Bruce L Levine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/943657/publications.pdf Version: 2024-02-01

		22153	15732
131	38,145	59	125
papers	citations	h-index	g-index
135	135	135	25086
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A randomized phase 2 trial of idiotype vaccination and adoptive autologous T-cell transfer in patients with multiple myeloma. Blood, 2022, 139, 1289-1301.	1.4	9
2	Engineering T cells to survive and thrive in the hostile tumor microenvironment. Current Opinion in Biomedical Engineering, 2022, 21, 100360.	3.4	5
3	Predicting Tâ€cell quality during manufacturing through an artificial intelligenceâ€based integrative multiomics analytical platform. Bioengineering and Translational Medicine, 2022, 7, e10282.	7.1	9
4	Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature, 2022, 602, 503-509.	27.8	369
5	The peril of the promise of speculative cell banking: Statement from the ISCT Committee on the Ethics of Cell and Gene Therapy. Cytotherapy, 2022, , .	0.7	1
6	PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nature Medicine, 2022, 28, 724-734.	30.7	171
7	Anti-CD19 CAR T cells in combination with ibrutinib for the treatment of chronic lymphocytic leukemia. Blood Advances, 2022, 6, 5774-5785.	5.2	43
8	Patient access to and ethical considerations of the application of the European Union hospital exemption rule for advanced therapy medicinal products. Cytotherapy, 2022, 24, 686-690.	0.7	21
9	Comprehensive Serum Proteome Profiling of Cytokine Release Syndrome and Immune Effector Cell–Associated Neurotoxicity Syndrome Patients with B-Cell ALL Receiving CAR T19. Clinical Cancer Research, 2022, 28, 3804-3813.	7.0	17
10	The Coronavirus Pandemic: A Pitfall or a Fast Track for Validating Cell Therapy Products?. Stem Cells and Development, 2021, 30, 119-127.	2.1	10
11	Autologous CD4ÂT Lymphocytes Modified with a Tat-Dependent, Virus-Specific Endoribonuclease Gene in HIV-Infected Individuals. Molecular Therapy, 2021, 29, 626-635.	8.2	3
12	Production of Human CRISPR-Engineered CAR-T Cells. Journal of Visualized Experiments, 2021, , .	0.3	9
13	Bâ€cell maturation antigen chimeric antigen receptor Tâ€cell reâ€expansion in a patient with myeloma following salvage programmed cell death protein 1 inhibitorâ€based combination therapy. British Journal of Haematology, 2021, 193, 851-855.	2.5	6
14	CCR5-edited CD4+ T cells augment HIV-specific immunity to enable post-rebound control of HIV replication. Journal of Clinical Investigation, 2021, 131, .	8.2	52
15	BET bromodomain protein inhibition reverses chimeric antigen receptor extinction and reinvigorates exhausted T cells in chronic lymphocytic leukemia. Journal of Clinical Investigation, 2021, 131, .	8.2	45
16	Advances in automated cell washing and concentration. Cytotherapy, 2021, 23, 774-786.	0.7	18
17	Humanized CD19-Targeted Chimeric Antigen Receptor (CAR) T Cells in CAR-Naive and CAR-Exposed Children and Young Adults With Relapsed or Refractory Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2021, 39, 3044-3055.	1.6	94
18	The Safety of Bridging Radiation with Anti-BCMA CAR T-Cell Therapy for Multiple Myeloma. Clinical Cancer Research, 2021, 27, 6580-6590.	7.0	15

#	Article	IF	CITATIONS
19	Advances in engineering and synthetic biology toward improved therapeutic immune cells. Current Opinion in Biomedical Engineering, 2021, 20, 100342.	3.4	2
20	Adoptive T-cell therapy for Hodgkin lymphoma. Blood Advances, 2021, 5, 4291-4302.	5.2	11
21	Optimizing Chimeric Antigen Receptor T-Cell Therapy for Adults With Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2020, 38, 415-422.	1.6	162
22	Emerging trends in COVID-19 treatment: learning from inflammatory conditions associated with cellular therapies. Cytotherapy, 2020, 22, 474-481.	0.7	29
23	Dual Targeting of Mesothelin and CD19 with Chimeric Antigen Receptor-Modified T Cells in Patients with Metastatic Pancreatic Cancer. Molecular Therapy, 2020, 28, 2367-2378.	8.2	32
24	Diagnostic biomarkers to differentiate sepsis from cytokine release syndrome in critically ill children. Blood Advances, 2020, 4, 5174-5183.	5.2	30
25	International Society for Extracellular Vesicles and International Society for Cell and Gene Therapy statement on extracellular vesicles from mesenchymal stromal cells and other cells: considerations for potential therapeutic agents to suppress coronavirus disease-19. Cytotherapy, 2020, 22, 482-485.	0.7	94
26	Accelerating the development of innovative cellular therapy products for the treatment of cancer. Cytotherapy, 2020, 22, 239-246.	0.7	7
27	CRISPR-engineered T cells in patients with refractory cancer. Science, 2020, 367, .	12.6	872
28	The long road to the first FDA-approved gene therapy: chimeric antigen receptor T cells targeting CD19. Cytotherapy, 2020, 22, 57-69.	0.7	70
29	Long-Term Outcomes From a Randomized Dose Optimization Study of Chimeric Antigen Receptor Modified T Cells in Relapsed Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2020, 38, 2862-2871.	1.6	102
30	Approaches of T Cell Activation and Differentiation for CAR-T Cell Therapies. Methods in Molecular Biology, 2020, 2086, 203-211.	0.9	7
31	CAR T-cell product performance in haematological malignancies before and after marketing authorisation. Lancet Oncology, The, 2020, 21, e104-e116.	10.7	57
32	Phase I Study of Lentiviral-Transduced Chimeric Antigen Receptor-Modified T Cells Recognizing Mesothelin in Advanced Solid Cancers. Molecular Therapy, 2019, 27, 1919-1929.	8.2	220
33	A multiscale simulation framework for the manufacturing facility and supply chain of autologous cell therapies. Cytotherapy, 2019, 21, 1081-1093.	0.7	21
34	The Opioid Epidemic and Psychiatry: The Time for Action Is Now. Psychiatric Services, 2019, 70, 1168-1171.	2.0	4
35	CAR T cell viability release testing and clinical outcomes: is there a lower limit?. Blood, 2019, 134, 1873-1875.	1.4	24
36	Tisagenlecleucel Modelâ€Based Cellular Kinetic Analysis of Chimeric Antigen Receptor–T Cells. CPT: Pharmacometrics and Systems Pharmacology, 2019, 8, 285-295.	2.5	83

#	Article	IF	CITATIONS
37	Chimeric antigen receptor–T cell therapy manufacturing: modelling the effect of offshore production on aggregate cost of goods. Cytotherapy, 2019, 21, 224-233.	0.7	54
38	T-cell phenotypes associated with effective CAR T-cell therapy in postinduction vs relapsed multiple myeloma. Blood Advances, 2019, 3, 2812-2815.	5.2	133
39	B cell maturation antigen–specific CAR T cells are clinically active in multiple myeloma. Journal of Clinical Investigation, 2019, 129, 2210-2221.	8.2	513
40	CD19-targeting CAR T cell immunotherapy outcomes correlate with genomic modification by vector integration. Journal of Clinical Investigation, 2019, 130, 673-685.	8.2	78
41	Powered and controlled T-cell production. Nature Biomedical Engineering, 2018, 2, 148-150.	22.5	5
42	Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Science Translational Medicine, 2018, 10, .	12.4	326
43	Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. New England Journal of Medicine, 2018, 378, 439-448.	27.0	3,680
44	Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nature Medicine, 2018, 24, 563-571.	30.7	1,150
45	Activity of Mesothelin-Specific Chimeric Antigen Receptor T Cells Against Pancreatic Carcinoma Metastases in a Phase 1 Trial. Gastroenterology, 2018, 155, 29-32.	1.3	337
46	Retroviral and Lentiviral Safety Analysis of Gene-Modified T Cell Products and Infused HIV and Oncology Patients. Molecular Therapy, 2018, 26, 269-279.	8.2	90
47	Anti-CD19 CAR T cells with high-dose melphalan and autologous stem cell transplantation for refractory multiple myeloma. JCI Insight, 2018, 3, .	5.0	140
48	CAR T Cell Therapy of Non-hematopoietic Malignancies: Detours on the Road to Clinical Success. Frontiers in Immunology, 2018, 9, 2740.	4.8	58
49	Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nature Medicine, 2018, 24, 1499-1503.	30.7	459
50	Clinical Pharmacology of Tisagenlecleucel in B-cell Acute Lymphoblastic Leukemia. Clinical Cancer Research, 2018, 24, 6175-6184.	7.0	170
51	Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature, 2018, 558, 307-312.	27.8	574
52	Adaptation in Delivering Integrated Care: The Tension Between Care and Evidence-Based Practice. Psychiatric Services, 2018, 69, 1029-1031.	2.0	3
53	Nonviral RNA chimeric antigen receptor–modified T cells in patients with Hodgkin lymphoma. Blood, 2018, 132, 1022-1026.	1.4	58
54	Reducing <i>Ex Vivo</i> Culture Improves the Antileukemic Activity of Chimeric Antigen Receptor (CAR) T Cells. Cancer Immunology Research, 2018, 6, 1100-1109.	3.4	189

#	Article	IF	CITATIONS
55	Monocyte lineage–derived IL-6 does not affect chimeric antigen receptor T-cell function. Cytotherapy, 2017, 19, 867-880.	0.7	116
56	Global Manufacturing of CAR T Cell Therapy. Molecular Therapy - Methods and Clinical Development, 2017, 4, 92-101.	4.1	480
57	PD-1 blockade modulates chimeric antigen receptor (CAR)–modified T cells: refueling the CAR. Blood, 2017, 129, 1039-1041.	1.4	393
58	Cellular kinetics of CTL019 in relapsed/refractory B-cell acute lymphoblastic leukemia and chronic lymphocytic leukemia. Blood, 2017, 130, 2317-2325.	1.4	273
59	Considerations in T Cell Therapy Product Development for B Cell Leukemia and Lymphoma Immunotherapy. Current Hematologic Malignancy Reports, 2017, 12, 335-343.	2.3	9
60	A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Science Translational Medicine, 2017, 9, .	12.4	1,116
61	Chimeric Antigen Receptor T Cells in Refractory B-Cell Lymphomas. New England Journal of Medicine, 2017, 377, 2545-2554.	27.0	1,390
62	Exploring synthetic immunity: From boutique to global. Human Vaccines and Immunotherapeutics, 2017, 13, 2204-2206.	3.3	0
63	Safety and Efficacy of Intratumoral Injections of Chimeric Antigen Receptor (CAR) T Cells in Metastatic Breast Cancer. Cancer Immunology Research, 2017, 5, 1152-1161.	3.4	309
64	Optimization of cGMP purification and expansion of umbilical cord blood–derived T-regulatory cells in support of first-in-human clinical trials. Cytotherapy, 2017, 19, 250-262.	0.7	41
65	Infusion of CD3/CD28 costimulated umbilical cord blood T cells at the time of single umbilical cord blood transplantation may enhance engraftment. American Journal of Hematology, 2016, 91, 453-460.	4.1	7
66	Phase I study of multi-gene cell therapy in patients with peripheral artery disease. Vascular Medicine, 2016, 21, 21-32.	1.5	15
67	Identification of Predictive Biomarkers for Cytokine Release Syndrome after Chimeric Antigen Receptor T-cell Therapy for Acute Lymphoblastic Leukemia. Cancer Discovery, 2016, 6, 664-679.	9.4	811
68	Umbilical cord blood–derived T regulatory cells to prevent GVHD: kinetics, toxicity profile, and clinical effect. Blood, 2016, 127, 1044-1051.	1.4	333
69	lbrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood, 2016, 127, 1117-1127.	1.4	381
70	Engineered T cells: the promise and challenges of cancer immunotherapy. Nature Reviews Cancer, 2016, 16, 566-581.	28.4	876
71	Chimeric Antigen Receptor T-Cell Therapy for the Community Oncologist. Oncologist, 2016, 21, 608-617.	3.7	75
72	B-Cell Maturation Antigen (BCMA)-Specific Chimeric Antigen Receptor T Cells (CART-BCMA) for Multiple Myeloma (MM): Initial Safety and Efficacy from a Phase I Study. Blood, 2016, 128, 1147-1147.	1.4	56

#	Article	IF	CITATIONS
73	Cellular Kinetics of Chimeric Antigen Receptor T Cells (CTL019) in Patients with Relapsed/Refractory CD19+ Leukemia. Blood, 2016, 128, 220-220.	1.4	4
74	Efficacy and Safety of CTL019 in the First US Phase II Multicenter Trial in Pediatric Relapsed/Refractory Acute Lymphoblastic Leukemia: Results of an Interim Analysis. Blood, 2016, 128, 2801-2801.	1.4	58
75	Cars in Leukemia: Relapse with Antigen-Negative Leukemia Originating from a Single B Cell Expressing the Leukemia-Targeting CAR. Blood, 2016, 128, 281-281.	1.4	16
76	Biomarkers of Response to Anti-CD19 Chimeric Antigen Receptor (CAR) T-Cell Therapy in Patients with Chronic Lymphocytic Leukemia. Blood, 2016, 128, 57-57.	1.4	18
77	Posterior Reversible Encephalopathy Syndrome (PRES) after Infusion of Anti-Bcma CAR T Cells (CART-BCMA) for Multiple Myeloma: Successful Treatment with Cyclophosphamide. Blood, 2016, 128, 5702-5702.	1.4	31
78	Pilot Study of Anti-CD19 Chimeric Antigen Receptor T Cells (CTL019) in Conjunction with Salvage Autologous Stem Cell Transplantation for Advanced Multiple Myeloma. Blood, 2016, 128, 974-974.	1.4	28
79	Smart CARS: optimized development of a chimeric antigen receptor (CAR) T cell targeting epidermal growth factor receptor variant III (EGFRvIII) for glioblastoma. Annals of Translational Medicine, 2016, 4, 13.	1.7	7
80	Novel gene and cellular therapy approaches for treating HIV. Discovery Medicine, 2016, 21, 283-92.	0.5	3
81	IMCT-15PILOT STUDY OF T CELLS REDIRECTED TO EGFRVIII WITH A CHIMERIC ANTIGEN RECEPTOR IN PATIENTS WITH EGFRVIII+ GLIOBLASTOMA. Neuro-Oncology, 2015, 17, v110.4-v111.	1.2	10
82	NY-ESO-1–specific TCR–engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nature Medicine, 2015, 21, 914-921.	30.7	728
83	The Ovarian Cancer Chemokine Landscape Is Conducive to Homing of Vaccine-Primed and CD3/CD28–Costimulated T Cells Prepared for Adoptive Therapy. Clinical Cancer Research, 2015, 21, 2840-2850.	7.0	52
84	T cell engineering as therapy for cancer and HIV: our synthetic future. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140374.	4.0	23
85	Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Science Translational Medicine, 2015, 7, 303ra139.	12.4	1,402
86	Chimeric Antigen Receptor T Cells against CD19 for Multiple Myeloma. New England Journal of Medicine, 2015, 373, 1040-1047.	27.0	511
87	Efficient Trafficking of Chimeric Antigen Receptor (CAR)-Modified T Cells to CSF and Induction of Durable CNS Remissions in Children with CNS/Combined Relapsed/Refractory ALL. Blood, 2015, 126, 3769-3769.	1.4	40
88	Efficacy and Safety of Humanized Chimeric Antigen Receptor (CAR)-Modified T Cells Targeting CD19 in Children with Relapsed/Refractory ALL. Blood, 2015, 126, 683-683.	1.4	22
89	Combination Immunotherapy after ASCT for Multiple Myeloma Using MAGE-A3/Poly-ICLC Immunizations Followed by Adoptive Transfer of Vaccine-Primed and Costimulated Autologous T Cells. Clinical Cancer Research, 2014, 20, 1355-1365.	7.0	116
90	Gene Editing of <i>CCR5</i> in Autologous CD4 T Cells of Persons Infected with HIV. New England Journal of Medicine, 2014, 370, 901-910.	27.0	1,227

#	Article	IF	CITATIONS
91	Mesothelin-Specific Chimeric Antigen Receptor mRNA-Engineered T Cells Induce Antitumor Activity in Solid Malignancies. Cancer Immunology Research, 2014, 2, 112-120.	3.4	711
92	Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia. New England Journal of Medicine, 2014, 371, 1507-1517.	27.0	4,444
93	Randomized, Phase II Dose Optimization Study of Chimeric Antigen Receptor Modified T Cells Directed Against CD19 (CTL019) in Patients with Relapsed, Refractory CLL. Blood, 2014, 124, 1982-1982.	1.4	38
94	Cytokine Release Syndrome (CRS) after Chimeric Antigen Receptor (CAR) T Cell Therapy for Relapsed/Refractory (R/R) CLL. Blood, 2014, 124, 1983-1983.	1.4	6
95	Refractory Cytokine Release Syndrome in Recipients of Chimeric Antigen Receptor (CAR) T Cells. Blood, 2014, 124, 2296-2296.	1.4	37
96	T Cells Engineered with a Chimeric Antigen Receptor (CAR) Targeting CD19 (CTL019) Have Long Term Persistence and Induce Durable Remissions in Children with Relapsed, Refractory ALL. Blood, 2014, 124, 380-380.	1.4	14
97	A Dendritic Cell Vaccine Pulsed with Autologous Hypochlorous Acid-Oxidized Ovarian Cancer Lysate Primes Effective Broad Antitumor Immunity: From Bench to Bedside. Clinical Cancer Research, 2013, 19, 4801-4815.	7.0	178
98	Efficient Clinical Scale Gene Modification via Zinc Finger Nuclease–Targeted Disruption of the HIV Co-receptor CCR5. Human Gene Therapy, 2013, 24, 245-258.	2.7	110
99	Chimeric Antigen Receptor–Modified T Cells for Acute Lymphoid Leukemia. New England Journal of Medicine, 2013, 368, 1509-1518.	27.0	3,021
100	Antiviral effects of autologous CD4 T cells genetically modified with a conditionally replicating lentiviral vector expressing long antisense to HIV. Blood, 2013, 121, 1524-1533.	1.4	83
101	Chimeric Antigen Receptor Modified T Cells Directed Against CD19 (CTL019 cells) Have Long-Term Persistence and Induce Durable Responses In Relapsed, Refractory CLL. Blood, 2013, 122, 4162-4162.	1.4	14
102	T Cells Engineered With a Chimeric Antigen Receptor (CAR) Targeting CD19 (CTL019) Produce Significant In Vivo Proliferation, Complete Responses and Long-Term Persistence Without Gvhd In Children and Adults With Relapsed, Refractory ALL. Blood, 2013, 122, 67-67.	1.4	17
103	Randomized, Phase II Dose Optimization Study Of Chimeric Antigen Receptor Modified T Cells Directed Against CD19 (CTL019) In Patients With Relapsed, Refractory CLL. Blood, 2013, 122, 873-873.	1.4	13
104	T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunology Research, 2013, 1, 26-31.	3.4	125
105	Decade-Long Safety and Function of Retroviral-Modified Chimeric Antigen Receptor T Cells. Science Translational Medicine, 2012, 4, 132ra53.	12.4	555
106	Chimeric Antigen Receptor T Cells Directed Against CD19 Induce Durable Responses and Transient Cytokine Release Syndrome in Relapsed, Refractory CLL and ALL. Blood, 2012, 120, 717-717.	1.4	10
107	Prolonged T Cell Persistence, Homing to Marrow and Selective Targeting of Antigen Positive Tumor in Multiple Myeloma Patients Following Adoptive Transfer of T Cells Genetically Engineered to Express an Affinity-Enhanced T Cell Receptor Against the Cancer Testis Antigens NY-ESO-1 and Lage-1. Blood, 2012. 120. 755-755.	1.4	2
108	Combination Immunotherapy After ASCT for Multiple Myeloma (MM) Using MAGE-A3/Poly-ICLC Immunizations Followed by Vaccine-Primed and Activated Autologous T-Cells. Blood, 2012, 120, 352-352.	1.4	1

#	Article	IF	CITATIONS
109	Sustained Functional T Cell Persistence and B Cell Aplasia Following CD19-Targeting Adoptive T Cell Immunotherapy for Relapsed, Refractory CD19+ Malignacy. Blood, 2012, 120, 756-756.	1.4	1
110	CD19-Redirected Chimeric Antigen Receptor T (CART19) Cells Induce a Cytokine Release Syndrome (CRS) and Induction of Treatable Macrophage Activation Syndrome (MAS) That Can Be Managed by the IL-6 Antagonist Tocilizumab (toc) Blood, 2012, 120, 2604-2604.	1.4	6
111	Pre-Emptive T-Rapa Cell DLI for Therapy of High-Risk Lymphoma After Low-Intensity Allogeneic HCT. Blood, 2012, 120, 471-471.	1.4	0
112	Adoptive Transfer of Autologous CD25-Depleted, CD3/CD28-Costimulated T Cells After Cyclophosphamide - Fludarabine Chemotherapy in Patients with Low-Grade Follicular Lymphoma: Long-Term Follow up. Blood, 2012, 120, 1631-1631.	1.4	0
113	Combination immunotherapy using adoptive T-cell transfer and tumor antigen vaccination on the basis of hTERT and survivin after ASCT for myeloma. Blood, 2011, 117, 788-797.	1.4	148
114	T Cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia. Science Translational Medicine, 2011, 3, 95ra73.	12.4	2,006
115	Chimeric Antigen Receptor–Modified T Cells in Chronic Lymphoid Leukemia. New England Journal of Medicine, 2011, 365, 725-733.	27.0	3,067
116	Transfer of influenza vaccine–primed costimulated autologous T cells after stem cell transplantation for multiple myeloma leads to reconstitution of influenza immunity: results of a randomized clinical trial. Blood, 2011, 117, 63-71.	1.4	41
117	Adoptive Immunotherapy with Autologous CD3/CD28-Costimulated T-Cells After Fludarabine-Based Chemotherapy in Patients with Chronic Lymphocytic Leukemia. Blood, 2011, 118, 2855-2855.	1.4	0
118	Costimulated, Tumor-Derived Donor Lymphocyte (TDL) Infusion for B-Cell Tumor Relapse After Allogeneic Hematopoietic Stem Cell Transplantation. Blood, 2010, 116, 683-683.	1.4	0
119	Rapid Immune Recovery and Graft-versus-Host Disease–like Engraftment Syndrome following Adoptive Transfer of Costimulated Autologous T Cells. Clinical Cancer Research, 2009, 15, 4499-4507.	7.0	91
120	Adoptive immunotherapy: good habits instilled at youth have long-term benefits. Immunologic Research, 2008, 42, 182-196.	2.9	47
121	T lymphocyte engineering <i>ex vivo</i> for cancer and infectious disease. Expert Opinion on Biological Therapy, 2008, 8, 475-489.	3.1	31
122	A phase 1 trial of donor lymphocyte infusions expanded and activated ex vivo via CD3/CD28 costimulation. Blood, 2006, 107, 1325-1331.	1.4	209
123	Gene transfer in humans using a conditionally replicating lentiviral vector. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17372-17377.	7.1	452
124	Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer. Nature Medicine, 2005, 11, 1230-1237.	30.7	282
125	Stable Gene Transfer and Expression in Human Primary T-Cells by the Sleeping Beauty Transposon System Blood, 2005, 106, 5539-5539.	1.4	1
126	CD28-Mediated Regulation of Multiple Myeloma Cell Proliferation and Survival Blood, 2005, 106, 355-355.	1.4	0

#	Article	IF	CITATIONS
127	Adoptive transfer of costimulated T cells induces lymphocytosis in patients with relapsed/refractory non-Hodgkin lymphoma following CD34+-selected hematopoietic cell transplantation. Blood, 2003, 102, 2004-2013.	1.4	181
128	Adoptive transfer of costimulated CD4+ T cells induces expansion of peripheral T cells and decreased CCR5 expression in HIV infection. Nature Medicine, 2002, 8, 47-53.	30.7	161
129	Large-Scale Production of CD4+ T Cells from HIV-1-Infected Donors After CD3/CD28 Costimulation*. Stem Cells and Development, 1998, 7, 437-448.	1.0	107
130	Differential Regulation of HIV-1 Fusion Cofactor Expression by CD28 Costimulation of CD4+ T Cells. Science, 1997, 276, 273-276.	12.6	206
131	Assays for the Release of Cellular Gene Therapy Products. , 0, , 307-318.		0