Heidi Gransar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9433633/publications.pdf

Version: 2024-02-01

		61984	71685
138	6,758 citations	43	76
papers	citations	h-index	g-index
100	100	100	5007
139	139	139	5997
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. European Heart Journal, 2017, 38, ehw188.	2.2	447
2	Impact of Coronary Artery Calcium Scanning on Coronary Risk Factors and Downstream Testing. Journal of the American College of Cardiology, 2011, 57, 1622-1632.	2.8	390
3	Coronary Atherosclerotic Precursors of Acute Coronary Syndromes. Journal of the American College of Cardiology, 2018, 71, 2511-2522.	2.8	328
4	Temporal Trends in the Frequency of Inducible Myocardial Ischemia During Cardiac Stress Testing. Journal of the American College of Cardiology, 2013, 61, 1054-1065.	2.8	314
5	Atherosclerotic Plaque Characteristics byÂCT Angiography Identify Coronary Lesions That Cause Ischemia. JACC: Cardiovascular Imaging, 2015, 8, 1-10.	5.3	241
6	A 15-Year Warranty Period for Asymptomatic Individuals Without Coronary Artery Calcium. JACC: Cardiovascular Imaging, 2015, 8, 900-909.	5.3	204
7	Pericoronary Adipose Tissue Computed Tomography Attenuation and High-Risk Plaque Characteristics in Acute Coronary Syndrome Compared With Stable Coronary Artery Disease. JAMA Cardiology, 2018, 3, 858.	6.1	186
8	Prognostic Value of Combined Clinical andÂMyocardial Perfusion Imaging Data Using Machine Learning. JACC: Cardiovascular Imaging, 2018, 11, 1000-1009.	5.3	172
9	Epicardial adipose tissue density and volume are related to subclinical atherosclerosis, inflammation and major adverse cardiac events in asymptomatic subjects. Journal of Cardiovascular Computed Tomography, 2018, 12, 67-73.	1.3	143
10	Maximization of the usage of coronary CTA derived plaque information using a machine learning based algorithm to improve risk stratification; insights from the CONFIRM registry. Journal of Cardiovascular Computed Tomography, 2018, 12, 204-209.	1.3	137
11	Machine learning of clinical variables and coronary artery calcium scoring for the prediction of obstructive coronary artery disease on coronary computed tomography angiography: analysis from the CONFIRM registry. European Heart Journal, 2020, 41, 359-367.	2.2	137
12	Integrated prediction of lesion-specific ischaemia from quantitative coronary CT angiography using machine learning: a multicentre study. European Radiology, 2018, 28, 2655-2664.	4.5	135
13	Increased Pericardial Fat Volume Measured From Noncontrast CT Predicts Myocardial Ischemia by SPECT. JACC: Cardiovascular Imaging, 2010, 3, 1104-1112.	5.3	133
14	Relationship between changes in pericoronary adipose tissue attenuation and coronary plaque burden quantified from coronary computed tomography angiography. European Heart Journal Cardiovascular Imaging, 2019, 20, 636-643.	1.2	129
15	Sex-Specific Associations Between Coronary Artery Plaque Extent and Risk ofÂMajor Adverse Cardiovascular Events. JACC: Cardiovascular Imaging, 2016, 9, 364-372.	5.3	108
16	Prognostic value of coronary computed tomographic angiography findings in asymptomatic individuals: a 6-year follow-up from the prospective multicentre international CONFIRM study. European Heart Journal, 2018, 39, 934-941.	2.2	100
17	Thoracic Aortic Calcium Versus Coronary Artery Calcium for the Prediction of Coronary Heart Disease and Cardiovascular Disease Events. JACC: Cardiovascular Imaging, 2009, 2, 319-326.	5.3	99
18	Comparison of long-term mortality risk following normal exercise vs adenosine myocardial perfusion SPECT. Journal of Nuclear Cardiology, 2010, 17, 999-1008.	2.1	91

#	Article	IF	Citations
19	The Coronary Artery Disease–Reporting and Data System (CAD-RADS). JACC: Cardiovascular Imaging, 2018, 11, 78-89.	5.3	91
20	Quantitative global plaque characteristics from coronary computed tomography angiography for the prediction of future cardiac mortality during long-term follow-up. European Heart Journal Cardiovascular Imaging, 2017, 18, 1331-1339.	1.2	90
21	Association of High-Density Calcified 1K Plaque With Risk of Acute Coronary Syndrome. JAMA Cardiology, 2020, 5, 282.	6.1	90
22	Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study. The Lancet Digital Health, 2022, 4, e256-e265.	12.3	85
23	Superior Risk Stratification With Coronary Computed Tomography Angiography Using a Comprehensive Atherosclerotic Risk Score. JACC: Cardiovascular Imaging, 2019, 12, 1987-1997.	5.3	78
24	Machine learning to predict the long-term risk of myocardial infarction and cardiac death based on clinical risk, coronary calcium, and epicardial adipose tissue: a prospective study. Cardiovascular Research, 2020, 116, 2216-2225.	3.8	78
25	Deep Learning–Based Quantification of Epicardial Adipose Tissue Volume and Attenuation Predicts Major Adverse Cardiovascular Events in Asymptomatic Subjects. Circulation: Cardiovascular Imaging, 2020, 13, e009829.	2.6	77
26	Rationale and design of the REgistry of Fast Myocardial Perfusion Imaging with NExt generation SPECT (REFINE SPECT). Journal of Nuclear Cardiology, 2020, 27, 1010-1021.	2.1	74
27	Weight change modulates epicardial fat burden: A 4-year serial study with non-contrast computed tomography. Atherosclerosis, 2012, 220, 139-144.	0.8	73
28	Long-Term Prognosis After Coronary Artery Calcium Scoring Among Low-Intermediate Risk Women and Men. Circulation: Cardiovascular Imaging, 2016, 9, e003742.	2.6	71
29	Long-Term Prognostic Utility of CoronaryÂCTÂAngiography in Stable Patients WithÂDiabetes Mellitus. JACC: Cardiovascular Imaging, 2016, 9, 1280-1288.	5.3	70
30	5-Year Prognostic Value of QuantitativeÂVersus Visual MPI in SubtleÂPerfusionÂDefects. JACC: Cardiovascular Imaging, 2020, 13, 774-785.	5.3	70
31	Automated Quantitative Plaque Burden from Coronary CT Angiography Noninvasively Predicts Hemodynamic Significance by using Fractional Flow Reserve in Intermediate Coronary Lesions. Radiology, 2015, 276, 408-415.	7.3	67
32	Comparative Value of Coronary Artery Calcium and Multiple Blood Biomarkers for Prognostication of Cardiovascular Events. American Journal of Cardiology, 2012, 109, 1449-1453.	1.6	57
33	Relationship of Hypertension to Coronary Atherosclerosis and Cardiac Events in Patients With Coronary Computed Tomographic Angiography. Hypertension, 2017, 70, 293-299.	2.7	57
34	Long-term prognostic impact of CT-Leaman score in patients with non-obstructive CAD: Results from the COronary CT Angiography EvaluatioN For Clinical Outcomes InteRnational Multicenter (CONFIRM) study. International Journal of Cardiology, 2017, 231, 18-25.	1.7	56
35	Relationship Between Quantitative Adverse Plaque Features From Coronary Computed Tomography Angiography and Downstream Impaired Myocardial Flow Reserve by ¹³ N-Ammonia Positron Emission Tomography. Circulation: Cardiovascular Imaging, 2015, 8, e003255.	2.6	55
36	CT Angiography for the Prediction of Hemodynamic Significance in Intermediate and Severe Lesions. JACC: Cardiovascular Imaging, 2016, 9, 559-564.	5.3	53

#	Article	IF	CITATIONS
37	Machine Learning Adds to Clinical and CAC Assessments in Predicting 10-Year CHD and CVD Deaths. JACC: Cardiovascular Imaging, 2021, 14, 615-625.	5.3	52
38	Combined Quantitative Assessment of Myocardial Perfusion and Coronary Artery Calcium Score by Hybrid ⁸² Rb PET/CT Improves Detection of Coronary Artery Disease. Journal of Nuclear Medicine, 2015, 56, 1345-1350.	5.0	50
39	Standardized volumetric plaque quantification and characterization from coronary CT angiography: a head-to-head comparison with invasive intravascular ultrasound. European Radiology, 2019, 29, 6129-6139.	4.5	50
40	Induced Cardiovascular Procedural Costs and Resource Consumption Patterns After Coronary Artery Calcium Screening. Journal of the American College of Cardiology, 2009, 54, 1258-1267.	2.8	49
41	Epicardial adipose tissue volume but not density is an independent predictor for myocardial ischemia. Journal of Cardiovascular Computed Tomography, 2016, 10, 141-149.	1.3	49
42	Diagnostic Performance of Hybrid Cardiac Imaging Methods for Assessment of Obstructive Coronary Artery Disease Compared With Stand-Alone Coronary Computed Tomography Angiography. JACC: Cardiovascular Imaging, 2018, 11, 589-599.	5.3	49
43	Relationship Between Endothelial Wall Shear Stress and Highâ€Risk Atherosclerotic Plaque Characteristics for Identification of Coronary Lesions That Cause Ischemia: A Direct Comparison With Fractional Flow Reserve. Journal of the American Heart Association, 2016, 5, .	3.7	47
44	Sex-based Prognostic Implications of Nonobstructive Coronary Artery Disease: Results from the International Multicenter CONFIRM Study. Radiology, 2014, 273, 393-400.	7.3	45
45	Impact of Exercise on the RelationshipÂBetween CAC ScoresÂand All-Cause Mortality. JACC: Cardiovascular Imaging, 2017, 10, 1461-1468.	5.3	43
46	Incremental role of resting myocardial computed tomography perfusion for predicting physiologically significant coronary artery disease: A machine learning approach. Journal of Nuclear Cardiology, 2018, 25, 223-233.	2.1	43
47	Predictors of high-risk coronary artery disease in subjects with normal SPECT myocardial perfusion imaging. Journal of Nuclear Cardiology, 2016, 23, 530-541.	2.1	39
48	Prognostic Significance of Nonobstructive Left Main Coronary Artery Disease in Women Versus Men. Circulation: Cardiovascular Imaging, 2017, 10, .	2.6	38
49	Machine learning integration of circulating and imaging biomarkers for explainable patient-specific prediction of cardiac events: A prospective study. Atherosclerosis, 2021, 318, 76-82.	0.8	37
50	Clinical risk factors and atherosclerotic plaque extent to define risk for major events in patients without obstructive coronary artery disease: the long-term coronary computed tomography angiography CONFIRM registry. European Heart Journal Cardiovascular Imaging, 2020, 21, 479-488.	1.2	36
51	Current but not past smoking increases the risk of cardiac events: insights from coronary computed tomographic angiography. European Heart Journal, 2015, 36, 1031-1040.	2.2	34
52	CT Angiography for the Detection of CoronaryÂArtery StenosesÂin Patients Referred forÂCardiac Valve Surgery. JACC: Cardiovascular Imaging, 2016, 9, 1059-1070.	5.3	34
53	Incremental prognostic value of coronary computed tomography angiography over coronary calcium scoring for major adverse cardiac events in elderly asymptomatic individuals. European Heart Journal Cardiovascular Imaging, 2018, 19, 675-683.	1.2	34
54	A Boosted Ensemble Algorithm for Determination of Plaque Stability in High-Risk Patients on Coronary CTA. JACC: Cardiovascular Imaging, 2020, 13, 2162-2173.	5.3	34

#	Article	IF	CITATIONS
55	Do Psychological Risk Factors Predict the Presence of Coronary Atherosclerosis?. Psychosomatic Medicine, 2011, 73, 7-15.	2.0	33
56	Metabolic syndrome, fatty liver, and artificial intelligence-based epicardial adipose tissue measures predict long-term risk of cardiac events: a prospective study. Cardiovascular Diabetology, 2021, 20, 27.	6.8	33
57	Coronary dominance and prognosis in patients undergoing coronary computed tomographic angiography: results from the CONFIRM (COronary CT Angiography Evaluation For Clinical Outcomes:) Tj ETQq1 853-862.	1 0.78431 1.2	4,rgBT /Ove
58	Predictive Value of Age- and Sex-Specific Nomograms of Global Plaque Burden on Coronary Computed Tomography Angiography for Major Cardiac Events. Circulation: Cardiovascular Imaging, 2017, 10, .	2.6	31
59	Quantitative plaque features from coronary computed tomography angiography to identify regional ischemia by myocardial perfusion imaging. European Heart Journal Cardiovascular Imaging, 2017, 18, 499-507.	1.2	31
60	Left Ventricular Function and Volume with Coronary CT Angiography Improves Risk Stratification and Identification of Patients at Risk for Incident Mortality: Results from 7758 Patients in the Prospective Multinational CONFIRM Observational Cohort Study. Radiology, 2014, 273, 70-77.	7. 3	30
61	Medical History for Prognostic Risk Assessment and Diagnosis of Stable Patients with Suspected Coronary Artery Disease. American Journal of Medicine, 2015, 128, 871-878.	1.5	30
62	Gender differences in the prevalence, severity, and composition of coronary artery disease in the young: a study of 1635 individuals undergoing coronary CT angiography from the prospective, multinational confirm registry. European Heart Journal Cardiovascular Imaging, 2015, 16, 490-499.	1.2	29
63	Impact of Early Revascularization on Major Adverse Cardiovascular Events inÂRelation to Automatically QuantifiedÂlschemia. JACC: Cardiovascular Imaging, 2021, 14, 644-653.	5. 3	28
64	Comparison of the Coronary Artery Calcium Score and Number of Calcified Coronary Plaques for Predicting Patient Mortality Risk. American Journal of Cardiology, 2017, 120, 2154-2159.	1.6	27
65	The relationship between epicardial fat volume and incident coronary artery calcium. Journal of Cardiovascular Computed Tomography, 2011, 5, 310-316.	1.3	26
66	Non-obstructive high-risk plaques increase the risk of future culprit lesions comparable to obstructive plaques without high-risk features: the ICONIC study. European Heart Journal Cardiovascular Imaging, 2020, 21, 973-980.	1.2	26
67	Is Metabolic Syndrome Predictive of Prevalence, Extent, and Risk of Coronary Artery Disease beyond Its Components? Results from the Multinational Coronary CT Angiography Evaluation for Clinical Outcome: An International Multicenter Registry (CONFIRM). PLoS ONE, 2015, 10, e0118998.	2.5	26
68	Quantitation of left ventricular ejection fraction reserve from early gated regadenoson stress Tc-99m high-efficiency SPECT. Journal of Nuclear Cardiology, 2016, 23, 1251-1261.	2.1	25
69	Simultaneous Tc-99m PYP/Tl-201 dual-isotope SPECT myocardial imaging in patients with suspected cardiac amyloidosis. Journal of Nuclear Cardiology, 2020, 27, 28-37.	2.1	25
70	Increased long-term mortality in women with high left ventricular ejection fraction: data from the CONFIRM (COronary CT Angiography EvaluatioN For Clinical Outcomes: An InteRnational Multicenter) long-term registry. European Heart Journal Cardiovascular Imaging, 2020, 21, 363-374.	1.2	25
71	Quantitative measurement of lipid rich plaque by coronary computed tomography angiography: A correlation of histology in sudden cardiac death. Atherosclerosis, 2018, 275, 426-433.	0.8	24
72	Relationship of epicardial fat volume from noncontrast CT with impaired myocardial flow reserve by positron emission tomography. Journal of Cardiovascular Computed Tomography, 2015, 9, 303-309.	1.3	23

#	Article	IF	Citations
73	Impact of age and sex on left ventricular function determined by coronary computed tomographic angiography: results from the prospective multicentre CONFIRM study. European Heart Journal Cardiovascular Imaging, 2017, 18, 990-1000.	1.2	23
74	Machine learning based risk prediction model for asymptomatic individuals who underwent coronary artery calcium score: Comparison with traditional risk prediction approaches. Journal of Cardiovascular Computed Tomography, 2020, 14, 168-176.	1.3	23
75	Diffuse coronary artery disease among other atherosclerotic plaque characteristics by coronary computed tomography angiography for predicting coronary vessel-specific ischemia by fractional flow reserve. Atherosclerosis, 2017, 258, 145-151.	0.8	22
76	Improvement in LDL is associated with decrease in non-calcified plaque volume on coronary CTA as measured by automated quantitative software. Journal of Cardiovascular Computed Tomography, 2018, 12, 385-390.	1.3	21
77	Myocardial Ischemic Burden and Differences in Prognosis Among Patients With and Without Diabetes: Results From the Multicenter International REFINE SPECT Registry. Diabetes Care, 2020, 43, 453-459.	8.6	21
78	Transient ischaemic dilation and post-stress wall motion abnormality increase risk in patients with less than moderate ischaemia: analysis of the REFINE SPECT registry. European Heart Journal Cardiovascular Imaging, 2020, 21, 567-575.	1.2	21
79	Short-term repeatability of myocardial blood flow using 82Rb PET/CT: The effect of arterial input function position and motion correction. Journal of Nuclear Cardiology, 2021, 28, 1718-1725.	2.1	20
80	15-Year prognostic utility of coronary artery calcium scoring for all-cause mortality in the elderly. Atherosclerosis, 2016, 246, 361-366.	0.8	19
81	Prognostic significance of previous myocardial infarction and previous revascularization in patients undergoing SPECT MPI. International Journal of Cardiology, 2020, 313, 9-15.	1.7	19
82	Age- and sex-related features of atherosclerosis from coronary computed tomography angiography in patients prior to acute coronary syndrome: results from the ICONIC study. European Heart Journal Cardiovascular Imaging, 2021, 22, 24-33.	1.2	19
83	Usefulness of baseline statin therapy in non-obstructive coronary artery disease by coronary computed tomographic angiography: From the CONFIRM (COronary CT Angiography EvaluatioN For) Tj ETQq1	1 0 .7.8 431	4 rgBT /Overl
84	Coronary atherosclerosis scoring with semiquantitative CCTA risk scores for prediction of major adverse cardiac events: Propensity score-based analysis of diabetic and non-diabetic patients. Journal of Cardiovascular Computed Tomography, 2020, 14, 251-257.	1.3	18
85	Prognostic significance of aortic valve calcium in relation to coronary artery calcification for long-term, cause-specific mortality: results from the CAC Consortium. European Heart Journal Cardiovascular Imaging, 2021, 22, 1257-1263.	1.2	18
86	Non-invasive fractional flow reserve in vessels without severe obstructive stenosis is associated with coronary plaque burden. Journal of Cardiovascular Computed Tomography, 2018, 12, 379-384.	1.3	17
87	Upper reference limits of transient ischemic dilation ratio for different protocols on new-generation cadmium zinc telluride cameras: A report from REFINE SPECT registry. Journal of Nuclear Cardiology, 2020, 27, 1180-1189.	2.1	17
88	Relationship between ischaemia, coronary artery calcium scores, and major adverse cardiovascular events. European Heart Journal Cardiovascular Imaging, 2022, 23, 1423-1433.	1.2	16
89	Long-term prognosis for individuals with hypertension undergoing coronary artery calcium scoring. International Journal of Cardiology, 2015, 187, 534-540.	1.7	15
90	Extensive thoracic aortic calcification is an independent predictor of development of coronary artery calcium among individuals with coronary artery calcium score of zero. Atherosclerosis, 2015, 238, 4-8.	0.8	15

#	Article	IF	Citations
91	Prognostic implications of coronary artery calcium in the absence of coronary artery luminal narrowing. Atherosclerosis, 2017, 262, 185-190.	0.8	14
92	Risk Reclassification With Coronary Computed Tomography Angiography-Visualized Nonobstructive Coronary Artery Disease According to 2018 American College of Cardiology/American Heart Association Cholesterol Guidelines (from the Coronary Computed Tomography Angiography) Tj ETQq0 0 0 rgB	T/Ovlestlock	1011 50 697
	Journal of Cardiology, 2019, 124, 1397-1405.		
93	Age- and gender-adjusted percentiles for number of calcified plaques in coronary artery calcium scanning. Journal of Cardiovascular Computed Tomography, 2019, 13, 319-324.	1.3	14
94	Prognostic significance of subtle coronary calcification in patients with zero coronary artery calcium score: From the CONFIRM registry. Atherosclerosis, 2020, 309, 33-38.	0.8	14
95	Associations Among Self-reported Physical Activity, Coronary Artery Calcium Scores, and Mortality Risk in Older Adults. Mayo Clinic Proceedings Innovations, Quality & Outcomes, 2020, 4, 229-237.	2.4	14
96	Prognostic Value of Phase Analysis for Predicting Adverse Cardiac Events Beyond Conventional Single-Photon Emission Computed Tomography Variables: Results From the REFINE SPECT Registry. Circulation: Cardiovascular Imaging, 2021, 14, e012386.	2.6	13
97	The accuracy of coronary CT angiography in patients with coronary calcium score above 1000 Agatston Units: Comparison with quantitative coronary angiography. Journal of Cardiovascular Computed Tomography, 2021, 15, 412-418.	1.3	13
98	Association of Plaque Location and Vessel Geometry Determined by Coronary Computed Tomographic Angiography With Future Acute Coronary Syndrome–Causing Culprit Lesions. JAMA Cardiology, 2022, 7, 309.	6.1	13
99	Long-term prognostic utility of computed tomography coronary angiography in older populations. European Heart Journal Cardiovascular Imaging, 2019, 20, 1279-1286.	1.2	12
100	The Predictive Value of Coronary Artery Calcium Scoring for Major Adverse Cardiac Events According to Renal Function (from the Coronary Computed Tomography Angiography Evaluation for Clinical) Tj ETQq0 0 123, 1435-1442.	0 rgBT /Ove	erlock 10 Tf 50
101	Effects of cardiac medications for patients with obstructive coronary artery disease by coronary computed tomographic angiography: Results from the multicenter CONFIRM registry. Atherosclerosis, 2015, 238, 119-125.	0.8	11
102	SYNTAX Score Derived From Coronary CT Angiography for Prediction of Complex Percutaneous Coronary Interventions. Academic Radiology, 2016, 23, 1384-1392.	2.5	11
103	Coronary revascularization vs. medical therapy following coronary-computed tomographic angiography in patients with low-, intermediate- and high-risk coronary artery disease: results from the CONFIRM long-term registry. European Heart Journal Cardiovascular Imaging, 2017, 18, 841-848.	1.2	11
104	Automated quantitative analysis of CZT SPECT stratifies cardiovascular risk in the obese population: Analysis of the REFINE SPECT registry. Journal of Nuclear Cardiology, 2022, 29, 727-736.	2.1	11
105	Prognostic value of chronic total occlusions detected on coronary computed tomographic angiography. Heart, 2019, 105, 196-203.	2.9	10
106	Mortality risk among patients undergoing exercise versus pharmacologic myocardial perfusion imaging: A propensity-based comparison. Journal of Nuclear Cardiology, 2022, 29, 840-852.	2.1	10
107	Changing Drivers of Mortality Among Patients Referred for Cardiac Stress Testing. Mayo Clinic Proceedings Innovations, Quality & Outcomes, 2021, 5, 560-573.	2.4	10
108	Diagnostic Accuracy of CardiovascularÂMagnetic Resonance for Cardiac Transplant Rejection. JACC: Cardiovascular Imaging, 2021, 14, 2337-2349.	5.3	10

#	Article	IF	Citations
109	Dense calcium and lesion-specific ischemia: A comparison of CCTA with fractional flow reserve. Atherosclerosis, 2017, 260, 163-168.	0.8	9
110	CZT camera systems may provide better risk stratification for low-risk patients. Journal of Nuclear Cardiology, 2021, 28, 2927-2936.	2.1	9
111	The Journal of Cardiovascular Computed Tomography: 2020 Year in review. Journal of Cardiovascular Computed Tomography, 2021, 15, 180-189.	1.3	9
112	Value of semiquantitative assessment of high-risk plaque features on coronary CT angiography over stenosis in selection of studies for FFRct. Journal of Cardiovascular Computed Tomography, 2022, 16, 27-33.	1.3	8
113	Pre-procedural determination of device size in left atrial appendage occlusion using three-dimensional cardiac computed tomography. Scientific Reports, 2021, 11, 24107.	3.3	8
114	Diagnostic Accuracy, Image Quality, and Patient Comfort for Coronary CT Angiography Performed Using Iso-Osmolar versus Low-Osmolar Iodinated Contrast. Academic Radiology, 2016, 23, 743-751.	2.5	7
115	Quantitation of Poststress Change in Ventricular Morphology Improves Risk Stratification. Journal of Nuclear Medicine, 2021, 62, 1582-1590.	5.0	7
116	Implication of thoracic aortic calcification over coronary calcium score regarding the 2018 ACC/AHA Multisociety cholesterol guideline: results from the CAC Consortium. American Journal of Preventive Cardiology, 2021, 8, 100232.	3.0	7
117	Prognostic significance of plaque location in non-obstructive coronary artery disease: from the CONFIRM registry. European Heart Journal Cardiovascular Imaging, 2022, 23, 1240-1247.	1.2	7
118	Detection of small coronary calcifications in patients with Agatston coronary artery calcium score of zero. Journal of Cardiovascular Computed Tomography, 2022, 16, 150-154.	1.3	7
119	The prevalence and predictors of inducible myocardial ischemia among patients referred for radionuclide stress testing. Journal of Nuclear Cardiology, 2022, 29, 2839-2849.	2.1	7
120	Diagnostic Performance of a Novel Coronary CT Angiography Algorithm: Prospective Multicenter Validation of an Intracycle CT Motion Correction Algorithm for Diagnostic Accuracy. American Journal of Roentgenology, 2018, 210, 1208-1215.	2.2	6
121	Prognostic value of age adjusted segment involvement score as measured by coronary computed tomography: a potential marker of vascular age. Heart and Vessels, 2018, 33, 1288-1300.	1.2	6
122	Decrease in LDL-C is associated with decrease in all components of noncalcified plaque on coronary CTA. Atherosclerosis, 2019, 285, 128-134.	0.8	6
123	Aspirin and Statin Therapy for Nonobstructive Coronary Artery Disease: Five-year Outcomes from the CONFIRM Registry. Radiology: Cardiothoracic Imaging, 2022, 4, e210225.	2.5	6
124	Association between coronary atherosclerotic burden and all-cause mortality among patients undergoing exercise versus pharmacologic stress-rest SPECT myocardial perfusion imaging. Atherosclerosis, 2020, 310, 45-53.	0.8	5
125	Synergistic Assessment of Mortality Risk According to Body Mass Index and Exercise Ability and Capacity in Patients Referred for Radionuclide Stress Testing. Mayo Clinic Proceedings, 2021, 96, 3001-3011.	3.0	5
126	Dyspnea predicts mortality among patients undergoing coronary computed tomographic angiography. International Journal of Cardiovascular Imaging, 2016, 32, 329-337.	1.5	4

#	Article	IF	CITATIONS
127	Associations between dyspnoea, coronary atherosclerosis, and cardiovascular outcomes: results from the long-term follow-up CONFIRM registry. European Heart Journal Cardiovascular Imaging, 2022, 23, 266-274.	1.2	4
128	Relation of Intake of Saturated Fat to Atherosclerotic Risk Factors, Health Behaviors, Coronary Atherosclerosis, and All-Cause Mortality Among Patients Who Underwent Coronary Artery Calcium Scanning. American Journal of Cardiology, 2021, 138, 40-45.	1.6	4
129	Subclinical atherosclerosis detected by coronary computed tomographic angiography in Qatar: a comparison between Qataris and south Asian migrants. International Journal of Cardiovascular Imaging, 2017, 33, 927-935.	1.5	3
130	Association between epicardial fat volume and fractional flow reserve: An analysis of the determination of fractional flow reserve (DeFACTO) study. Clinical Imaging, 2018, 51, 30-34.	1.5	3
131	Development and validation of ischemia risk scores. Journal of Nuclear Cardiology, 2023, 30, 324-334.	2.1	3
132	A cross-sectional survey of coronary plaque composition in individuals on non-statin lipid lowering drug therapies and undergoing coronary computed tomography angiography. Journal of Cardiovascular Computed Tomography, 2019, 13, 99-104.	1.3	2
133	Differences in Prognostic Value of Myocardial Perfusion Single-Photon Emission Computed Tomography Using High-Efficiency Solid-State Detector Between Men and Women in a Large International Multicenter Study. Circulation: Cardiovascular Imaging, 2022, 15, .	2.6	2
134	Feasibility of Using an Ultrashort Lifestyle Questionnaire to Predict Future Mortality Risk among Patients with Suspected Heart Disease. American Journal of Cardiology, 2021, 153, 36-42.	1.6	1
135	The Journal of cardiovascular computed tomography: A year in review 2021. Journal of Cardiovascular Computed Tomography, 2022, , .	1.3	1
136	Response to Letter Regarding Article, "Noninvasive Fractional Flow Reserve Derived From Computed Tomography Angiography for Coronary Lesions of Intermediate Stenosis Severity: Results From the DeFACTO Study― Circulation: Cardiovascular Imaging, 2014, 7, 571-571.	2.6	0
137	Prevalence and severity of coronary artery calcification based on the epidemiologic pattern: A propensity matched comparison of asymptomatic Korean and Chinese adults. International Journal of Cardiology, 2017, 230, 353-358.	1.7	0
138	An approach to evaluate myocardial perfusion defect assessment for projection-based DECT: A phantom study. Clinical Imaging, 2020, 63, 10-15.	1.5	0