, 1423-1430.	5.4	112
38	Prolonged colonic epithelial hyporesponsiveness after colitis: role of inducible nitric oxide synthase. American Journal of Physiology - Renal Physiology, 1999, 276, G703-G710.	3.4	58
39	Enhanced anti-inflammatory effects of a nitric oxide–releasing derivative of mesalamine in rats. Gastroenterology, 1999, 117, 557-566.	1.3	83
40	Cyclooxygenase 1 contributes to inflammatory responses in rats and mice: Implications for gastrointestinal toxicity. Gastroenterology, 1998, 115, 101-109.	1.3	297
41	Induction of cyclooxygenase 1 and 2 in the rat stomach during endotoxemia: Role in resistance to damage. Gastroenterology, 1997, 113, 195-204.	1.3	107
42	Aspirin causes rapid upâ€regulation of cycloâ€oxygenaseâ€2 expression in the stomach of rats. Alimentary Pharmacology and Therapeutics, 1997, 11, 1101-1108.	3.7	124
43	Exacerbation of inflammation-associated colonic injury in rat through inhibition of cyclooxygenase-2 Journal of Clinical Investigation, 1996, 98, 2076-2085.	8.2	380