Jiadeng Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9435906/publications.pdf Version: 2024-02-01

INDENC 7HIL

#	Article	IF	CITATIONS
1	A hybrid lithium sulfonated polyoxadiazole derived single-ion conducting gel polymer electrolyte enabled effective suppression of dendritic lithium growth. Chinese Chemical Letters, 2022, 33, 1025-1031.	9.0	10
2	Electrospun Nanofibers Enabled Advanced Lithium–Sulfur Batteries. Accounts of Materials Research, 2022, 3, 149-160.	11.7	13
3	Highly Stretchable, Conductive and Longâ€Term Stable PEDOT:PSS Fibers with Surface Arrays for Wearable Sensors. Advanced Engineering Materials, 2022, 24, .	3.5	8
4	Cost-effective carbon fiber precursor selections of polyacrylonitrile-derived blend polymers: carbonization chemistry and structural characterizations. Nanoscale, 2022, 14, 6357-6372.	5.6	20
5	A highly adhesive, self-healing and perdurable PEDOT:PSS/PAA–Fe ³⁺ gel enabled by multiple non-covalent interactions for multi-functional wearable electronics. Journal of Materials Chemistry C, 2022, 10, 6271-6280.	5.5	29
6	Three-layer core–shell Ag/AgCl/PEDOT: PSS composite fibers via a one-step single-nozzle technique enabled skin-inspired tactile sensors. Chemical Engineering Journal, 2022, 442, 136270.	12.7	26
7	Recent Developments of Tin (II) Sulfide/Carbon Composites for Achieving High-Performance Lithium Ion Batteries: A Critical Review. Nanomaterials, 2022, 12, 1246.	4.1	8
8	Novel hollow α-Fe2O3 nanofibers with robust performance enabled multi-functional applications. Environmental Research, 2022, 212, 113459.	7.5	6
9	Ionic/electronic conductivity regulation of n-type polyoxadiazole lithium sulfonate conductive polymer binders for high-performance silicon microparticle anodes. Chinese Chemical Letters, 2021, 32, 203-209.	9.0	17
10	Low-temperature carbonization of polyacrylonitrile/graphene carbon fibers: A combined ReaxFF molecular dynamics and experimental study. Carbon, 2021, 174, 345-356.	10.3	55
11	Electrospun Separator Based on Sulfonated Polyoxadiazole with Outstanding Thermal Stability and Electrochemical Properties for Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 879-887.	5.1	21
12	Singleâ€ion Conducting Polymer Electrolytes for Solidâ€6tate Lithium–Metal Batteries: Design, Performance, and Challenges. Advanced Energy Materials, 2021, 11, 2003836.	19.5	206
13	Metal salt modified PEDOT: PSS fibers with enhanced elongation and electroconductivity for wearable e-textiles. Composites Communications, 2021, 25, 100700.	6.3	17
14	Developments of Advanced Electrospinning Techniques: A Critical Review. Advanced Materials Technologies, 2021, 6, 2100410.	5.8	183
15	Urea-treated wet-spun PEDOT: PSS fibers for achieving high-performance wearable supercapacitors. Composites Communications, 2021, 27, 100885.	6.3	22
16	Surface engineering via self-assembly on PEDOT: PSS fibers: Biomimetic fluff-like morphology and sensing application. Chemical Engineering Journal, 2021, 425, 131551.	12.7	38
17	Mechanically robust and superior conductive n-type polymer binders for high-performance micro-silicon anodes in lithium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 3472-3481.	10.3	34
18	Multifunctional Fibroblasts Enhanced via Thermal and Freeze-Drying Post-treatments of Aligned Electrospun Nanofiber Membranes. Advanced Fiber Materials, 2021, 3, 26-37.	16.1	31

#	Article	IF	CITATIONS
19	Rational Polymer Design of Stretchable Poly(ionic liquid) Membranes for Dual Applications. Macromolecules, 2021, 54, 896-905.	4.8	19
20	Unraveling the Role of Neutral Units for Single-Ion Conducting Polymer Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 51525-51534.	8.0	18
21	A sustainable platform of lignin: From bioresources to materials and their applications in rechargeable batteries and supercapacitors. Progress in Energy and Combustion Science, 2020, 76, 100788.	31.2	191
22	Converting PBO fibers into carbon fibers by ultrafast carbonization. Carbon, 2020, 159, 432-442.	10.3	25
23	Garnet-rich composite solid electrolytes for dendrite-free, high-rate, solid-state lithium-metal batteries. Energy Storage Materials, 2020, 26, 448-456.	18.0	104
24	Recent Developments and Challenges in Hybrid Solid Electrolytes for Lithium-Ion Batteries. Frontiers in Energy Research, 2020, 8, .	2.3	52
25	Preparation and characterization of a class of selfâ€doping aromatic polyoxadiazole electrochromic materials. Journal of Applied Polymer Science, 2020, 137, 49406.	2.6	5
26	Hexanedioic acid mediated <i>in situ</i> functionalization of interconnected graphitic 3D carbon nanofibers as Pt support for trifunctional electrocatalysts. Sustainable Energy and Fuels, 2020, 4, 2808-2822.	4.9	13
27	Constructing High-Energy-Density Aqueous Supercapacitors with Potassium Iodide-Doped Electrolytes by a Precharging Method. ACS Applied Energy Materials, 2020, 3, 2674-2681.	5.1	13
28	Communication—Lithium Sulfonated Polyoxadiazole as a Novel Single-Ion Polymer Electrolyte in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 070518.	2.9	6
29	Graphene reinforced carbon fibers. Science Advances, 2020, 6, eaaz4191.	10.3	87
30	High-Performance 3-D Fiber Network Composite Electrolyte Enabled with Li-Ion Conducting Nanofibers and Amorphous PEO-Based Cross-Linked Polymer for Ambient All-Solid-State Lithium-Metal Batteries. Advanced Fiber Materials, 2019, 1, 46-60.	16.1	59
31	Unveiling Carbon Ring Structure Formation Mechanisms in Polyacrylonitrile-Derived Carbon Fibers. ACS Applied Materials & Interfaces, 2019, 11, 42288-42297.	8.0	36
32	BODIPY-embedded electrospun materials in antimicrobial photodynamic inactivation. Photochemical and Photobiological Sciences, 2019, 18, 1923-1932.	2.9	42
33	Recent progress in polymer materials for advanced lithium-sulfur batteries. Progress in Polymer Science, 2019, 90, 118-163.	24.7	130
34	Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium-sulfur batteries. Energy Storage Materials, 2019, 17, 220-225.	18.0	98
35	Carbon-enhanced centrifugally-spun SnSb/carbon microfiber composite as advanced anode material for sodium-ion battery. Journal of Colloid and Interface Science, 2019, 536, 655-663.	9.4	17
36	Reduced Graphene Oxide-Incorporated SnSb@CNF Composites as Anodes for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 9696-9703.	8.0	46

#	Article	IF	CITATIONS
37	High-performance SnSb@rGO@CMF composites as anode material for sodium-ion batteries through high-speed centrifugal spinning. Journal of Alloys and Compounds, 2018, 752, 296-302.	5.5	33
38	In Situ Polymerization of Nanostructured Conductive Polymer on 3D Sulfur/Carbon Nanofiber Composite Network as Cathode for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2018, 5, 1701598.	3.7	50
39	Glass fiber separatorÂcoated by porous carbon nanofiber derived fromÂimmiscible PAN/PMMA forÂhigh-performance lithium-sulfur batteries. Journal of Membrane Science, 2018, 552, 31-42.	8.2	83
40	Li _{0.33} La _{0.557} TiO ₃ ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. Journal of Materials Chemistry A, 2018, 6, 4279-4285.	10.3	280
41	Effect of reduced graphene oxide reduction degree on the performance of polysulfide rejection in lithium-sulfur batteries. Carbon, 2018, 126, 594-600.	10.3	40
42	Biomass-derived porous carbon modified glass fiber separator as polysulfide reservoir for Li-S batteries. Journal of Colloid and Interface Science, 2018, 513, 231-239.	9.4	86
43	Rationally designed carbon coated ZnSnS3 nano cubes as high-performance anode for advanced sodium-ion batteries. Electrochimica Acta, 2018, 292, 646-654.	5.2	18
44	Ultrafine and polar ZrO2-inlaid porous nitrogen-doped carbon nanofiber as efficient polysulfide absorbent for high-performance lithium-sulfur batteries with long lifespan. Chemical Engineering Journal, 2018, 349, 376-387.	12.7	91
45	High-strength, thermally stable nylon 6,6 composite nanofiber separators for lithium-ion batteries. Journal of Materials Science, 2017, 52, 5232-5241.	3.7	39
46	Fabrication and electrochemical behavior study of nano-fibrous sodium titanate composite. Materials Letters, 2017, 188, 176-179.	2.6	15
47	Pyrolytic-carbon coating in carbon nanotube foams for better performance in supercapacitors. Journal of Power Sources, 2017, 343, 492-501.	7.8	33
48	Tin nanoparticles embedded in ordered mesoporous carbon as high-performance anode for sodium-ion batteries. Journal of Solid State Electrochemistry, 2017, 21, 1385-1395.	2.5	23
49	A novel bi-functional double-layer rGO–PVDF/PVDF composite nanofiber membrane separator with enhanced thermal stability and effective polysulfide inhibition for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 15096-15104.	10.3	121
50	In-situ formation of tin-antimony sulfide in nitrogen-sulfur Co-doped carbon nanofibers as high performance anode materials for sodium-ion batteries. Carbon, 2017, 120, 380-391.	10.3	71
51	Carbonâ€Coated Magnesium Ferrite Nanofibers for Lithiumâ€lon Battery Anodes with Enhanced Cycling Performance. Energy Technology, 2017, 5, 1364-1372.	3.8	22
52	Photosensitizer-Embedded Polyacrylonitrile Nanofibers as Antimicrobial Non-Woven Textile. Nanomaterials, 2016, 6, 77.	4.1	51
53	Chemical vapor deposited MoS2/electrospun carbon nanofiber composite as anode material for high-performance sodium-ion batteries. Electrochimica Acta, 2016, 222, 1751-1760.	5.2	55
54	Electrospun ZnO–SnO2 composite nanofibers with enhanced electrochemical performance as lithium-ion anodes. Ceramics International, 2016, 42, 10826-10832.	4.8	38

#	Article	IF	CITATIONS
55	Superior high-voltage aqueous carbon/carbon supercapacitors operating with in situ electrodeposited polyvinyl alcohol borate gel polymer electrolytes. Journal of Materials Chemistry A, 2016, 4, 16588-16596.	10.3	34
56	Hierarchical multi-component nanofiber separators for lithium polysulfide capture in lithium–sulfur batteries: an experimental and molecular modeling study. Journal of Materials Chemistry A, 2016, 4, 13572-13581.	10.3	66
57	Synthesis of Nitrogenâ€Doped Electrospun Carbon Nanofibers as Anode Material for Highâ€Performance Sodiumâ€lon Batteries. Energy Technology, 2016, 4, 1440-1449.	3.8	49
58	Poly(vinyl Alcohol) Borate Gel Polymer Electrolytes Prepared by Electrodeposition and Their Application in Electrochemical Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 3473-3481.	8.0	92
59	Understanding glass fiber membrane used as a novel separator for lithium–sulfur batteries. Journal of Membrane Science, 2016, 504, 89-96.	8.2	152
60	Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol-gel and electrospinning techniques for lithium-ion batteries. Journal of Power Sources, 2016, 313, 205-212.	7.8	141
61	Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium–sulfur batteries. Carbon, 2016, 101, 272-280.	10.3	214
62	Comparing the structures and sodium storage properties of centrifugally spun SnO2 microfiber anodes with/without chemical vapor deposition. Journal of Materials Science, 2016, 51, 4549-4558.	3.7	8
63	Porous one-dimensional carbon/iron oxide composite for rechargeable lithium-ion batteries with high and stable capacity. Journal of Alloys and Compounds, 2016, 672, 79-85.	5.5	66
64	A novel separator coated by carbon for achieving exceptional high performance lithium-sulfur batteries. Nano Energy, 2016, 20, 176-184.	16.0	189
65	Centrifugally Spun SnO ₂ Microfibers Composed of Interconnected Nanoparticles as the Anode in Sodiumâ€lon Batteries. ChemElectroChem, 2015, 2, 1947-1956.	3.4	25
66	NiCu Alloy Nanoparticle-Loaded Carbon Nanofibers for Phenolic Biosensor Applications. Sensors, 2015, 15, 29419-29433.	3.8	26
67	Use of a tin antimony alloy-filled porous carbon nanofiber composite as an anode in sodium-ion batteries. RSC Advances, 2015, 5, 30793-30800.	3.6	70
68	Study on the stabilization of isotropic pitch based fibers. Macromolecular Research, 2015, 23, 79-85.	2.4	22
69	Estimating Monomer Sequence Distributions in Tetrapolyacrylates. Macromolecules, 2015, 48, 58-63.	4.8	6
70	High cyclability of carbon-coated TiO2 nanoparticles as anode for sodium-ion batteries. Electrochimica Acta, 2015, 157, 142-148.	5.2	118
71	The study on structure and electrochemical sodiation of one-dimensional nanocrystalline TiO2@C nanofiber composites. Electrochimica Acta, 2015, 176, 989-996.	5.2	54
72	Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries. Carbon, 2015, 94, 189-195.	10.3	260

#	Article	IF	CITATIONS
73	Lithium-substituted sodium layered transition metal oxide fibers as cathodes for sodium-ion batteries. Energy Storage Materials, 2015, 1, 74-81.	18.0	29
74	A laser ultrasound transducer using carbon nanofibers–polydimethylsiloxane composite thin film. Applied Physics Letters, 2015, 106, .	3.3	103
75	Centrifugally-spun tin-containing carbon nanofibers as anode material for lithium-ion batteries. Journal of Materials Science, 2015, 50, 1094-1102.	3.7	34
76	Centrifugal spinning: A novel approach to fabricate porous carbon fibers as binder-free electrodes for electric double-layer capacitors. Journal of Power Sources, 2015, 273, 502-510.	7.8	72
77	Sulfur gradient-distributed CNF composite: a self-inhibiting cathode for binder-free lithium–sulfur batteries. Chemical Communications, 2014, 50, 10277-10280.	4.1	75
78	Copper-doped Li4Ti5O12/carbon nanofiber composites as anode for high-performance sodium-ion batteries. Journal of Power Sources, 2014, 272, 860-865.	7.8	86
79	Preparation and characterization of isotropic pitch-based carbon fiber. Carbon Letters, 2013, 14, 94-98.	5.9	39
80	Study on the measurement of initial color and fading speed of photochromic lens. Fibers and Polymers, 2012, 13, 1179-1184.	2.1	3
81	Synthesis and Properties of Polyimide Composites Containing Graphene Oxide Via In-Situ Polymerization. Carbon Letters, 2012, 13, 230-235.	5.9	21