William Vainchenker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9433798/publications.pdf

Version: 2024-02-01

157 papers

18,520 citations

67 h-index 133 g-index

164 all docs

164 docs citations

164 times ranked 15384 citing authors

#	Article	IF	Citations
1	A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature, 2005, 434, 1144-1148.	27.8	3,221
2	Mutation in <i>TET2</i> ii>in Myeloid Cancers. New England Journal of Medicine, 2009, 360, 2289-2301.	27.0	1,614
3	TET2 Inactivation Results in Pleiotropic Hematopoietic Abnormalities in Mouse and IsÂa Recurrent Event during Human Lymphomagenesis. Cancer Cell, 2011, 20, 25-38.	16.8	792
4	Prognostic Score Including Gene Mutations in Chronic Myelomonocytic Leukemia. Journal of Clinical Oncology, 2013, 31, 2428-2436.	1.6	462
5	Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood, 2017, 129, 667-679.	1.4	444
6	JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood, 2006, 108, 1652-1660.	1.4	406
7	New mutations and pathogenesis of myeloproliferative neoplasms. Blood, 2011, 118, 1723-1735.	1.4	346
8	Myeloproliferative Neoplasms: Molecular Pathophysiology, Essential Clinical Understanding, and Treatment Strategies. Journal of Clinical Oncology, 2011, 29, 573-582.	1.6	272
9	Two routes to leukemic transformation after a JAK2 mutation–positive myeloproliferative neoplasm. Blood, 2010, 115, 2891-2900.	1.4	269
10	TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDSs). Blood, 2009, 114, 3285-3291.	1.4	264
11	Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood, 2016, 127, 1325-1335.	1.4	261
12	High molecular response rate of polycythemia vera patients treated with pegylated interferon Â-2a. Blood, 2006, 108, 2037-2040.	1.4	240
13	High Thrombopoietin Production by Hematopoietic Cells Induces a Fatal Myeloproliferative Syndrome in Mice. Blood, 1997, 90, 4369-4383.	1.4	235
14	TET2 gene mutation is a frequent and adverse event in chronic myelomonocytic leukemia. Haematologica, 2009, 94, 1676-1681.	3.5	234
15	Clonal architecture of chronic myelomonocytic leukemias. Blood, 2013, 121, 2186-2198.	1.4	232
16	Genetic and clinical implications of the Val617Phe JAK2 mutation in 72 families with myeloproliferative disorders. Blood, 2006, 108, 346-352.	1.4	221
17	Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis. Blood, 2016, 127, 1317-1324.	1.4	220
18	Prominent role of TGF- \hat{l}^21 in thrombopoietin-induced myelofibrosis in mice. Blood, 2002, 100, 3495-3503.	1.4	219

#	Article	IF	CITATIONS
19	Acquired Initiating Mutations in Early Hematopoietic Cells of CLL Patients. Cancer Discovery, 2014, 4, 1088-1101.	9.4	213
20	Remodeling of Bone Marrow Hematopoietic Stem Cell Niches Promotes Myeloid Cell Expansion during Premature or Physiological Aging. Cell Stem Cell, 2019, 25, 407-418.e6.	11.1	202
21	Deficiency in the Wiskott-Aldrich protein induces premature proplatelet formation and platelet production in the bone marrow compartment. Blood, 2006, 108, 134-140.	1.4	183
22	Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents. Nature Communications, 2016, 7, 10767.	12.8	177
23	The JAK2 617V>F mutation triggers erythropoietin hypersensitivity and terminal erythroid amplification in primary cells from patients with polycythemia vera. Blood, 2007, 110, 1013-1021.	1.4	172
24	Megakaryocyte endomitosis is a failure of late cytokinesis related to defects in the contractile ring and Rho/Rock signaling. Blood, 2008, 112, 3164-3174.	1.4	171
25	Inhibition of TET2-mediated conversion of 5-methylcytosine to 5-hydroxymethylcytosine disturbs erythroid and granulomonocytic differentiation of human hematopoietic progenitors. Blood, 2011, 118, 2551-2555.	1.4	163
26	Thrombocytopenia-associated mutations in the ANKRD26 regulatory region induce MAPK hyperactivation. Journal of Clinical Investigation, 2014, 124, 580-591.	8.2	163
27	Endomitosis of Human Megakaryocytes Are Due to Abortive Mitosis. Blood, 1998, 91, 3711-3723.	1.4	161
28	JAK2 stimulates homologous recombination and genetic instability: potential implication in the heterogeneity of myeloproliferative disorders. Blood, 2008, 112, 1402-1412.	1.4	159
29	Evidence that the JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood, 2007, 109, 71-77.	1.4	154
30	Proplatelet formation is regulated by the Rho/ROCK pathway. Blood, 2007, 109, 4229-4236.	1.4	153
31	JAKs in pathology: Role of Janus kinases in hematopoietic malignancies and immunodeficiencies. Seminars in Cell and Developmental Biology, 2008, 19, 385-393.	5.0	153
32	JAK1 and Tyk2 Activation by the Homologous Polycythemia Vera JAK2 V617F Mutation. Journal of Biological Chemistry, 2005, 280, 41893-41899.	3.4	151
33	Presence of atypical thrombopoietin receptor (MPL) mutations in triple-negative essential thrombocythemia patients. Blood, 2016, 127, 333-342.	1.4	149
34	Myeloproliferative neoplasm induced by constitutive expression of JAK2V617F in knock-in mice. Blood, 2010, 116, 783-787.	1.4	148
35	Thrombocytopenia resulting from mutations in filamin A can be expressed as an isolated syndrome. Blood, 2011, 118, 5928-5937.	1.4	148
36	FLI1 monoallelic expression combined with its hemizygous loss underlies Paris-Trousseau/Jacobsen thrombopenia. Journal of Clinical Investigation, 2004, 114, 77-84.	8.2	145

#	Article	IF	Citations
37	A common bipotent progenitor generates the erythroid and megakaryocyte lineages in embryonic stem cell–derived primitive hematopoiesis. Blood, 2009, 114, 1506-1517.	1.4	142
38	Activating mutations in human acute megakaryoblastic leukemia. Blood, 2008, 112, 4220-4226.	1.4	141
39	An amphipathic motif at the transmembrane-cytoplasmic junction prevents autonomous activation of the thrombopoietin receptor. Blood, 2006, 107, 1864-1871.	1.4	137
40	Mechanisms of WASp-mediated hematologic and immunologic disease. Blood, 2004, 104, 3454-3462.	1.4	134
41	JAK inhibitors for the treatment of myeloproliferative neoplasms and other disorders. F1000Research, 2018, 7, 82.	1.6	126
42	RUNX1-induced silencing of non-muscle myosin heavy chain IIB contributes to megakaryocyte polyploidization. Nature Communications, 2012, 3, 717.	12.8	122
43	JAK2V617F expression in mice amplifies early hematopoietic cells and gives them a competitive advantage that is hampered by IFNî±. Blood, 2013, 122, 1464-1477.	1.4	122
44	Incidence and prognostic value of TET2 alterations in de novo acute myeloid leukemia achieving complete remission. Blood, 2010, 116, 1132-1135.	1.4	121
45	Effects of Cytokines on Platelet Production From Blood and Marrow CD34+ Cells. Blood, 1998, 91, 830-843.	1.4	119
46	Novel activating JAK2 mutation in a patient with Down syndrome and B-cell precursor acute lymphoblastic leukemia. Blood, 2007, 109, 2202-2204.	1.4	114
47	Phenotypic and Functional Evidence for the Expression of CXCR4 Receptor During Megakaryocytopoiesis. Blood, 1999, 93, 1511-1523.	1.4	110
48	Interrelation between polyploidization and megakaryocyte differentiation: a gene profiling approach. Blood, 2007, 109, 3225-3234.	1.4	108
49	Germline duplication of ATG2B and GSKIP predisposes to familial myeloid malignancies. Nature Genetics, 2015, 47, 1131-1140.	21.4	107
50	Reduced retention of radioprotective hematopoietic cells within the bone marrow microenvironment in CXCR4–/– chimeric mice. Blood, 2006, 107, 2243-2251.	1.4	103
51	The hematopoietic stem cell compartment of JAK2V617F-positive myeloproliferative disorders is a reflection of disease heterogeneity. Blood, 2008, 112, 2429-2438.	1.4	101
52	Genetic Basis of Congenital Erythrocytosis: Mutation Update and Online Databases. Human Mutation, 2014, 35, 15-26.	2.5	101
53	Differential regulation of actin stress fiber assembly and proplatelet formation by $\hat{l}\pm2\hat{l}^21$ integrin and GPVI in human megakaryocytes. Blood, 2004, 104, 3117-3125.	1.4	98
54	Evidence for MPL W515L/K mutations in hematopoietic stem cells in primitive myelofibrosis. Blood, 2007, 110, 3735-3743.	1.4	96

#	Article	IF	CITATIONS
55	Analysis of the Ten-Eleven Translocation 2 (TET2) gene in familial myeloproliferative neoplasms. Blood, 2009, 114, 1628-1632.	1.4	96
56	A nonsynonymous SNP in the ITGB3 gene disrupts the conserved membrane-proximal cytoplasmic salt bridge in the $\hat{l}\pm IIb\hat{l}^23$ integrin and cosegregates dominantly with abnormal proplatelet formation and macrothrombocytopenia. Blood, 2008, 111, 3407-3414.	1.4	94
57	Dysmegakaryopoiesis of FPD/AML pedigrees with constitutional RUNX1 mutations is linked to myosin II deregulated expression. Blood, 2012, 120, 2708-2718.	1.4	93
58	RGS16 is a negative regulator of SDF-1–CXCR4 signaling in megakaryocytes. Blood, 2005, 106, 2962-2968.	1.4	92
59	Level of RUNX1 activity is critical for leukemic predisposition but not for thrombocytopenia. Blood, 2015, 125, 930-940.	1.4	87
60	The Thrombocytopenia of Wiskott Aldrich Syndrome Is Not Related to a Defect in Proplatelet Formation. Blood, 1999, 94, 509-518.	1.4	85
61	Mammalian target of rapamycin (mTOR) regulates both proliferation of megakaryocyte progenitors and late stages of megakaryocyte differentiation. Blood, 2006, 107, 2303-2310.	1.4	84
62	Orientation-specific signalling by thrombopoietin receptor dimers. EMBO Journal, 2011, 30, 4398-4413.	7.8	83
63	A Senescence-Like Cell-Cycle Arrest Occurs During Megakaryocytic Maturation: Implications for Physiological and Pathological Megakaryocytic Proliferation. PLoS Biology, 2010, 8, e1000476.	5.6	81
64	The OTT-MAL fusion oncogene activates RBPJ-mediated transcription and induces acute megakaryoblastic leukemia in a knockin mouse model. Journal of Clinical Investigation, 2009, 119, 852-64.	8.2	80
65	MAL/SRF complex is involved in platelet formation and megakaryocyte migration by regulating MYL9 (MLC2) and MMP9. Blood, 2009, 114, 4221-4232.	1.4	77
66	Immunosuppression by Mutated Calreticulin Released from Malignant Cells. Molecular Cell, 2020, 77, 748-760.e9.	9.7	77
67	Megakaryocyte polyploidization is associated with a functional gene amplification. Blood, 2003, 101, 541-544.	1.4	75
68	The SCL relative LYL-1 is required for fetal and adult hematopoietic stem cell function and B-cell differentiation. Blood, 2006, 107, 4678-4686.	1.4	75
69	An activating mutation in the <i>CSF3R</i> gene induces a hereditary chronic neutrophilia. Journal of Experimental Medicine, 2009, 206, 1701-1707.	8.5	75
70	Calreticulin mutants as oncogenic rogue chaperones for TpoR and traffic-defective pathogenic TpoR mutants. Blood, 2019, 133, 2669-2681.	1.4	74
71	Megakaryocyte and polyploidization. Experimental Hematology, 2018, 57, 1-13.	0.4	7 3
72	Germ-line JAK2 mutations in the kinase domain are responsible for hereditary thrombocytosis and are resistant to JAK2 and HSP90 inhibitors. Blood, 2014, 123, 1372-1383.	1.4	69

#	Article	IF	Citations
73	A new form of macrothrombocytopenia induced by a germ-line mutation in the PRKACG gene. Blood, 2014, 124, 2554-2563.	1.4	69
74	Induction of myeloproliferative disorder and myelofibrosis by thrombopoietin receptor W515 mutants is mediated by cytosolic tyrosine 112 of the receptor. Blood, 2010, 115, 1037-1048.	1.4	68
75	MYH10 protein expression in platelets as a biomarker of RUNX1 and FLI1 alterations. Blood, 2012, 120, 2719-2722.	1.4	68
76	Role of p21Cip1/Waf1 in cell-cycle exit of endomitotic megakaryocytes. Blood, 2001, 98, 3274-3282.	1.4	65
77	Downregulation of GATA1 drives impaired hematopoiesis in primary myelofibrosis. Journal of Clinical Investigation, 2017, 127, 1316-1320.	8.2	65
78	The formin DIAPH1 (mDia1) regulates megakaryocyte proplatelet formation by remodeling the actin and microtubule cytoskeletons. Blood, 2014, 124, 3967-3977.	1.4	59
79	Down-regulation of the RUNX1-target gene NR4A3 contributes to hematopoiesis deregulation in familial platelet disorder/acute myelogenous leukemia. Blood, 2011, 118, 6310-6320.	1.4	53
80	Combination treatment for myeloproliferative neoplasms using <scp>JAK</scp> and panâ€class I <scp>PI</scp> 3K inhibitors. Journal of Cellular and Molecular Medicine, 2013, 17, 1397-1409.	3.6	50
81	Thrombopoietin receptor down-modulation by JAK2 V617F: restoration of receptor levels by inhibitors of pathologic JAK2 signaling and of proteasomes. Blood, 2012, 119, 4625-4635.	1.4	49
82	Asymmetrical segregation of chromosomes with a normal metaphase/anaphase checkpoint in polyploid megakaryocytes. Blood, 2001, 97, 2238-2247.	1.4	48
83	P19INK4D links endomitotic arrest and megakaryocyte maturation and is regulated by AML-1. Blood, 2008, 111, 4081-4091.	1.4	47
84	FLT3-Mediated p38–MAPK Activation Participates in the Control of Megakaryopoiesis in Primary Myelofibrosis. Cancer Research, 2011, 71, 2901-2915.	0.9	46
85	Monocytic cells derived from human embryonic stem cells and fetal liver share common differentiation pathways and homeostatic functions. Blood, 2011, 117, 3065-3075.	1.4	45
86	JAK2 and MPL protein levels determine TPO-induced megakaryocyte proliferation vs differentiation. Blood, 2014, 124, 2104-2115.	1.4	45
87	A <i>CALR</i> Mutation Preceding <i>BCR-ABL1</i> in an Atypical Myeloproliferative Neoplasm. New England Journal of Medicine, 2015, 372, 688-690.	27.0	41
88	Recent advances in understanding myelofibrosis and essential thrombocythemia. F1000Research, 2016, 5, 700.	1.6	39
89	Genetic Alterations of the Thrombopoietin/MPL/JAK2 Axis Impacting Megakaryopoiesis. Frontiers in Endocrinology, 2017, 8, 234.	3.5	39
90	P53 activation inhibits all types of hematopoietic progenitors and all stages of megakaryopoiesis. Oncotarget, 2016, 7, 31980-31992.	1.8	38

#	Article	IF	CITATION
91	Aurora B is dispensable for megakaryocyte polyploidization, but contributes to the endomitotic process. Blood, 2010, 116, 2345-2355.	1.4	37
92	Knock-in of murine Calr del52 induces essential thrombocythemia with slow-rising dominance in mice and reveals key role of Calr exon 9 in cardiac development. Leukemia, 2020, 34, 510-521.	7.2	36
93	New Insights into the Pathogenesis of JAK2 V617F-Positive Myeloproliferative Disorders and Consequences for the Management of Patients. Seminars in Thrombosis and Hemostasis, 2006, 32, 341-351.	2.7	35
94	Critical role of the HDAC6–cortactin axis in human megakaryocyte maturation leading to a proplatelet-formation defect. Nature Communications, 2017, 8, 1786.	12.8	35
95	A major role of TGF-β1 in the homing capacities of murine hematopoietic stem cell/progenitors. Blood, 2010, 116, 1244-1253.	1.4	34
96	TET2 Deficiency Inhibits Mesoderm and Hematopoietic Differentiation in Human Embryonic Stem Cells. Stem Cells, 2014, 32, 2084-2097.	3.2	34
97	Heterozygous and Homozygous JAK2V617F States Modeled by Induced Pluripotent Stem Cells from Myeloproliferative Neoplasm Patients. PLoS ONE, 2013, 8, e74257.	2.5	32
98	Secreted Mutant Calreticulins As Rogue Cytokines Trigger Thrombopoietin Receptor Activation Specifically in CALR Mutated Cells: Perspectives for MPN Therapy. Blood, 2018, 132, 4-4.	1.4	32
99	p19INK4d Controls Hematopoietic Stem Cells in a Cell-Autonomous Manner during Genotoxic Stress and through the Microenvironment during Aging. Stem Cell Reports, 2014, 3, 1085-1102.	4.8	27
100	Disrupted filamin A \hat{l} ±IIb \hat{l} 23 interaction induces macrothrombocytopenia by increasing RhoA activity. Blood, 2019, 133, 1778-1788.	1.4	27
101	Calreticulin del52 and ins5 knock-in mice recapitulate different myeloproliferative phenotypes observed in patients with MPN. Nature Communications, 2020, 11, 4886.	12.8	27
102	Concomitant germâ€line <i><scp>RUNX</scp>1</i> and acquired <i><scp>ASXL</scp>1</i> mutations in a Tâ€cell acute lymphoblastic leukemia. European Journal of Haematology, 2013, 91, 277-279.	2.2	25
103	CXCL12/CXCR4 pathway is activated by oncogenic JAK2 in a PI3K-dependent manner. Oncotarget, 2017, 8, 54082-54095.	1.8	25
104	Inferring the dynamics of mutated hematopoietic stem and progenitor cells induced by IFN \hat{l}_{\pm} in myeloproliferative neoplasms. Blood, 2021, 138, 2231-2243.	1.4	25
105	Selective reduction of JAK2V617F-dependent cell growth by siRNA/shRNA and its reversal by cytokines. Blood, 2009, 114, 1842-1851.	1.4	24
106	Regulation of Platelet Production and Life Span: Role of Bcl-xL and Potential Implications for Human Platelet Diseases. International Journal of Molecular Sciences, 2020, 21, 7591.	4.1	24
107	Myeloproliferative Neoplasms: JAK2 Signaling Pathway as a Central Target for Therapy. Clinical Lymphoma, Myeloma and Leukemia, 2014, 14, S23-S35.	0.4	23
108	Defective endomitosis during megakaryopoiesis leads to thrombocytopenia in Fancaâ^'/â^' mice. Blood, 2014, 124, 3613-3623.	1.4	23

#	Article	IF	Citations
109	Impact of NFE2 mutations on AML transformation andÂoverall survival in patients with myeloproliferative neoplasms. Blood, 2021, 138, 2142-2148.	1.4	23
110	Emergence of a <i>BCR-ABL</i> Translocation in a Patient With the <i>JAK2</i> V617F Mutation: Evidence for Secondary Acquisition of <i>BCR-ABL</i> in the <i>JAK2</i> V617F Clone. Journal of Clinical Oncology, 2014, 32, e76-e79.	1.6	22
111	Identification of MPL R102P Mutation in Hereditary Thrombocytosis. Frontiers in Endocrinology, 2017, 8, 235.	3.5	22
112	Functional Consequences of Mutations in Myeloproliferative Neoplasms. HemaSphere, 2021, 5, e578.	2.7	22
113	JAK2V617F myeloproliferative neoplasm eradication by a novel interferon/arsenic therapy involves PML. Journal of Experimental Medicine, 2021, 218, .	8.5	22
114	Monocyte/Macrophage Dysfunctions Do Not Impair the Promotion of Myelofibrosis by High Levels of Thrombopoietin. Journal of Immunology, 2006, 176, 6425-6433.	0.8	21
115	Presence of a defect in karyokinesis during megakaryocyte endomitosis. Cell Cycle, 2012, 11, 4385-4389.	2.6	21
116	TET2-mediated 5-hydroxymethylcytosine induces genetic instability and mutagenesis. DNA Repair, 2016, 43, 78-88.	2.8	21
117	The role of the thrombopoietin receptor MPL in myeloproliferative neoplasms: recent findings and potential therapeutic applications. Expert Review of Hematology, 2019, 12, 437-448.	2.2	20
118	Megakaryocyte polyploidization: role in platelet production. Platelets, 2020, 31, 707-716.	2.3	20
119	Distinct effects of thrombopoietin depending on a threshold level of activated Mpl in BaF-3 cells. Journal of Cell Science, 2002, 115, 2329-2337.	2.0	20
120	Uncoupling of the Hippo and Rho pathways allows megakaryocytes to escape the tetraploid checkpoint. Haematologica, 2016, 101, 1469-1478.	3.5	18
121	Description of a knock-in mouse model of JAK2V617F MPN emerging from a minority of mutated hematopoietic stem cells. Blood, 2019, 134, 2383-2387.	1.4	18
122	Activity of nonmuscle myosin II isoforms determines localization at the cleavage furrow of megakaryocytes. Blood, 2016, 128, 3137-3145.	1.4	17
123	New pathogenic mechanisms induced by germline erythropoietin receptor mutations in primary erythrocytosis. Haematologica, 2018, 103, 575-586.	3.5	17
124	TET2, a tumor suppressor in hematological disorders. Biochimica Et Biophysica Acta: Reviews on Cancer, 2012, 1825, 173-177.	7.4	16
125	An incomplete trafficking defect to the cell-surface leads to paradoxical thrombocytosis for human and murine MPL P106L. Blood, 2016, 128, 3146-3158.	1.4	16
126	A p53-JAK-STAT connection involved in myeloproliferative neoplasm pathogenesis and progression to secondary acute myeloid leukemia. Blood Reviews, 2020, 42, 100712.	5.7	16

#	Article	IF	CITATIONS
127	Germline genetic factors in the pathogenesis of myeloproliferative neoplasms. Blood Reviews, 2020, 42, 100710.	5.7	16
128	Eltrombopag, a potent stimulator of megakaryopoiesis. Haematologica, 2016, 101, 1443-1445.	3.5	14
129	Molecular and Genetic Bases of Myeloproliferative Disorders: Questions and Perspectives. Clinical Lymphoma and Myeloma, 2009, 9, S329-S339.	1.4	13
130	Multilayer intraclonal heterogeneity in chronic myelomonocytic leukemia. Haematologica, 2020, 105, 112-123.	3.5	13
131	Different impact of calreticulin mutations on human hematopoiesis in myeloproliferative neoplasms. Oncogene, 2020, 39, 5323-5337.	5.9	12
132	Calr Mutants Retroviral Mouse Models Lead to a Myeloproliferative Neoplasm Mimicking an Essential Thrombocythemia Progressing to a Myelofibrosis. Blood, 2014, 124, 157-157.	1.4	11
133	<i>ATG2B</i> and <i>GSKIP</i> : 2 new genes predisposing to myeloid malignancies. Molecular and Cellular Oncology, 2016, 3, e1094564.	0.7	10
134	Acquired TET 2 mutation in one patient with familial platelet disorder with predisposition to AML led to the development of preâ€leukaemic clone resulting in T2â€-ALL and AML â€M0. Journal of Cellular and Molecular Medicine, 2017, 21, 1237-1242.	3.6	10
135	Germline ATG2B/GSKIP-containing 14q32 duplication predisposes to early clonal hematopoiesis leading to myeloid neoplasms. Leukemia, 2022, 36, 126-137.	7.2	10
136	Concise Review: Induced Pluripotent Stem Cells as New Model Systems in Oncology. Stem Cells, 2015, 33, 2887-2892.	3.2	8
137	The Pediatric Acute Leukemia Fusion Oncogene ETO2â€GLIS2 Increases Selfâ€Renewal and Alters Differentiation in a Human Induced Pluripotent Stem Cellsâ€Derived Model. HemaSphere, 2020, 4, e319.	2.7	8
138	Macrophage migration inhibitory factor is overproduced through EGR1 in TET2low resting monocytes. Communications Biology, 2022, 5, 110.	4.4	8
139	Lyl-1 regulates primitive macrophages and microglia development. Communications Biology, 2021, 4, 1382.	4.4	8
140	Rare type 1-like and type 2-like calreticulin mutants induce similar myeloproliferative neoplasms as prevalent type 1 and 2 mutants in mice. Oncogene, 2019, 38, 1651-1660.	5.9	7
141	A new efficientÂtool for nonâ€invasive diagnosis of fetomaternal platelet antigen incompatibility. British Journal of Haematology, 2020, 190, 787-798.	2.5	6
142	An inherited gainâ€ofâ€function risk allele in <scp><i>EPOR</i></scp> predisposes to familial <scp><i>JAK2</i>^{V617F}</scp> myeloproliferative neoplasms. British Journal of Haematology, 2022, 198, 131-136.	2.5	6
143	Megakaryocytes tame erythropoiesis with TGFÎ ² 1. Blood, 2020, 136, 1016-1017.	1.4	5
144	TET2 haploinsufficiency alters reprogramming into induced pluripotent stem cells. Stem Cell Research, 2020, 44, 101755.	0.7	5

#	Article	IF	CITATIONS
145	CCND2 mutations are infrequent events in BCR-ABL1 negative myeloproliferative neoplasm patients. Haematologica, 2021, 106, 863-864.	3.5	5
146	<i>ATG2B/GSKIP</i> in <i>de novo</i> acute myeloid leukemia (AML): high prevalence of germline predisposition in French West Indies. Leukemia and Lymphoma, 2021, 62, 1770-1773.	1.3	5
147	Role of Rho-GTPases in megakaryopoiesis. Small GTPases, 2021, 12, 399-415.	1.6	5
148	Dual role of EZH2 in megakaryocyte differentiation. Blood, 2021, 138, 1603-1614.	1.4	5
149	Induced Pluripotent Stem Cells Enable Disease Modeling and Drug Screening in Calreticulin del52 and ins5 Myeloproliferative Neoplasms. HemaSphere, 2021, 5, e593.	2.7	5
150	$\text{PPAR}\hat{\mathbf{I}}^3$ agonists promote the resolution of myelofibrosis in preclinical models. Journal of Clinical Investigation, 2021, 131, .	8.2	4
151	CALR mutant protein rescues the response of MPL p.R464G variant associated with CAMT to eltrombopag. Blood, 2021, 138, 480-485.	1.4	3
152	EZH2: a molecular switch of the MPN phenotype. Blood, 2016, 127, 3297-3298.	1.4	2
153	TET2 loss, a rescue of JAK2V617F HSCs. Blood, 2015, 125, 212-213.	1.4	1
154	The megakaryocyte: a cell with 3 faces as a mythic god?. Blood, 2021, 138, 1199-1200.	1.4	1
155	P53 deletion and NrasG12D cooperate for AML. Blood, 2017, 129, 271-273.	1.4	0
156	Myelodysplastic Syndromes: Mechanisms, Diagnosis, and Treatment. , 2018, , 563-563.		0
157	IFN: Jekyll and Hyde. Blood, 2021, 137, 291-293.	1.4	O