List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9433519/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Controllable sites and high-capacity immobilization of uranium in Nd ₂ Zr ₂ O ₇ pyrochlore. Journal of Synchrotron Radiation, 2022, 29, 37-44.	2.4	8
2	Hybrid palladium nanoparticles and nickel single atom catalysts for efficient electrocatalytic ethanol oxidation. Journal of Materials Chemistry A, 2022, 10, 6129-6133.	10.3	28
3	Dynamic structural transformation induced by defects in nano-rod FeOOH during electrochemical water splitting. Journal of Materials Chemistry A, 2022, 10, 602-610.	10.3	18
4	Promotion of the oxygen evolution reaction <i>via</i> the reconstructed active phase of perovskite oxide. Journal of Materials Chemistry A, 2022, 10, 2271-2279.	10.3	17
5	Two-Dimensional Imprinting Strategy to Create Specific Nanotrap for Selective Uranium Adsorption with Ultrahigh Capacity. ACS Applied Materials & amp; Interfaces, 2022, 14, 9408-9417.	8.0	28
6	Atomic controllable anchoring of uranium into zirconate pyrochlore with ultrahigh loading capacity. Chemical Communications, 2022, 58, 3469-3472.	4.1	3
7	Hierarchically porous doped carbons fabricated by the strategy of ion transfer coordination (ITC). Journal of Materials Chemistry A, 2022, 10, 9129-9136.	10.3	8
8	<i>In Situ</i> Exploring of the Origin of the Enhanced Oxygen Evolution Reaction Efficiency of Metal(Co/Fe)–Organic Framework Catalysts Via Postprocessing. ACS Catalysis, 2022, 12, 3138-3148.	11.2	24
9	5f Covalency Synergistically Boosting Oxygen Evolution of UCoO ₄ Catalyst. Journal of the American Chemical Society, 2022, 144, 416-423.	13.7	48
10	Atomically dispersed lewis acid sites meet poly(ionic liquid)s networks for solvent-free and co-catalyst-free conversion of CO2 to cyclic carbonates. Applied Catalysis B: Environmental, 2022, 313, 121463.	20.2	31
11	Single Particle Hopping as an Indicator for Evaluating Electrocatalysts. Nano Letters, 2022, 22, 5495-5502.	9.1	8
12	Robust Th-MOF-Supported Semirigid Single-Metal-Site Catalyst for an Efficient Acidic Oxygen Evolution Reaction. ACS Catalysis, 2022, 12, 9101-9113.	11.2	25
13	Growth of LaCoO ₃ crystals in molten salt: effects of synthesis conditions. CrystEngComm, 2021, 23, 671-677.	2.6	5
14	Transformation from a non-radical to a radical pathway <i>via</i> the amorphization of a Ni(OH) ₂ catalyst as a peroxymonosulfate activator for the ultrafast degradation of organic pollutants. Nanoscale, 2021, 13, 7700-7708.	5.6	8
15	Phase junction-confined single-atom TiO ₂ –Pt ₁ –CeO ₂ for multiplying catalytic oxidation efficiency. Catalysis Science and Technology, 2021, 11, 4650-4657.	4.1	3
16	Three-dimensional microstructural characterization of solid oxide electrolysis cell with Ce0.8Gd0.2O2-infiltrated Ni/YSZ electrode using focused ion beam-scanning electron microscopy. Journal of Solid State Electrochemistry, 2021, 25, 1633-1644.	2.5	10
17	Efficiently immobilizing uranium (VI) by oxidized carbon foam. Environmental Science and Pollution Research, 2021, 28, 50471-50479.	5.3	1
18	Enhancing Thermocatalytic Activities by Upshifting the dâ€Band Center of Exsolved Coâ€Niâ€Fe Ternary Alloy Nanoparticles for the Dry Reforming of Methane. Angewandte Chemie, 2021, 133, 16048-16055.	2.0	11

#	Article	IF	CITATIONS
19	Enhancing Thermocatalytic Activities by Upshifting the dâ€Band Center of Exsolved Coâ€Niâ€Fe Ternary Alloy Nanoparticles for the Dry Reforming of Methane. Angewandte Chemie - International Edition, 2021, 60, 15912-15919.	13.8	65
20	In Situ/Operando Capturing Unusual Ir ⁶⁺ Facilitating Ultrafast Electrocatalytic Water Oxidation. Advanced Functional Materials, 2021, 31, 2104746.	14.9	29
21	Atomically Dispersed Highâ€Density Al–N ₄ Sites in Porous Carbon for Efficient Photodriven CO ₂ Cycloaddition. Advanced Materials, 2021, 33, e2103186.	21.0	69
22	A Tunable Amorphous Heteronuclear Iron and Cobalt Imidazolate Framework Analogue for Efficient Oxygen Evolution Reactions. European Journal of Inorganic Chemistry, 2021, 2021, 702-707.	2.0	7
23	Oneâ€Pot Green Process to Synthesize MXene with Controllable Surface Terminations using Molten Salts. Angewandte Chemie, 2021, 133, 27219-27224.	2.0	16
24	Oneâ€Pot Green Process to Synthesize MXene with Controllable Surface Terminations using Molten Salts. Angewandte Chemie - International Edition, 2021, 60, 27013-27018.	13.8	82
25	The Dehydrogenation of Hâ€6 Bond into Sulfur Species on Supported Pd Single Atoms Allows Highly Selective and Sensitive Hydrogen Sulfide Detection. Small, 2021, 17, e2105643.	10.0	14
26	Technologies and perspectives for achieving carbon neutrality. Innovation(China), 2021, 2, 100180.	9.1	306
27	<i>A</i> '– <i>B</i> Intersite Cooperation-Enhanced Water Splitting in Quadruple Perovskite Oxide CaCu ₃ Ir ₄ O ₁₂ . Chemistry of Materials, 2021, 33, 9295-9305.	6.7	11
28	Rational Design of Two-Layer Fe-Doped PrBa _{0.8} Ca _{0.2} Co ₂ O _{6â^'δ} Double Perovskite Oxides for High-Performance Fuel Cell Cathodes. Journal of Physical Chemistry C, 2021, 125, 26448-26459.	3.1	5
29	First-Principles Insight into the Effects of Intrinsic Oxygen Defects on Proton Conduction in Ruddlesden–Popper Oxides. Journal of Physical Chemistry Letters, 2021, 12, 11503-11510.	4.6	7
30	A Co-Doped Nanorod-like RuO2 Electrocatalyst with Abundant Oxygen Vacancies for Acidic Water Oxidation. IScience, 2020, 23, 100756.	4.1	125
31	Molten Salt Treated Cu Foam Catalyst for Selective Electrochemical CO 2 Reduction Reaction. ChemistrySelect, 2020, 5, 11927-11933.	1.5	6
32	Atomically dispersed Lewis acid sites boost 2-electron oxygen reduction activity of carbon-based catalysts. Nature Communications, 2020, 11, 5478.	12.8	114
33	Identifying the electrocatalytic active sites of a Ru-based catalyst with high Faraday efficiency in CO ₂ -saturated media for an aqueous Zn–CO ₂ system. Journal of Materials Chemistry A, 2020, 8, 14927-14934.	10.3	16
34	Investigation of Pore Structures in Shallow Longmaxi Shale, South China, via Large-Area Electron Imaging and Neutron Scattering Techniques. Energy & Fuels, 2020, 34, 7974-7984.	5.1	5
35	Enhancing Bifunctional Electrocatalytic Activities via Metal d-Band Center Lift Induced by Oxygen Vacancy on the Subsurface of Perovskites. ACS Catalysis, 2020, 10, 4664-4670.	11.2	116
36	Voltage- and time-dependent valence state transition in cobalt oxide catalysts during the oxygen evolution reaction. Nature Communications, 2020, 11, 1984.	12.8	120

#	Article	IF	CITATIONS
37	Edge-selective decoration with ruthenium at graphitic nanoplatelets for efficient hydrogen production at universal pH. Nano Energy, 2020, 76, 105114.	16.0	25
38	Understanding the origin of high oxygen evolution reaction activity in the high Sr-doped perovskite. Chinese Journal of Catalysis, 2020, 41, 592-597.	14.0	20
39	Investigation of the local structure of molten ThF ₄ –LiF and ThF ₄ –LiF–BeF ₂ mixtures by high-temperature X-ray absorption spectroscopy and molecular-dynamics simulation. Journal of Synchrotron Radiation, 2019, 26, 1733-1741.	2.4	11
40	Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Nature Communications, 2019, 10, 162.	12.8	396
41	Interaction-Dependent Interfacial Charge-Transfer Behavior in Solar Water-Splitting Systems. Nano Letters, 2019, 19, 1234-1241.	9.1	42
42	A 3,2-Hydroxypyridinone-based Decorporation Agent that Removes Uranium from Bones In Vivo. Nature Communications, 2019, 10, 2570.	12.8	107
43	Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nature Communications, 2019, 10, 1278.	12.8	591
44	Fabricating Singleâ€Atom Catalysts from Chelating Metal in Open Frameworks. Advanced Materials, 2019, 31, e1808193.	21.0	153
45	Ratiometric Monitoring of Thorium Contamination in Natural Water Using a Dual-Emission Luminescent Europium Organic Framework. Environmental Science & Technology, 2019, 53, 332-341.	10.0	90
46	Tris-amidoximate uranyl complexes <i>via</i> η ² binding mode coordinated in aqueous solution shown by X-ray absorption spectroscopy and density functional theory methods. Journal of Synchrotron Radiation, 2018, 25, 514-522.	2.4	12
47	Molten-salt synthesis of porous La0.6Sr0.4Co0.2Fe0.8O2.9 perovskite as an efficient electrocatalyst for oxygen evolution. Nano Research, 2018, 11, 4796-4805.	10.4	35
48	Reactivating Catalytic Surface: Insights into the Role of Hot Holes in Plasmonic Catalysis. Small, 2018, 14, e1703510.	10.0	35
49	A Large Family of Centrosymmetric and Chiral f-Element-Bearing Iodate Selenates Exhibiting Coordination Number and Dimensional Reductions. Inorganic Chemistry, 2018, 57, 1676-1683.	4.0	23
50	An Efficient Family of Misfit‣ayered Calcium Cobalt Oxide Catalyst for Oxygen Evolution Reaction. Advanced Materials Interfaces, 2018, 5, 1801281.	3.7	16
51	In Situ Reduction from Uranyl Ion into a Tetravalent Uranium Trimer and Hexamer Featuring Ion-Exchange Properties and the Alexandrite Effect. Inorganic Chemistry, 2018, 57, 6753-6761.	4.0	16
52	<i>Operando</i> X-ray spectroscopic tracking of self-reconstruction for anchored nanoparticles as high-performance electrocatalysts towards oxygen evolution. Energy and Environmental Science, 2018, 11, 2945-2953.	30.8	157
53	Uranium-Induced Changes in Crystal-Field and Covalency Effects of Th4+ in Th1–xUxO2 Mixed Oxides Probed by High-Resolution X-ray Absorption Spectroscopy. Inorganic Chemistry, 2018, 57, 11404-11413.	4.0	8
54	Immobilization of Alkali Metal Fluorides via Recrystallization in a Cationic Lamellar Material, [Th(MoO ₄)(H ₂ 0) ₄ Cl]Cl·H ₂ 0. Inorganic Chemistry, 2018, 57, 6778-6782.	4.0	3

#	Article	IF	CITATIONS
55	Highly Active Surface Structure in Nanosized Spinel Cobalt-Based Oxides for Electrocatalytic Water Splitting. Journal of Physical Chemistry C, 2018, 122, 14447-14458.	3.1	24
56	Highly Sensitive and Selective Uranium Detection in Natural Water Systems Using a Luminescent Mesoporous Metal–Organic Framework Equipped with Abundant Lewis Basic Sites: A Combined Batch, X-ray Absorption Spectroscopy, and First Principles Simulation Investigation. Environmental Science & Technology, 2017, 51, 3911-3921.	10.0	331
57	A Breakthrough Efficiency of 19.9% Obtained in Inverted Perovskite Solar Cells by Using an Efficient Trap State Passivator Cu(thiourea)I. Journal of the American Chemical Society, 2017, 139, 7504-7512.	13.7	330
58	Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system. Nature Communications, 2017, 8, 15369.	12.8	366
59	Substitutional Disorder of SeO ₃ ^{2–} /IO ₃ [–] in the Crystalline Solid Matrix: Insights into the Fate of Radionuclides ⁷⁹ Se and ¹²⁹ I in the Environment. Inorganic Chemistry, 2017, 56, 3702-3708.	4.0	14
60	A positive valorization way of sludge compost: recycling it to turfgrass instead of partial conventional substrate. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2017, 67, 518-523.	0.6	1
61	Ultrafast and Efficient Extraction of Uranium from Seawater Using an Amidoxime Appended Metal–Organic Framework. ACS Applied Materials & Interfaces, 2017, 9, 32446-32451.	8.0	260
62	Fabrication of a phosphorylated graphene oxide–chitosan composite for highly effective and selective capture of U(<scp>vi</scp>). Environmental Science: Nano, 2017, 4, 1876-1886.	4.3	161
63	Insight into the Role of Metal–Oxygen Bond and O 2p Hole in High-Voltage Cathode LiNi _{<i>x</i>} Mn _{2–<i>x</i>} O ₄ . Journal of Physical Chemistry C, 2017, 121, 16079-16087.	3.1	50
64	High-performance functionalized polyethylene fiber for the capture of trace uranium in water. Journal of Radioanalytical and Nuclear Chemistry, 2017, 314, 2393-2403.	1.5	11
65	Probing the Influence of Acidity and Temperature to Th(IV) on Hydrolysis, Nucleation, and Structural Topology. Inorganic Chemistry, 2017, 56, 14198-14205.	4.0	12
66	Selenium Sequestration in a Cationic Layered Rare Earth Hydroxide: A Combined Batch Experiments and EXAFS Investigation. Environmental Science & amp; Technology, 2017, 51, 8606-8615.	10.0	98
67	The significant role of covalency in determining the ground state of cobalt phthalocyanines molecule. AIP Advances, 2016, 6, .	1.3	8
68	A Mixedâ€Valent Uranium Phosphonate Framework Containing U IV , U V , and U VI. Chemistry - A European Journal, 2016, 22, 11954-11957.	3.3	35
69	Th(H2O)(IVO3)2[IVII0.6V1.76O7(OH)]: A Mixed-Valent Iodine Compound Containing Periodate Stabilized by Crystallographically Compatible Lattice Sites. Inorganic Chemistry, 2016, 55, 12101-12104.	4.0	7
70	Extraction of local coordination structure in a low-concentration uranyl system by XANES. Journal of Synchrotron Radiation, 2016, 23, 758-768.	2.4	22
71	Uptake Mechanisms of Eu(III) on Hydroxyapatite: A Potential Permeable Reactive Barrier Backfill Material for Trapping Trivalent Minor Actinides. Environmental Science & Technology, 2016, 50, 3852-3859.	10.0	53
72	Understanding the High Activity of Fe–N–C Electrocatalysts in Oxygen Reduction: Fe/Fe ₃ C Nanoparticles Boost the Activity of Fe–N _{<i>x</i>} . Journal of the American Chemical Society, 2016, 138, 3570-3578.	13.7	1,549

#	Article	IF	CITATIONS
73	Extended X-ray Absorption Fine Structure and Density Functional Theory Studies on the Complexation Mechanism of Amidoximate Ligand to Uranyl Carbonate. Industrial & Engineering Chemistry Research, 2016, 55, 4224-4230.	3.7	43
74	Adsorption of Uranyl ions on Amine-functionalization of MIL-101(Cr) Nanoparticles by a Facile Coordination-based Post-synthetic strategy and X-ray Absorption Spectroscopy Studies. Scientific Reports, 2015, 5, 13514.	3.3	78
75	High-T _c ferromagnetism in a Co-doped ZnO system dominated by the formation of a zinc-blende type Co-rich ZnCoO phase. Chemical Communications, 2012, 48, 91-93.	4.1	30