
Susan C Nagel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9433127/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Health risk assessment of volatile organic compounds at daycare facilities. Indoor Air, 2021, 31, 977-988.	4.3	15
2	Endocrine disrupting activities and geochemistry of water resources associated with unconventional oil and gas activity. Science of the Total Environment, 2020, 748, 142236.	8.0	13
3	In Our Backyard: Perceptions About Fracking, Science, and Health by Community Members. New Solutions, 2020, 30, 42-51.	1.2	6
4	Constructing and influencing perceived authenticity in science communication: Experimenting with narrative. PLoS ONE, 2020, 15, e0226711.	2.5	24
5	Title is missing!. , 2020, 15, e0226711.		0
6	Title is missing!. , 2020, 15, e0226711.		0
7	Title is missing!. , 2020, 15, e0226711.		0
8	Title is missing!. , 2020, 15, e0226711.		0
9	Developmental Exposure to a Mixture of Unconventional Oil and Gas Chemicals Increased Risk-Taking Behavior, Activity and Energy Expenditure in Aged Female Mice After a Metabolic Challenge. Frontiers in Endocrinology, 2019, 10, 460.	3.5	11
10	Preconceptional, Gestational, and Lactational Exposure to an Unconventional Oil and Gas Chemical Mixture Alters Energy Expenditure in Adult Female Mice. Frontiers in Endocrinology, 2019, 10, 323.	3.5	11
11	Surface water and groundwater analysis using aryl hydrocarbon and endocrine receptor biological assays and liquid chromatography-high resolution mass spectrometry in Susquehanna County, PA. Environmental Sciences: Processes and Impacts, 2019, 21, 988-998.	3.5	3
12	Prenatal Exposure to Unconventional Oil and Gas Operation Chemical Mixtures Altered Mammary Gland Development in Adult Female Mice. Endocrinology, 2018, 159, 1277-1289.	2.8	21
13	Endocrine-Disrupting Activities and Organic Contaminants Associated with Oil and Gas Operations in Wyoming Groundwater. Archives of Environmental Contamination and Toxicology, 2018, 75, 247-258.	4.1	21
14	Determination of volatile organic compounds in child care centers by thermal desorption gas chromatography-mass spectrometry. Analytical Methods, 2018, 10, 730-742.	2.7	11
15	Prenatal Exposure to Bisphenol A Disrupts Naturally Occurring Bimodal DNA Methylation at Proximal Promoter of fggy, an Obesity-Relevant Gene Encoding a Carbohydrate Kinase, in Gonadal White Adipose Tissues of CD-1 Mice. Endocrinology, 2018, 159, 779-794.	2.8	29
16	Developmental Exposure to a Mixture of 23 Chemicals Associated With Unconventional Oil and Gas Operations Alters the Immune System of Mice. Toxicological Sciences, 2018, 163, 639-654.	3.1	12
17	Reduced body weight at weaning followed by increased post-weaning growth rate interacts with part-per-trillion fetal serum concentrations of bisphenol A (BPA) to impair glucose tolerance in male mice. PLoS ONE, 2018, 13, e0208846.	2.5	11
18	Water Contaminants Associated With Unconventional Oil and Gas Extraction Cause Immunotoxicity to Amphibian Tadpoles. Toxicological Sciences, 2018, 166, 39-50.	3.1	21

SUSAN C NAGEL

#	Article	IF	CITATIONS
19	Unconventional oil and gas chemicals and wastewater-impacted water samples promote adipogenesis via PPARÎ ³ -dependent and independent mechanisms in 3T3-L1 cells. Science of the Total Environment, 2018, 640-641, 1601-1610.	8.0	25
20	A multi-omics informatics approach for identifying molecular mechanisms and biomarkers in clinical patients with endometriosis. , 2017, , .		2
21	Endocrine-Disrupting Chemicals and Oil and Natural Gas Operations: Potential Environmental Contamination and Recommendations to Assess Complex Environmental Mixtures. Environmental Health Perspectives, 2016, 124, 256-264.	6.0	68
22	Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site. Science of the Total Environment, 2016, 557-558, 901-910.	8.0	108
23	Systematic review of the association between oil and natural gas extraction processes and human reproduction. Fertility and Sterility, 2016, 106, 795-819.	1.0	55
24	Adverse Reproductive and Developmental Health Outcomes Following Prenatal Exposure to a Hydraulic Fracturing Chemical Mixture in Female C57Bl/6 Mice. Endocrinology, 2016, 157, 3469-3481.	2.8	39
25	Perinatal exposure to endocrine disruptors: sex, timing and behavioral endpoints. Current Opinion in Behavioral Sciences, 2016, 7, 69-75.	3.9	78
26	Parma consensus statement on metabolic disruptors. Environmental Health, 2015, 14, 54.	4.0	174
27	Endocrine-Disrupting Activity of Hydraulic Fracturing Chemicals and Adverse Health Outcomes After Prenatal Exposure in Male Mice. Endocrinology, 2015, 156, 4458-4473.	2.8	82
28	Effects of the environmental estrogenic contaminants bisphenol A and 17α-ethinyl estradiol on sexual development and adult behaviors in aquatic wildlife species. General and Comparative Endocrinology, 2015, 214, 195-219.	1.8	230
29	Characterization of Missouri surface waters near point sources of pollution reveals potential novel atmospheric route of exposure for bisphenol A and wastewater hormonal activity pattern. Science of the Total Environment, 2015, 524-525, 384-393.	8.0	23
30	Holding Thermal Receipt Paper and Eating Food after Using Hand Sanitizer Results in High Serum Bioactive and Urine Total Levels of Bisphenol A (BPA). PLoS ONE, 2014, 9, e110509.	2.5	163
31	Developmental and reproductive effects of chemicals associated with unconventional oil and natural gas operations. Reviews on Environmental Health, 2014, 29, 307-18.	2.4	136
32	Estrogen and Androgen Receptor Activities of Hydraulic Fracturing Chemicals and Surface and Ground Water in a Drilling-Dense Region. Endocrinology, 2014, 155, 897-907.	2.8	159
33	Metabolic disruption in male mice due to fetal exposure to low but not high doses of bisphenol A (BPA): Evidence for effects on body weight, food intake, adipocytes, leptin, adiponectin, insulin and glucose regulation. Reproductive Toxicology, 2013, 42, 256-268.	2.9	242
34	Bisphenol A: A Model Endocrine Disrupting Chemical With a New Potential Mechanism of Action. Endocrinology, 2013, 154, 1962-1964.	2.8	37
35	Developmental Exposure to Xenoestrogens at Low Doses Alters Femur Length and Tensile Strength in Adult Mice1. Biology of Reproduction, 2012, 86, 69.	2.7	35
36	Mouse Model of Surgically-induced Endometriosis by Auto-transplantation of Uterine Tissue. Journal of Visualized Experiments, 2012, , e3396.	0.3	29

SUSAN C NAGEL

#	Article	IF	CITATIONS
37	The estrogenic endocrine disrupting chemical bisphenol A (BPA) and obesity. Molecular and Cellular Endocrinology, 2012, 354, 74-84.	3.2	364
38	Endocrine-disrupting Chemicals (EDCs) in Mammals. , 2011, , 329-371.		4
39	Endocrine-disrupting Chemicals (EDCs) in Mammals. , 2011, , 329-371.		2
40	Neutralizing TIMP1 Restores Fecundity in a Rat Model of Endometriosis and Treating Control Rats with TIMP1 Causes Anomalies in Ovarian Function and Embryo Development1. Biology of Reproduction, 2010, 83, 185-194.	2.7	35
41	Aberrant gene expression profile in a mouse model ofÂendometriosis mirrors that observed in women. Fertility and Sterility, 2010, 93, 1615-1627.e18.	1.0	51
42	Estrogen modulates expression of putative housekeeping genes in the mouse uterus. Endocrine, 2009, 35, 211-219.	2.3	43
43	Endometrial paradigms. Reproductive Medicine and Assisted Reproductive Techniques Series, 2008, , 581-600.	0.1	Ο
44	Large Effects from Small Exposures. III. Endocrine Mechanisms Mediating Effects of Bisphenol A at Levels of Human Exposure. Endocrinology, 2006, 147, s56-s69.	2.8	829
45	Implications for human health of the extensive bisphenol A literature showing adverse effects at low doses: A response to attempts to mislead the public. Toxicology, 2005, 212, 244-252.	4.2	48
46	The importance of appropriate controls, animal feed, and animal models in interpreting results from low-dose studies of bisphenol A. Birth Defects Research Part A: Clinical and Molecular Teratology, 2005, 73, 140-145.	1.6	59
47	Short-chain fatty acids enhance nuclear receptor activity through mitogen-activated protein kinase activation and histone deacetylase inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7199-7204.	7.1	97
48	Endocrine control of sexual differentiation: effects of the maternal–fetal environment and endocrine disrupting chemicals. Advances in Molecular and Cell Biology, 2004, 34, 15-37.	0.1	3
49	Identification and Characterization of Novel Estrogen Receptor-β-Sparing Antiprogestins. Endocrinology, 2002, 143, 3071-3082.	2.8	23
50	ldentification and Characterization of Novel Estrogen Receptor-Â-Sparing Antiprogestins. Endocrinology, 2002, 143, 3071-3082.	2.8	7
51	Development of an ER Action Indicator Mouse for the Study of Estrogens, Selective ER Modulators (SERMs), and Xenobiotics. Endocrinology, 2001, 142, 4721-4728.	2.8	72
52	Development of an ER Action Indicator Mouse for the Study of Estrogens, Selective ER Modulators (SERMs), and Xenobiotics. Endocrinology, 2001, 142, 4721-4728.	2.8	23
53	Comparative Analyses of Mechanistic Differences Among Antiestrogens1. Endocrinology, 1999, 140, 5828-5840.	2.8	214
54	Low-dose bioactivity of xenoestrogens in animals: fetal exposure to low doses of methoxychlor and other xenoestrogens increases adult prostate size in mice. Toxicology and Industrial Health, 1999, 15, 12-25.	1.4	140

SUSAN C NAGEL

#	Article	IF	CITATIONS
55	Developmental effects of estrogenic chemicals are predicted by an in vitro assay incorporating modification of cell uptake by serum. Journal of Steroid Biochemistry and Molecular Biology, 1999, 69, 343-357.	2.5	68
56	A Physiologically Based Approach To the Study of Bisphenol a and Other Estrogenic Chemicals On the Size of Reproductive Organs, Daily Sperm Production, and Behavior. Toxicology and Industrial Health, 1998, 14, 239-260.	1.4	708
57	Prostate enlargement in mice due to fetal exposure to low doses of estradiol or diethylstilbestrol and opposite effects at high doses. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 2056-2061.	7.1	662
58	Estrogenic pesticides: binding relative to estradiol in MCF-7 cells and effects of exposure during fetal life on subsequent territorial behaviour in male mice. Toxicology Letters, 1995, 77, 343-350.	0.8	157