
Gali Prag

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9433103/publications.pdf Version: 2024-02-01

CALL PRAC

#	Article	IF	CITATIONS
1	Ubiquitin-binding domains. Biochemical Journal, 2006, 399, 361-372.	3.7	544
2	A ubiquitin-binding motif required for intramolecular monoubiquitylation, the CUE domain. EMBO Journal, 2003, 22, 1273-1281.	7.8	260
3	Mechanism of Ubiquitin Recognition by the CUE Domain of Vps9p. Cell, 2003, 113, 609-620.	28.9	215
4	High Resolution Structural Analyses of Mutant Chitinase A Complexes with Substrates Provide New Insight into the Mechanism of Catalysis [,] . Biochemistry, 2001, 40, 11338-11343.	2.5	156
5	A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation. PLoS ONE, 2015, 10, e0126420.	2.5	71
6	The Vps27/Hse1 Complex Is a GAT Domain-Based Scaffold for Ubiquitin-Dependent Sorting. Developmental Cell, 2007, 12, 973-986.	7.0	67
7	Structural mechanism for ubiquitinated-cargo recognition by the Golgi-localized, Â-ear-containing, ADP-ribosylation-factor-binding proteins. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2334-2339.	7.1	66
8	Structure-based in silico identification of ubiquitin-binding domains provides insights into the ALIX-V:ubiquitin complex and retrovirus budding. EMBO Journal, 2013, 32, 538-551.	7.8	59
9	Ubiquitin Signaling and Degradation of Aggregate-Prone Proteins. Trends in Biochemical Sciences, 2019, 44, 872-884.	7.5	57
10	Ubiquitylationâ€dependent oligomerization regulates activity of Nedd4 ligases. EMBO Journal, 2017, 36, 425-440.	7.8	51
11	Synthetic biology approach to reconstituting the ubiquitylation cascade in bacteria. EMBO Journal, 2012, 31, 378-390.	7.8	47
12	Structure of ubiquitylated-Rpn10 provides insight into its autoregulation mechanism. Nature Communications, 2016, 7, 12960.	12.8	34
13	The Hetero-Hexameric Nature of a Chloroplast AAA+ FtsH Protease Contributes to Its Thermodynamic Stability. PLoS ONE, 2012, 7, e36008.	2.5	33
14	A bacterial genetic selection system for ubiquitylation cascade discovery. Nature Methods, 2016, 13, 945-952.	19.0	21
15	A phage display system designed to detect and study protein–protein interactions. Molecular Microbiology, 2008, 67, 719-728.	2.5	19
16	An Integrative Synthetic Biology Approach to Interrogating Cellular Ubiquitin and Ufm Signaling. International Journal of Molecular Sciences, 2020, 21, 4231.	4.1	19
17	A mutagenesis analysis of Tim50, the major receptor of the TIM23 complex, identifies regions that affect its interaction with Tim23. Scientific Reports, 2019, 9, 2012.	3.3	13
18	Deubiquitylating enzymes in neuronal health and disease. Cell Death and Disease, 2021, 12, 120.	6.3	13

Gali Prag

#	Article	IF	CITATIONS
19	Purification and crystallization of mono-ubiquitylated ubiquitin receptor Rpn10. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 1120-1123.	0.7	10
20	Structural principles of prokaryotic gene regulatory proteins and the evolution of repressors and gene activators. Molecular Microbiology, 1997, 26, 619-620.	2.5	8
21	Anti-cancer binary system activated by bacteriophage HK022 integrase. Oncotarget, 2018, 9, 27487-27501.	1.8	7
22	Remodeling Membrane Binding by Mono-Ubiquitylation. Biomolecules, 2019, 9, 325.	4.0	7
23	Tetrameric Assembly of Monoubiquitin Accurately Mimics the Lys11 Polyubiquitin Chain Structure. Biochemistry, 2015, 54, 4704-4710.	2.5	6
24	HK022 bacteriophage Integrase mediated RMCE as a potential tool for human gene therapy. Nucleic Acids Research, 2020, 48, 12804-12816.	14.5	6
25	Regulation of the anaphase promoting complex/cyclosome by the degradation of its unassembled catalytic subunit, Apc11. FASEB Journal, 2019, 33, 9752-9761.	0.5	5
26	Purification and crystallization of yeast Ent1 ENTH domain. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 820-823.	0.7	3
27	Split chloramphenicol acetyl-transferase assay reveals self-ubiquitylation-dependent regulation of UBE3B. Journal of Molecular Biology, 2021, 433, 167276.	4.2	3
28	E. coli-Based Selection and Expression Systems for Discovery, Characterization, and Purification of Ubiquitylated Proteins. Methods in Molecular Biology, 2018, 1844, 155-166.	0.9	1
29	Structural Insight into Regulation of the Proteasome Ub-Receptor Rpn10. , 0, , .		0