
Shofiul Azam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9434898/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Taurine and its analogs in neurological disorders: Focus on therapeutic potential and molecular mechanisms. Redox Biology, 2019, 24, 101223.	9.0	178
2	Targeting the Microglial NLRP3 Inflammasome and Its Role in Parkinson's Disease. Movement Disorders, 2020, 35, 20-33.	3.9	161
3	Regulation of Toll-Like Receptor (TLR) Signaling Pathway by Polyphenols in the Treatment of Age-Linked Neurodegenerative Diseases: Focus on TLR4 Signaling. Frontiers in Immunology, 2019, 10, 1000.	4.8	153
4	The Ageing Brain: Molecular and Cellular Basis of Neurodegeneration. Frontiers in Cell and Developmental Biology, 2021, 9, 683459.	3.7	94
5	Molecular Insights into NR4A2(Nurr1): an Emerging Target for Neuroprotective Therapy Against Neuroinflammation and Neuronal Cell Death. Molecular Neurobiology, 2019, 56, 5799-5814.	4.0	71
6	G-Protein-Coupled Receptors in CNS: A Potential Therapeutic Target for Intervention in Neurodegenerative Disorders and Associated Cognitive Deficits. Cells, 2020, 9, 506.	4.1	59
7	Anti-hyperglycaemic activity of <i>Moringa oleifera</i> is partly mediated by carbohydrase inhibition and glucose-fibre binding. Bioscience Reports, 2017, 37, .	2.4	37
8	Potential Therapeutic Targets of Quercetin and Its Derivatives: Its Role in the Therapy of Cognitive Impairment. Journal of Clinical Medicine, 2019, 8, 1789.	2.4	33
9	Natural Phytochemicals as Novel Therapeutic Strategies to Prevent and Treat Parkinson's Disease: Current Knowledge and Future Perspectives. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-32.	4.0	33
10	Antibacterial Activities and <i>In Vitro</i> Anti-Inflammatory (Membrane Stability) Properties of Methanolic Extracts of <i>Gardenia coronaria</i> Leaves. International Journal of Microbiology, 2014, 2014, 1-5.	2.3	30
11	The Methanol Extract of Allium cepa L. Protects Inflammatory Markers in LPS-Induced BV-2 Microglial Cells and Upregulates the Antiapoptotic Gene and Antioxidant Enzymes in N27-A Cells. Antioxidants, 2019, 8, 348.	5.1	30
12	Anti-hyperglycaemic activity of H. rosa-sinensis leaves is partly mediated by inhibition of carbohydrate digestion and absorption, and enhancement of insulin secretion. Journal of Ethnopharmacology, 2020, 253, 112647.	4.1	29
13	Effects of <i>Spirulina platensis</i> on insulin secretion, dipeptidyl peptidase IV activity and both carbohydrate digestion and absorption indicate potential as an adjunctive therapy for diabetes. British Journal of Nutrition, 2020, 124, 1021-1034.	2.3	25
14	Microglial Turnover in Ageing-Related Neurodegeneration: Therapeutic Avenue to Intervene in Disease Progression. Cells, 2021, 10, 150.	4.1	23
15	<i>Nigella sativa</i> stimulates insulin secretion from isolated rat islets and inhibits the digestion and absorption of (CH2O)n in the gut. Bioscience Reports, 2019, 39, .	2.4	21
16	The Neuroprotective Effects of GPR4 Inhibition through the Attenuation of Caspase Mediated Apoptotic Cell Death in an MPTP Induced Mouse Model of Parkinson's Disease. International Journal of Molecular Sciences, 2021, 22, 4674.	4.1	14
17	Piperine and Its Metabolite's Pharmacology in Neurodegenerative and Neurological Diseases. Biomedicines, 2022, 10, 154.	3.2	13
18	GPR4 Knockout Improves the Neurotoxin-Induced, Caspase-Dependent Mitochondrial Apoptosis of the Dopaminergic Neuronal Cell. International Journal of Molecular Sciences, 2020, 21, 7517.	4.1	12

Shofiul Azam

#	Article	IF	CITATIONS
19	Biological evidence of gintonin efficacy in memory disorders. Pharmacological Research, 2021, 163, 105221.	7.1	10
20	Anti-Inflammatory and Anti-Oxidant Study of Ethanolic Extract of Mimosa pudica. Journal of Young Pharmacists, 2015, 7, 234-240.	0.2	7
21	Therapeutic Potential of Lindera obtusiloba: Focus on Antioxidative and Pharmacological Properties. Plants, 2020, 9, 1765.	3.5	6
22	Evaluation of carbon tetrachloride fraction of <i>Actinodaphne angustifolia</i> Nees (Lauraceae) leaf extract for antioxidant, cytotoxic, thrombolytic and antidiarrheal properties. Bioscience Reports, 2020, 40, .	2.4	6
23	In Vitro Anti-Oxidant and Anti-Microbial Potentiality Investigation of Different Fractions of Caryota urens Leaves. Biomedicines, 2016, 4, 17.	3.2	5
24	Potential evaluation of central nervous system anti-depressant activity of Cleome rutidosperma in mice. Biomedical Research and Therapy, 2016, 3, .	0.6	5
25	Evaluation of antinociceptive and anti-inflammatory properties of methanolic crude extract of <i>Lophopetalum javanicum</i> (bark). Journal of Basic and Clinical Physiology and Pharmacology, 2016, 27, 379-385.	1.3	5
26	Challenges in Diabetic Micro-Complication Management: Focus on Diabetic Neuropathy. International Journal of Translational Medicine, 2021, 1, 175-186.	0.4	5
27	<i>In vitro</i> and <i>in vivo</i> antihyperglycemic activity of the ethanol extract of <i>Heritiera fomes</i> bark and characterization of pharmacologically active phytomolecules. Journal of Pharmacy and Pharmacology, 2022, 74, 415-425.	2.4	5
28	Dioscin-Mediated Autophagy Alleviates MPP+-Induced Neuronal Degeneration: An In Vitro Parkinson's Disease Model. Molecules, 2022, 27, 2827.	3.8	5
29	In vitro anti-oxidant and in vivo anti-inflammatory activity determination of the methanolic leaves extract of Millettiapachycarpa. Biomedical Research and Therapy, 2015, 2, .	0.6	4
30	Evaluation of Antinociceptive Activity of Methanol Extract from Cleome rutidosperma in Mice. Chinese Herbal Medicines, 2016, 8, 273-279.	3.0	4
31	Group I mGluRs in Therapy and Diagnosis of Parkinson's Disease: Focus on mGluR5 Subtype. Biomedicines, 2022, 10, 864.	3.2	4
32	Investigation of antinociceptive activity of methanolic extract of <i>Persicaria orientalis</i> leaves in rodents. Journal of Basic and Clinical Physiology and Pharmacology, 2017, 28, 171-179.	1.3	2
33	Irrational pharmacy practice and inadequate health care services in Bangladesh: a lesson learned from COVID-19 pandemic. Journal of Basic and Clinical Physiology and Pharmacology, 2021, 32, 129-130.	1.3	1