Geoffrey B Fincher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9432932/publications.pdf

Version: 2024-02-01

172 papers 13,473 citations

23567 58 h-index 109 g-index

177 all docs

177 docs citations

177 times ranked

11507 citing authors

#	Article	IF	CITATIONS
1	A physical, genetic and functional sequence assembly of the barley genome. Nature, 2012, 491, 711-716.	27.8	1,416
2	Determining the polysaccharide composition of plant cell walls. Nature Protocols, 2012, 7, 1590-1607.	12.0	557
3	Heterogeneity in the chemistry, structure and function of plant cell walls. Nature Chemical Biology, 2010, 6, 724-732.	8.0	509
4	An Arabidopsis Callose Synthase, GSL5, Is Required for Wound and Papillary Callose Formation. Plant Cell, 2003, 15, 2503-2513.	6.6	443
5	Cellulose Synthase-Like CslF Genes Mediate the Synthesis of Cell Wall (1,3;1,4)-Â-D-Glucans. Science, 2006, 311, 1940-1942.	12.6	422
6	The CesA Gene Family of Barley. Quantitative Analysis of Transcripts Reveals Two Groups of Co-Expressed Genes. Plant Physiology, 2004, 134, 224-236.	4.8	275
7	Evolution of the Grain Dispersal System in Barley. Cell, 2015, 162, 527-539.	28.9	265
8	Virus-Induced Silencing of a Plant Cellulose Synthase Gene. Plant Cell, 2000, 12, 691-705.	6.6	249
9	A barley <i>cellulose synthase-like CSLH</i> gene mediates $(1,3;1,4)$ - \hat{l}^2 - <scp>d</scp> -glucan synthesis in transgenic <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5996-6001.	7.1	246
10	Changes in Cell Wall Composition during Ripening of Grape Berries. Plant Physiology, 1998, 118, 783-792.	4.8	229
11	Three-dimensional structure of a barley \hat{l}^2 -D-glucan exohydrolase, a family 3 glycosyl hydrolase. Structure, 1999, 7, 179-190.	3.3	219
12	Starch granule initiation and growth are altered in barley mutants that lack isoamylase activity. Plant Journal, 2002, 31, 97-112.	5.7	219
13	The Genetics and Transcriptional Profiles of the Cellulose Synthase-Like <i>HvCslF</i> Gene Family in Barley. Plant Physiology, 2008, 146, 1821-1833.	4.8	204
14	Plant cell wall biosynthesis: genetic, biochemical and functional genomics approaches to the identification of key genes. Plant Biotechnology Journal, 2006, 4, 145-167.	8.3	183
15	Revolutionary Times in Our Understanding of Cell Wall Biosynthesis and Remodeling in the Grasses. Plant Physiology, 2009, 149, 27-37.	4.8	182
16	Changes in cell wall polysaccharides in developing barley (Hordeum vulgare) coleoptiles. Planta, 2005, 221, 729-738.	3.2	181
17	An Investigation of Boron Toxicity in Barley Using Metabolomics. Plant Physiology, 2006, 142, 1087-1101.	4.8	174
18	Expression patterns of cell wall-modifying enzymes during grape berry development. Planta, 2001, 214, 257-264.	3.2	172

#	Article	IF	CITATIONS
19	Overâ€expression of specific <i>HvCslF</i> cellulose synthaseâ€like genes in transgenic barley increases the levels of cell wall (1,3;1,4)â€Î²â€ <scp>d</scp> â€glucans and alters their fine structure. Plant Biotechnology Journal, 2011, 9, 117-135.	8.3	171
20	REVIEW: Variability in Fine Structures of Noncellulosic Cell Wall Polysaccharides from Cereal Grains: Potential Importance in Human Health and Nutrition. Cereal Chemistry, 2010, 87, 272-282.	2.2	167
21	(1,3;1,4)-Î ² -D-Glucans in Cell Walls of the Poaceae, Lower Plants, and Fungi: A Tale of Two Linkages. Molecular Plant, 2009, 2, 873-882.	8.3	164
22	Bifunctional Family 3 Glycoside Hydrolases from Barley with $\hat{l}\pm l$ -Arabinofuranosidase and \hat{l}^2 -d-Xylosidase Activity. Journal of Biological Chemistry, 2003, 278, 5377-5387.	3.4	156
23	The sequence statistics and solution conformation of a barley $(1\hat{a}\dagger'3, 1\hat{a}\dagger')$ - \hat{l}^2 -d-glucan. Carbohydrate Research, 1986, 157, 139-156.	2.3	142
24	Barley \hat{I}^2 -D-Glucan Exohydrolases with \hat{I}^2 -D-Glucosidase Activity. Journal of Biological Chemistry, 1996, 271, 5277-5286.	3.4	137
25	Purification and Chemical Properties of Two 1,3;1,4-beta-Glucan Endohydrolases from Germinating Barley. FEBS Journal, 1982, 121, 663-669.	0.2	135
26	A Barley Xyloglucan Xyloglucosyl Transferase Covalently Links Xyloglucan, Cellulosic Substrates, and (1,3;1,4)-l²-D-Glucans. Journal of Biological Chemistry, 2007, 282, 12951-12962.	3.4	135
27	Temporal and spatial appearance of wall polysaccharides during cellularization of barley (Hordeum) Tj ETQq $1\ 1\ 0$	0.784314	rgBT/Overloc
28	Differential accumulation of callose, arabinoxylan and cellulose in nonpenetrated versus penetrated papillae on leaves of barley infected with <i>Blumeria graminis</i> f. sp. <i>hordei</i> . New Phytologist, 2014, 204, 650-660.	7.3	125
29	Evolution and development of cell walls in cereal grains. Frontiers in Plant Science, 2014, 5, 456.	3.6	124
30	Revised Phylogeny of the <i>Cellulose Synthase</i> Evolution. Plant Physiology, 2018, 177, 1124-1141.	4.8	118
31	Molecular evolution of plant beta-glucan endohydrolases. Plant Journal, 1995, 7, 367-379.	5.7	117
32	Binding interactions between barley thaumatin-like proteins and $(1,3)$ - $\hat{1}^2$ -D-glucans. FEBS Journal, 2001, 268, 4190-4199.	0.2	113
33	Structure-function relationships of \hat{I}^2 - D-glucan endo- and exohydrolases from higher plants. , 2001, 47, 73-91.		110
34	Comparative modeling of the three-dimensional structures of family 3 glycoside hydrolases. Proteins: Structure, Function and Bioinformatics, 2000, 41, 257-269.	2.6	109
35	Grape marc as a source of carbohydrates for bioethanol: Chemical composition, pre-treatment and saccharification. Bioresource Technology, 2015, 193, 76-83.	9.6	105
36	Molecular modeling of family GH16 glycoside hydrolases: Potential roles for xyloglucan transglucosylases/hydrolases in cell wall modification in the poaceae. Protein Science, 2009, 13, 3200-3213.	7.6	104

#	Article	IF	CITATIONS
37	Alanine aminotransferase controls seed dormancy in barley. Nature Communications, 2016, 7, 11625.	12.8	101
38	Characterization of the Genes Encoding the Cytosolic and Plastidial Forms of ADP-Glucose Pyrophosphorylase in Wheat Endosperm. Plant Physiology, 2002, 130, 1464-1475.	4.8	100
39	Purification of $(1\hat{a}\dagger^3)$ - \hat{l}^2 -glucan endohydrolase isoenzyme II from germinated barley and determination of its primary structure from a cDNA clone. Plant Molecular Biology, 1989, 13, 31-42.	3.9	95
40	Substrate specificities and kinetic properties of two ($1\hat{a}^{\dagger}$ '3), ($1\hat{a}^{\dagger}$ '4)- \hat{l}^2 -d-glucan endo-hydrolases from germinating barley (Hordeum vulgare). Carbohydrate Research, 1982, 106, 111-122.	2.3	94
41	Development of (1→3,1→4)-β-d-Glucan Endohydrolase Isoenzymes in Isolated Scutella and Aleurone Layers of Barley (<i>Hordeum vulgare</i>). Plant Physiology, 1986, 80, 310-314.	4.8	89
42	Structural Basis for Broad Substrate Specificity in Higher Plant \hat{l}^2 -d-Glucan Glucohydrolases. Plant Cell, 2002, 14, 1033-1052.	6.6	89
43	Substrate Binding and Catalytic Mechanism of a Barley \hat{l}^2 -d-Glucosidase/ $(1,4)$ - \hat{l}^2 -d-Glucan Exohydrolase. Journal of Biological Chemistry, 1998, 273, 11134-11143.	3.4	86
44	A Brief and Informationally Rich Naming System for Oligosaccharide Motifs of Heteroxylans Found in Plant Cell Walls. Australian Journal of Chemistry, 2009, 62, 533.	0.9	84
45	Current challenges in cell wall biology in the cereals and grasses. Frontiers in Plant Science, 2012, 3, 130.	3.6	84
46	Developmental Regulation of (1â†'3, 1â†'4)-β-Glucanase Gene Expression in Barley. Plant Physiology, 1992, 99, 1226-1231.	4.8	79
47	Mutated Barley $(1,3)$ - \hat{l}^2 -d -Glucan Endohydrolases Synthesize Crystalline $(1,3)$ - \hat{l}^2 -d -Glucans. Journal of Biological Chemistry, 2002, 277, 30102-30111.	3.4	79
48	Exploring the evolution of $(1,3;1,4)$ - $\hat{1}^2$ -d-glucans in plant cell walls: comparative genomics can help!. Current Opinion in Plant Biology, 2009, 12, 140-147.	7.1	77
49	Barley arabinoxylan arabinofuranohydrolases: purification, characterization and determination of primary structures from cDNA clones. Biochemical Journal, 2001, 356, 181-189.	3.7	7 5
50	Catalytic Mechanisms and Reaction Intermediates along the Hydrolytic Pathway of a Plant \hat{l}^2 -D-glucan Glucohydrolase. Structure, 2001, 9, 1005-1016.	3.3	73
51	Prospecting for Energy-Rich Renewable Raw Materials: Agave Leaf Case Study. PLoS ONE, 2015, 10, e0135382.	2.5	73
52	Structure and Function of Cereal and Related Higher Plant (1â†'4)-β-Xylan Endohydrolases. Journal of Cereal Science, 2003, 37, 111-127.	3.7	72
53	Members of a New Group of Chitinase-Like Genes are Expressed Preferentially in Cotton Cells with Secondary Walls. Plant Molecular Biology, 2004, 54, 353-372.	3.9	71
54	A Single Limit Dextrinase Gene Is Expressed Both in the Developing Endosperm and in Germinated Grains of Barley1. Plant Physiology, 1999, 119, 859-872.	4.8	70

#	Article	IF	CITATIONS
55	Discovery of Cyclotide-Like Protein Sequences in Graminaceous Crop Plants: Ancestral Precursors of Circular Proteins?. Plant Cell, 2006, 18, 2134-2144.	6.6	70
56	Biochemical evidence linking a putative callose synthase gene with $(1\hat{a}^{\dagger}\hat{a})^{-\hat{l}^2}$ -d-glucan biosynthesis in barley. Plant Molecular Biology, 2003, 53, 213-225.	3.9	68
57	Plant cell wall engineering: applications in biofuel production and improved human health. Current Opinion in Biotechnology, 2014, 26, 79-84.	6.6	67
58	Molecular cloning of a cDNA encoding a $(1\hat{a}\dagger'4)$ - \hat{l}^2 -mannan endohydrolase from the seeds of germinated tomato (Lycopersicon esculentum). Planta, 1997, 203, 454-459.	3.2	66
59	Induction of (1â†'3,1â†'4)-*- D -glucan hydrolases in leaves of dark-incubated barley seedlings. Planta, 2002, 215, 51-59.	3.2	62
60	Reducing haziness in white wine by overexpression of Saccharomyces cerevisiae genes YOL155c and YDR055w. Applied Microbiology and Biotechnology, 2007, 73, 1363-1376.	3.6	61
61	Barley arabinoxylan arabinofuranohydrolases: purification, characterization and determination of primary structures from cDNA clones. Biochemical Journal, 2001, 356, 181.	3.7	59
62	Isolation and characterization of cell walls from the mesocarp of mature grape berries (Vitis) Tj ETQq0 0 0 rgBT	/Ovgrlock	10 T£ 50 462 ⁻
63	A genome wide association scan for $(1,3;1,4)$ - \hat{l}^2 -glucan content in the grain of contemporary 2-row Spring and Winter barleys. BMC Genomics, 2014, 15, 907.	2.8	57
64	Genome Wide Association Mapping for Arabinoxylan Content in a Collection of Tetraploid Wheats. PLoS ONE, 2015, 10, e0132787.	2.5	56
65	Purification and characterization of three (14)-beta-d-xylan endohydrolases from germinated barley. FEBS Journal, 1989, 185, 533-539.	0.2	55
66	Evolutionary Dynamics of the Cellulose Synthase Gene Superfamily in Grasses. Plant Physiology, 2015, 168, 968-983.	4.8	55
67	Emerging Technologies for the Production of Renewable Liquid Transport Fuels from Biomass Sources Enriched in Plant Cell Walls. Frontiers in Plant Science, 2016, 7, 1854.	3.6	55
68	Gene Structure and Expression Pattern Analysis of Three Monodehydroascorbate Reductase (Mdhar) Genes in Physcomitrella patens: Implications for the Evolution of the MDHAR Family in Plants*. Plant Molecular Biology, 2006, 60, 259-275.	3.9	53
69	Fine structure of the arabinogalactan-protein from Lolium multiflorum. Carbohydrate Research, 1987, 162, 85-93.	2.3	52
70	Rice family GH1 glycoside hydrolases with \hat{l}^2 -d-glucosidase and \hat{l}^2 -d-mannosidase activities. Archives of Biochemistry and Biophysics, 2009, 491, 85-95.	3.0	52
71	Powerful regulatory systems and post-transcriptional gene silencing resist increases in cellulose content in cell walls of barley. BMC Plant Biology, 2015, 15, 62.	3.6	52
72	The barley (<i>Hordeum vulgare</i>) cellulose synthaseâ€like D2 gene (<i>HvCslD2</i>) mediates penetration resistance to hostâ€adapted and nonhost isolates of the powdery mildew fungus. New Phytologist, 2016, 212, 421-433.	7.3	52

#	Article	IF	CITATIONS
73	Barley \hat{l}^2 -d-glucan exohydrolases. Substrate specificity and kinetic properties. Carbohydrate Research, 1997, 305, 209-221.	2.3	50
74	Pattern of Deposition of Cell Wall Polysaccharides and Transcript Abundance of Related Cell Wall Synthesis Genes during Differentiation in Barley Endosperm. Plant Physiology, 2012, 159, 655-670.	4.8	50
75	Spatial gradients in cell wall composition and transcriptional profiles along elongating maize internodes. BMC Plant Biology, 2014, 14, 27.	3.6	50
76	Messenger RNAs from the Scutellum and Aleurone of Germinating Barley Encode (1â†'3,1â†'4)-β-d-Glucanase, α-Amylase and Carboxypeptidase. Plant Physiology, 1985, 79, 867-871.	4.8	49
77	Grain development in Brachypodium and other grasses: possible interactions between cell expansion, starch deposition, and cell-wall synthesis. Journal of Experimental Botany, 2013, 64, 5033-5047.	4.8	48
78	Molecular cloning of cDNAs encoding (1?4)-?-xylan endohydrolases from the aleurone layer of germinated barley (Hordeum vulgare). Plant Molecular Biology, 1996, 31, 1163-1172.	3.9	47
79	The Dynamics of Transcript Abundance during Cellularization of Developing Barley Endosperm. Plant Physiology, 2016, 170, 1549-1565.	4.8	47
80	Tissue Slice and Particulate \hat{I}^2 -Glucan Synthetase Activities from Pisum Epicotyls. Plant Physiology, 1978, 61, 938-942.	4.8	46
81	Hydrolysis of $(1,4)$ - \hat{l}^2 -D-mannans in barley (Hordeum vulgare L.) is mediated by the concerted action of $(1,4)$ - \hat{l}^2 -D-mannan endohydrolase and \hat{l}^2 -D-mannosidase. Biochemical Journal, 2006, 399, 77-90.	3.7	46
82	Polysaccharide hydrolases in germinated barley and their role in the depolymerization of plant and fungal cell walls. International Journal of Biological Macromolecules, 1997, 21, 67-72.	7.5	43
83	Flt-2L, a locus in barley controlling flowering time, spike density, and plant height. Functional and Integrative Genomics, 2009, 9, 243-254.	3.5	43
84	In vitro synthesis of a microfibrillar (13)-beta-glucan by a ryegrass (Lolium multiflorum) endosperm (13)-beta-glucan synthase enriched by product entrapment. Plant Journal, 1995, 8, 213-225.	5.7	42
85	A Tetrad of Ionizable Amino Acids Is Important for Catalysis in Barley \hat{l}^2 -Glucanases. Journal of Biological Chemistry, 1995, 270, 8093-8101.	3.4	41
86	Downâ€regulation of the <i>glucan synthaseâ€like 6</i> gene (<i>HvGsl6</i>) in barley leads to decreased callose accumulation and increased cell wall penetration by <i>Blumeria graminis</i> f. sp. <i>hordei</i>). New Phytologist, 2016, 212, 434-443.	7.3	41
87	The dynamics of cereal cyst nematode infection differ between susceptible and resistant barley cultivars and lead to changes in (1,3;1,4)â€Î²â€glucan levels and <scp><i>HvCslF</i></scp> gene transcript abundance. New Phytologist, 2015, 207, 135-147.	7.3	40
88	Genetic Diversity and Genome Wide Association Study of \hat{l}^2 -Glucan Content in Tetraploid Wheat Grains. PLoS ONE, 2016, 11, e0152590.	2.5	40
89	The Barley Genome Sequence Assembly Reveals Three Additional Members of the CslF (1,3;1,4)-Î ² -Glucan Synthase Gene Family. PLoS ONE, 2014, 9, e90888.	2.5	39
90	Substrate specificity and catalytic mechanism of a xyloglucan xyloglucosyl transferase HvXET6 from barley (<i>Hordeumâ€fvulgare</i> ÀêfL.). FEBS Journal, 2009, 276, 437-456.	4.7	38

#	Article	IF	CITATIONS
91	Hyphal cell walls from the plant pathogen <i>Rhynchosporiumâ€fsecalis</i> contain (1,3/1,6)â€ \hat{i}^2 â€ <scp>d</scp> â€glucans, galactoâ€and rhamnomannans, (1,3;1,4)â€ \hat{i}^2 â€ <scp>d</scp> â€glucans FEBS Journal, 2009, 276, 3698-3709.	and chitin	.38
92	Subsite Affinities and Disposition of Catalytic Amino Acids in the Substrate-binding Region of Barley 1,3-Î ² -Glucanases. IMPLICATIONS IN PLANT-PATHOGEN INTERACTIONS. Journal of Biological Chemistry, 1995, 270, 14556-14563.	3.4	37
93	A Customized Gene Expression Microarray Reveals That the Brittle Stem Phenotype $\langle i \rangle fs2 \langle i \rangle$ of Barley Is Attributable to a Retroelement in the $\langle i \rangle HvCesA4 \langle i \rangle$ Cellulose Synthase Gene Â. Plant Physiology, 2010, 153, 1716-1728.	4.8	37
94	$(1,3;1,4)$ - \hat{l}^2 -Glucan Biosynthesis by the CSLF6 Enzyme: Position and Flexibility of Catalytic Residues Influence Product Fine Structure. Biochemistry, 2016, 55, 2054-2061.	2.5	37
95	The CELLULOSE-SYNTHASE LIKE C (CSLC) Family of Barley Includes Members that Are Integral Membrane Proteins Targeted to the Plasma Membrane. Molecular Plant, 2009, 2, 1025-1039.	8.3	36
96	Three-dimensional Structure of the Barley \hat{l}^2 -d-Glucan Glucohydrolase in Complex with a Transition State Mimic. Journal of Biological Chemistry, 2004, 279, 4970-4980.	3.4	35
97	Endo- $(1,4)$ - \hat{l}^2 -Glucanase gene families in the grasses: temporal and spatial Co-transcription of orthologous genes1. BMC Plant Biology, 2012, 12, 235.	3.6	35
98	Targeted mutation of barley $(1,3;1,4)$ $\hat{a} \in \hat{I}^2$ $\hat{a} \in g$ lucan synthases reveals complex relationships between the storage and cell wall polysaccharide content. Plant Journal, 2020, 104, 1009-1022.	5.7	35
99	Purification and characterization of (1?3, 1?4)-?-glucan endohydrolases from germinated wheat (Triticum aestivum). Plant Molecular Biology, 1993, 22, 847-859.	3.9	34
100	Reconstitution of cyanogenesis in barley (Hordeum vulgare L.) and its implications for resistance against the barley powdery mildew fungus. Planta, 2006, 223, 1010-1023.	3.2	34
101	Distribution, structure and biosynthetic gene families of (1,3;1,4)â€Î²â€glucan in <i>Sorghum bicolor</i> Journal of Integrative Plant Biology, 2015, 57, 429-445.	8.5	33
102	Non-Starch Polysaccharides in Durum Wheat: A Review. International Journal of Molecular Sciences, 2020, 21, 2933.	4.1	33
103	Isolation and characterization of a (1 → 3)-β-glucan endohydrolase from germinating barley(Hordeum) Tj ETQq1	1.0.78431 2.8	.4.rgBT /O∨
104	Chromosomal Location of Genes Encoding Barley (1â†'3, 1â†'4)-β-Glucan 4-Glucanohydrolases. Plant Physiology, 1988, 87, 300-302.	4.8	30
105	Altered Expression of Genes Implicated in Xylan Biosynthesis Affects Penetration Resistance against Powdery Mildew. Frontiers in Plant Science, 2017, 8, 445.	3.6	30
106	Amino acid sequence homology in two 1,3;1,4- \hat{l}^2 -glucan endohydrolases from germinating barley (hordeum vulgare). FEBS Letters, 1982, 138, 198-200.	2.8	29
107	Polyproline II Confirmation in the Protein Component of Arabinogalactan-Protein from <i>Lolium multiflorum</i> . Plant Physiology, 1984, 75, 1163-1164.	4.8	29
108	Characterization and Expression Patterns of UDP-d-Glucuronate Decarboxylase Genes in Barley. Plant Physiology, 2005, 138, 131-141.	4.8	29

#	Article	IF	Citations
109	Dissecting the catalytic mechanism of a plant \hat{l}^2 -d-glucan glucohydrolase through structural biology using inhibitors and substrate analogues. Carbohydrate Research, 2007, 342, 1613-1623.	2.3	29
110	Varietal and chromosome 2H locus-specific frost tolerance in reproductive tissues of barley (Hordeum vulgare L.) detected using a frost simulation chamber. Theoretical and Applied Genetics, 2009, 119, 685-694.	3.6	28
111	Isolation of tissues and preservation of <scp>RNA</scp> from intact, germinated barley grain. Plant Journal, 2017, 91, 754-765.	5.7	28
112	Synthesis of Complex Oligosaccharides by Using a Mutated (1,3)–D-Glucan Endohydrolase from Barley. Chemistry - A European Journal, 2003, 9, 2603-2610.	3.3	26
113	Co-evolution of Enzymes Involved in Plant Cell Wall Metabolism in the Grasses. Frontiers in Plant Science, 2019, 10, 1009.	3.6	26
114	Effects of gibberellic acid and abscisic acid on levels of translatable mRNA (1â†'3,1â†'4)-β-D-glucanase in barley aleurone. FEBS Letters, 1986, 198, 349-352.	2.8	25
115	Purification and characterization of a (1 → 3)-β-d-glucan endohydrolase from rice (Oryza sativa) bran. Carbohydrate Research, 1997, 297, 365-374.	2.3	25
116	Virus-Induced Silencing of a Plant Cellulose Synthase Gene. Plant Cell, 2000, 12, 691.	6.6	25
117	Soluble arabinoxylan alters digesta flow and protein digestion of red meat-containing diets in pigs. Nutrition, 2015, 31, 1141-1147.	2.4	25
118	Title is missing!. ScienceAsia, 2002, 28, 29.	0.5	25
119	Barley $(1\hat{a}^{\dagger}, 1\hat{a}^{\dagger}, 1\hat{a}^{\dagger}, 1\hat{a}^{2}$ -glucanase isoenzyme El gene expression is mediated by auxin and gibberellic acid. FEBS Letters, 1992, 306, 98-102.	2.8	24
120	Genes and traits associated with chromosome 2H and 5H regions controlling sensitivity of reproductive tissues to frost in barley. Theoretical and Applied Genetics, 2009, 118, 1465-1476.	3.6	24
121	Morphology, Carbohydrate Distribution, Gene Expression, and Enzymatic Activities Related to Cell Wall Hydrolysis in Four Barley Varieties during Simulated Malting. Frontiers in Plant Science, 2017, 8, 1872.	3.6	24
122	Barley grain $(1,3;1,4)$ - \hat{l}^2 -glucan content: effects of transcript and sequence variation in genes encoding the corresponding synthase and endohydrolase enzymes. Scientific Reports, 2019, 9, 17250.	3.3	24
123	A Genome-Wide Association Study for Culm Cellulose Content in Barley Reveals Candidate Genes Co-Expressed with Members of the CELLULOSE SYNTHASE A Gene Family. PLoS ONE, 2015, 10, e0130890.	2.5	24
124	Biosynthesis of Arabinogalactan-Protein in <i>Lolium multiflorum</i> (Ryegrass) Endosperm Cells. Plant Physiology, 1983, 72, 754-758.	4.8	23
125	Genetic and environmental factors contribute to variation in cell wall composition in mature desi chickpea (<i>Cicer arietinum</i> L.) cotyledons. Plant, Cell and Environment, 2018, 41, 2195-2208.	5.7	23
126	Differences in the thermostabilities of barley $(1\hat{a}^{\dagger}, 1\hat{a}^{\dagger}, 1\hat{a}^{\dagger}, 1\hat{a}^{\dagger})$ -glucanases are only partly determined by N-glycosylation. FEBS Letters, 1992, 309, 265-271.	2.8	22

#	Article	IF	CITATIONS
127	Purification, characterization and gene structure of (13)-beta-glucanase isoenzyme GIII from barley (Hordeum vulgare). FEBS Journal, 1992, 209, 103-109.	0.2	22
128	Gene flow from transgenic wheat and barley under field conditions. Euphytica, 2006, 151, 383-391.	1.2	22
129	Functional Characterization of a Glycosyltransferase from the Moss <i>Physcomitrella patens</i> Involved in the Biosynthesis of a Novel Cell Wall Arabinoglucan. Plant Cell, 2018, 30, 1293-1308.	6.6	22
130	Plant Enzyme Structure. Explaining Substrate Specificity and the Evolution of Function. Plant Physiology, 2001, 125, 54-57.	4.8	21
131	Soluble cell wall carbohydrates and their relationship with sensory attributes in Cabernet Sauvignon wine. Food Chemistry, 2019, 298, 124745.	8.2	21
132	Analysis of the (1,3)-Î ² -d-glucan synthase gene family of barley. Phytochemistry, 2009, 70, 713-720.	2.9	19
133	Immunological determination of (1 \hat{a} †' 3),(1 \hat{a} †' 4)- \hat{l} 2-D-glucan endohydrolase development in germinating barley (Hordeum vulgare). FEBS Letters, 1983, 155, 201-204.	2.8	18
134	Heterologous expression of cDNAs encoding monodehydroascorbate reductases from the moss, Physcomitrella patens and characterization of the expressed enzymes. Planta, 2007, 225, 945-954.	3.2	17
135	Distribution, Fine Structure and Function of $(1,3;1,4)$ - \hat{l}^2 -Glucans in the Grasses and Other Taxa. , 2009, , 621-654.		17
136	Cell Wall Modifications in Maize Pulvini in Response to Gravitational Stress Â. Plant Physiology, 2011, 156, 2155-2171.	4.8	17
137	Differential expression of the HvCslF6 gene late in grain development may explain quantitative differences in $(1,3;1,4)$ - \hat{l}^2 -glucan concentration in barley. Molecular Breeding, 2015, 35, 20.	2.1	17
138	Transcriptional and biochemical analyses of gibberellin expression and content in germinated barley grain. Journal of Experimental Botany, 2020, 71, 1870-1884.	4.8	17
139	Identification of individual (1 â†' 3,1 â†' 4)-β-D-glucanase isoenzymes in extracts of germinated barley using specific monoclonal antibodies. Journal of Cereal Science, 1990, 11, 261-268.	3.7	16
140	Heterologous expression of diverse barley XTH genes in the yeast Pichia pastoris. Plant Biotechnology, 2010, 27, 251-258.	1.0	16
141	Genetics and physiology of cell wall polysaccharides in the model C4 grass, Setaria viridis spp. BMC Plant Biology, 2015, 15, 236.	3.6	16
142	Crystallization and preliminary X-ray analysis of \hat{l}^2 -glucan exohydrolase isoenzyme Exol from barley (Hordeum vulgare). Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 687-689.	2.5	15
143	The Genetics, Transcriptional Profiles, and Catalytic Properties of UDP- <i>α</i> - <scp>d</scp> -Xylose 4-Epimerases from Barley Â. Plant Physiology, 2010, 153, 555-568.	4.8	15
144	Regulation of genes encoding \hat{l}^2 -d -glucan glucohydrolases in barley (Hordeum vulgare). Physiologia Plantarum, 2001, 113, 108-120.	5.2	14

#	Article	IF	CITATIONS
145	Plant cell wall polysaccharide biosynthesis: real progress in the identification of participating genes. Planta, 2005, 221, 309-312.	3.2	14
146	Heterologous expression of cDNAs encoding barley (Hordeum vulgare) (1 $^{\circ}$ 4)- $^{\circ}$ 2-glucanase isoenzyme GV. FEBS Letters, 1994, 348, 206-210.	2.8	13
147	Genetics, Transcriptional Profiles, and Catalytic Properties of the UDP-Arabinose Mutase Family from Barley. Biochemistry, 2016, 55, 322-334.	2.5	13
148	Method for hullâ€less barley transformation and manipulation of grain mixedâ€linkage betaâ€glucan. Journal of Integrative Plant Biology, 2018, 60, 382-396.	8.5	13
149	Crystallization and Preliminary X-ray Analysis of $(1,3)$ - and $(1,3;1,4)$ - \hat{l}^2 -dcl025;-Glucanases from Germinating Barley. Journal of Molecular Biology, 1993, 234, 888-889.	4.2	12
150	Analysis of the arabinoxylan arabinofuranohydrolase gene family in barley does not support their involvement in the remodelling of endosperm cell walls during development. Journal of Experimental Botany, 2012, 63, 3031-3045.	4.8	12
151	Genes That Mediate Starch Metabolism in Developing and Germinated Barley Grain. Frontiers in Plant Science, 2021, 12, 641325.	3.6	12
152	Combining transcriptional datasets using the generalized singular value decomposition. BMC Bioinformatics, 2008, 9, 335.	2.6	11
153	Gene structure and a possible cytoplasmic location for (1→3)-β-glucanase isoenzyme GI from barley (Hordeum vulgare). Plant Science, 1998, 135, 39-47.	3.6	10
154	High-yield production, refolding and a molecular modelling of the catalytic module of $(1,3)$ - $\hat{1}^2$ -d-glucan (curdlan) synthase from Agrobacterium sp Glycoconjugate Journal, 2010, 27, 461-476.	2.7	10
155	Barley Grain Carbohydrates: Starch and Cell Walls. , 2014, , 71-95.		10
156	Water uptake in barley grain: Physiology; genetics and industrial applications. Plant Science, 2016, 242, 260-269.	3.6	10
157	Title is missing!. Plant Cell, Tissue and Organ Culture, 1997, 49, 121-127.	2.3	9
158	A Chemoenzymatic Route to Conjugatable $\hat{l}^2(1\hat{a}\dagger^3)$ -Glucan Oligosaccharides. Australian Journal of Chemistry, 2009, 62, 575.	0.9	9
159	Low-Input Fermentations of Agave tequilana Leaf Juice Generate High Returns on Ethanol Yields. Bioenergy Research, 2016, 9, 1142-1154.	3.9	9
160	Low-cost cross-taxon enrichment of mitochondrial DNA using in-house synthesised RNA probes. PLoS ONE, 2019, 14, e0209499.	2.5	9
161	The Synthesis of 3-O-(\hat{l}^2 -D-Glucopyranosyl)- and 3-O-(\hat{l}^2 -Laminaribiosyl)-isofagomines, Potent Inhibitors of a 1,3- \hat{l}^2 -D-Glucan endo-Hydrolase. Australian Journal of Chemistry, 2004, 57, 187.	0.9	8
162	Barley xyloglucan xyloglucosyl transferases bind xyloglucan-derived oligosaccharides in their acceptor-binding regions in multiple conformational states. Archives of Biochemistry and Biophysics, 2010, 496, 61-68.	3.0	7

#	Article	IF	CITATIONS
163	Plant and Microbial Enzymes Involved in the Depolymerization of (1,3)- \hat{l}^2 -d-Glucans and Related Polysaccharides. , 2009, , 119-170.		6
164	Biochemical and Molecular Properties of Biosynthetic Enzymes for $(1,3)$ - \hat{l}^2 -Glucans in Embryophytes, Chlorophytes and Rhodophytes., 2009,, 283-326.		6
165	N-acetylchitooligosaccharides elicit expression of a single (13)-beta-glucanase gene in suspension-cultured cells from barley (Hordeum vulgare). Physiologia Plantarum, 1997, 100, 111-118.	5.2	6
166	Prospecting for Energy-Rich Renewable Raw Materials: Sorghum Stem Case Study. PLoS ONE, 2016, 11, e0156638.	2.5	6
167	Development and regulation of (1â†'3,1â†'4)-β-glucan endohydrolases in germinating wheat (<i>Triticum) Tj ETG</i>	29 _{1.} 7 0.78	34 <u>3</u> 14 rgBT
168	Letter to the Glycoforum Transforming Glycoscience: An Australian Perspective. Glycobiology, 2014, 24, 1-3.	2.5	1
169	Engineering Disease Resistance in Crop Plants: Callosic Papillae as Potential Targets. Engineering, 2020, 6, 505-508.	6.7	1
170	Establishment of Fine Suspension Cultures of Triticum tauschii ([Coss.] Schmal.) which remain Embryogenic for Several Years. Australian Journal of Botany, 1999, 47, 611.	0.6	0
171	Functional Analysis of Polysaccharide Synthases Responsible for Cell Wall Synthesis in Higher Plants. Progress in Biotechnology, 2001, 18, 77-84.	0.2	0
172	Identification and spatio-temporal expression analysis of barley genes that encode putative modular xylanolytic enzymes. Plant Science, 2021, 308, 110792.	3.6	0