Giuseppe Passarino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9432281/publications.pdf

Version: 2024-02-01

100 papers

7,028 citations

34 h-index 81 g-index

104 all docs

104 docs citations

times ranked

104

10015 citing authors

#	Article	IF	Citations
1	Association between IGFâ€1 levels ranges and allâ€cause mortality: A metaâ€analysis. Aging Cell, 2022, 21, e13540.	6.7	20
2	Antibacterial Activity and Epigenetic Remodeling of Essential Oils from Calabrian Aromatic Plants. Nutrients, 2022, 14, 391.	4.1	11
3	Impact of Nutrition on Age-Related Epigenetic RNA Modifications in Rats. Nutrients, 2022, 14, 1232.	4.1	5
4	Clinical and Prognostic Implications of Estimating Glomerular Filtration Rate by Three Different Creatinine-Based Equations in Older Nursing Home Residents. Frontiers in Medicine, 2022, 9, 870835.	2.6	0
5	Pediatric Nonâ€Alcoholic Fatty Liver Disease Is Affected by Genetic Variants Involved in Lifespan/Healthspan. Journal of Pediatric Gastroenterology and Nutrition, 2021, 73, 161-168.	1.8	4
6	Epigenetic Regulation of Mitochondrial Quality Control Genes in Multiple Myeloma: A Sequenom MassARRAY Pilot Investigation on HMCLs. Journal of Clinical Medicine, 2021, 10, 1295.	2.4	5
7	IP6K3 and IPMK variations in LOAD and longevity: Evidence for a multifaceted signaling network at the crossroad between neurodegeneration and survival. Mechanisms of Ageing and Development, 2021, 195, 111439.	4.6	9
8	Whole-genome sequencing analysis of semi-supercentenarians. ELife, 2021, 10, .	6.0	37
9	Microbiome in Blood Samples From the General Population Recruited in the MARK-AGE Project: A Pilot Study. Frontiers in Microbiology, 2021, 12, 707515.	3.5	27
10	No association between frailty index and epigenetic clocks in Italian semi-supercentenarians. Mechanisms of Ageing and Development, 2021, 197, 111514.	4.6	8
11	Specific features of the oldest old from the Longevity Blue Zones in Ikaria and Sardinia. Mechanisms of Ageing and Development, 2021, 198, 111543.	4.6	19
12	Different components of frailty in the aging subjectsâ€"The role of sarcopenia. , 2021, , 173-205.		0
13	Telomere length as a function of age at population level parallels human survival curves. Aging, 2021, 13, 204-218.	3.1	10
14	A New Robust Epigenetic Model for Forensic Age Prediction. Journal of Forensic Sciences, 2020, 65, 1424-1431.	1.6	24
15	Thyroid hormones and frailty in persons experiencing extreme longevity. Experimental Gerontology, 2020, 138, 111000.	2.8	17
16	Gut Microbiota as Important Mediator Between Diet and DNA Methylation and Histone Modifications in the Host. Nutrients, 2020, 12, 597.	4.1	30
17	Multi-Tissue DNA Methylation Remodeling at Mitochondrial Quality Control Genes According to Diet in Rat Aging Models. Nutrients, 2020, 12, 460.	4.1	6
18	Expression Patterns of Muscle-Specific miR-133b and miR-206 Correlate with Nutritional Status and Sarcopenia. Nutrients, 2020, 12, 297.	4.1	37

#	Article	IF	CITATIONS
19	Genomic history of the Italian population recapitulates key evolutionary dynamics of both Continental and Southern Europeans. BMC Biology, 2020, 18, 51.	3.8	26
20	Epigenetics and Ageing., 2019,, 99-133.		3
21	Erythropoietin (EPO) haplotype associated with all-cause mortality in a cohort of Italian patients with Type-2 Diabetes. Scientific Reports, 2019, 9, 10395.	3.3	13
22	Anti-tumor Activity and Epigenetic Impact of the Polyphenol Oleacein in Multiple Myeloma. Cancers, 2019, 11, 990.	3.7	47
23	Mini Nutritional Assessment Scores Indicate Higher Risk for Prospective Mortality and Contrasting Correlation With Age-Related Epigenetic Biomarkers. Frontiers in Endocrinology, 2019, 10, 672.	3.5	1
24	Inter-Individual Variability in Xenobiotic-Metabolizing Enzymes: Implications for Human Aging and Longevity. Genes, 2019, 10, 403.	2.4	20
25	Inositol Polyphosphate Multikinase (IPMK), a Gene Coding for a Potential Moonlighting Protein, Contributes to Human Female Longevity. Genes, 2019, 10, 125.	2.4	5
26	Heterogeneity of Thyroid Function and Impact of Peripheral Thyroxine Deiodination in Centenarians and Semi-Supercentenarians: Association With Functional Status and Mortality. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 802-810.	3.6	32
27	Amino acids and amino acid sensing: implication for aging and diseases. Biogerontology, 2019, 20, 17-31.	3.9	30
28	Epigenetic signature: implications for mitochondrial quality control in human aging. Aging, 2019, 11, 1240-1251.	3.1	16
29	LAV-BPIFB4 associates with reduced frailty in humans and its transfer prevents frailty progression in old mice. Aging, 2019, 11, 6555-6568.	3.1	15
30	Individual DNA Methylation Profile is Correlated with Age and can be Targeted to Modulate Healthy Aging and Longevity. Current Pharmaceutical Design, 2019, 25, 4139-4149.	1.9	8
31	The genetic component of human longevity: New insights from the analysis of pathwayâ€based <scp>SNP</scp> â€ <scp>SNP</scp> interactions. Aging Cell, 2018, 17, e12755.	6.7	24
32	Frequency of Cardiovascular Genetic Risk Factors in a Calabrian Population and Their Effects on Dementia. Journal of Alzheimer's Disease, 2018, 61, 1179-1187.	2.6	5
33	Aging and nutrition induce tissue-specific changes on global DNA methylation status in rats. Mechanisms of Ageing and Development, 2018, 174, 47-54.	4.6	31
34	A Genetic Variant of ASCT2 Hampers In Vitro RNA Splicing and Correlates with Human Longevity. Rejuvenation Research, 2018, 21, 193-199.	1.8	5
35	Genes associated with Type 2 Diabetes and vascular complications. Aging, 2018, 10, 178-196.	3.1	37
36	Cardiovascular risk profiling of longâ€lived people shows peculiar associations with mortality compared with younger individuals. Geriatrics and Gerontology International, 2018, 19, 165-170.	1.5	5

#	Article	IF	CITATIONS
37	Evaluation of Lymphocyte Response to the Induced Oxidative Stress in a Cohort of Ageing Subjects, including Semisupercentenarians and Their Offspring. Mediators of Inflammation, 2018, 2018, 1-14.	3.0	11
38	rRNA-gene methylation and biological aging. Aging, 2018, 10, 7-8.	3.1	7
39	Physical decline and survival in the elderly are affected by the genetic variability of amino acid transporter genes. Aging, 2018, 10, 658-673.	3.1	6
40	Impact of demography and population dynamics on the genetic architecture of human longevity. Aging, 2018, 10, 1947-1963.	3.1	16
41	Uncoupling protein 4 (UCP4) gene variability in neurodegenerative disorders: further evidence of association in Frontotemporal dementia. Aging, 2018, 10, 3283-3293.	3.1	10
42	The methylation of nuclear and mitochondrial DNA in ageing phenotypes and longevity. Mechanisms of Ageing and Development, 2017, 165, 156-161.	4.6	36
43	Centenarians as extreme phenotypes: An ecological perspective to get insight into the relationship between the genetics of longevity and age-associated diseases. Mechanisms of Ageing and Development, 2017, 165, 195-201.	4.6	36
44	Demographic, genetic and phenotypic characteristics of centenarians in Italy: Focus on gender differences. Mechanisms of Ageing and Development, 2017, 165, 68-74.	4.6	26
45	Epigenetic modifications in multiple myeloma: recent advances on the role of DNA and histone methylation. Expert Opinion on Therapeutic Targets, 2017, 21, 91-101.	3.4	54
46	Methylation of the ribosomal RNA gene promoter is associated with aging and ageâ€related decline. Aging Cell, 2017, 16, 966-975.	6.7	63
47	The genetics of human longevity: an intricacy of genes, environment, culture and microbiome. Mechanisms of Ageing and Development, 2017, 165, 147-155.	4.6	79
48	Thyroid hormones in extreme longevity. Mechanisms of Ageing and Development, 2017, 165, 98-106.	4.6	23
49	Pleiotropic effects of UCP2–UCP3 variability on leucocyte telomere length and glucose homeostasis. Biogerontology, 2017, 18, 347-355.	3.9	3
50	SIRT1â€SIRT3 Axis Regulates Cellular Response to Oxidative Stress and Etoposide. Journal of Cellular Physiology, 2017, 232, 1835-1844.	4.1	39
51	Centenarians as a 21st century healthy aging model: A legacy of humanity and the need for a world-wide consortium (WWC100+). Mechanisms of Ageing and Development, 2017, 165, 55-58.	4.6	30
52	Mitochondrial genome and epigenome two sides of the same coin. Frontiers in Bioscience - Landmark, 2017, 22, 888-908.	3.0	16
53	Nutrigerontology: a key for achieving successful ageing and longevity. Immunity and Ageing, 2016, 13, 17.	4.2	55
54	Contribution of polymorphic variation of inositol hexakisphosphate kinase 3 (IP6K3) gene promoter to the susceptibility to late onset Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1766-1773.	3.8	26

#	Article	IF	CITATIONS
55	The Genetic Variability of UCP4 Affects the Individual Susceptibility to Late-Onset Alzheimer's Disease and Modifies the Disease's Risk in APOE-É>4 Carriers. Journal of Alzheimer's Disease, 2016, 51, 1265-1274.	2.6	15
56	Human longevity: Genetics or Lifestyle? It takes two to tango. Immunity and Ageing, 2016, 13, 12.	4.2	121
57	Association of the Laminin, Alpha 5 (LAMA5) rs4925386 with height and longevity in an elderly population from Southern Italy. Mechanisms of Ageing and Development, 2016, 155, 55-59.	4.6	7
58	The impact of nutrients on the aging rate: A complex interaction of demographic, environmental and genetic factors. Mechanisms of Ageing and Development, 2016, 154, 49-61.	4.6	26
59	Polymorphisms Falling Within Putative miRNA Target Sites in the 3′UTR Region of ⟨i⟩SIRT2⟨ i⟩and⟨i>DRD2⟨ i⟩Genes Are Correlated With Human Longevity. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 586-592.	3.6	41
60	Interventions to Slow Aging in Humans: Are We Ready?. Aging Cell, 2015, 14, 497-510.	6.7	481
61	Antioxidants and Quality of Aging: Further Evidences for a Major Role of <i>TXNRD1 </i> Gene Variability on Physical Performance at Old Age. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-7.	4.0	16
62	Disentangling the Impact of Chronic Kidney Disease, Anemia, and Mobility Limitation on Mortality in Older Patients Discharged From Hospital. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 1120-1127.	3.6	23
63	Mitochondria in health, aging and diseases: the epigenetic perspective. Biogerontology, 2015, 16, 569-585.	3.9	57
64	Low tobacco-related cancer incidence in offspring of long-lived siblings: a comparison with Danish national cancer registry data. Annals of Epidemiology, 2015, 25, 569-574.e3.	1.9	9
65	Metabolism and successful aging: Polymorphic variation of syndecan-4 (SDC4) gene associate with longevity and lipid profile in healthy elderly Italian subjects. Mechanisms of Ageing and Development, 2015, 150, 27-33.	4.6	17
66	Age-and gender-related pattern of methylation in the <i>MT-RNR1</i> gene. Epigenomics, 2015, 7, 707-716.	2.1	31
67	Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging, 2015, 7, 1159-1170.	3.1	276
68	Aging and Longevity between Genetic Background and Lifestyle Intervention. BioMed Research International, 2014, 2014, 1-2.	1.9	2
69	The coâ€occurrence of mt <scp>DNA</scp> mutations on different oxidative phosphorylation subunits, not detected by haplogroup analysis, affects human longevity and is population specific. Aging Cell, 2014, 13, 401-407.	6.7	85
70	Low Protein Intake Is Associated with a Major Reduction in IGF-1, Cancer, and Overall Mortality in the 65 and Younger but Not Older Population. Cell Metabolism, 2014, 19, 407-417.	16.2	715
71	mtDNA mutations in human aging and longevity: Controversies and new perspectives opened by high-throughput technologies. Experimental Gerontology, 2014, 56, 234-244.	2.8	39
72	Contribution of genetic polymorphisms on functional status at very old age: A gene-based analysis of 38 genes (311 SNPs) in the oxidative stress pathway. Experimental Gerontology, 2014, 52, 23-29.	2.8	25

#	Article	IF	Citations
73	Genome-wide association meta-analysis of human longevity identifies a novel locus conferring survival beyond 90 years of age. Human Molecular Genetics, 2014, 23, 4420-4432.	2.9	227
74	How to classify the oldest old according to their health status: A study on 1160 subjects belonging to 552 90+ Italian sib-ships characterized by familial longevity recruited within the GEHA EU Project. Mechanisms of Ageing and Development, 2013, 134, 560-569.	4.6	10
75	Epigenetics and aging. Maturitas, 2013, 74, 130-136.	2.4	72
76	The Control Region of Mitochondrial DNA Shows an Unusual CpG and Non-CpG Methylation Pattern. DNA Research, 2013, 20, 537-547.	3.4	221
77	Exploring the Role of Genetic Variability and Lifestyle in Oxidative Stress Response for Healthy Aging and Longevity. International Journal of Molecular Sciences, 2013, 14, 16443-16472.	4.1	86
78	Centenarians as super-controls to assess the biological relevance of genetic risk factors for common age-related diseases: A proof of principle on type 2 diabetes. Aging, 2013, 5, 373-385.	3.1	57
79	Global DNA methylation levels are modulated by mitochondrial DNA variants. Epigenomics, 2012, 4, 17-27.	2.1	117
80	Epidemiological, genetic and epigenetic aspects of the research on healthy ageing and longevity. Immunity and Ageing, 2012, 9, 6.	4.2	43
81	Global DNA methylation in old subjects is correlated with frailty. Age, 2012, 34, 169-179.	3.0	91
82	MiR-29b Exerts Anti-Multiple Myeloma Activity by Targeting Key Oncogenic Pathways and Modulating DNA Methylation Profile Blood, 2012, 120, 2941-2941.	1.4	1
83	To Grow Old in Southern Italy: A Comprehensive Description of the Old and Oldest Old in Calabria. Gerontology, 2011, 57, 327-334.	2.8	23
84	Further Support to the Uncoupling-to-Survive Theory: The Genetic Variation of Human UCP Genes Is Associated with Longevity. PLoS ONE, 2011, 6, e29650.	2.5	60
85	Mitochondrial function, mitochondrial DNA and ageing: a reappraisal. Biogerontology, 2010, 11, 575-588.	3.9	21
86	A novel, population-specific approach to define frailty. Age, 2010, 32, 385-395.	3.0	32
87	A cross-section analysis of FT3 age-related changes in a group of old and oldest-old subjects, including centenarians' relatives, shows that a down-regulated thyroid function has a familial component and is related to longevity. Age and Ageing, 2010, 39, 723-727.	1.6	43
88	Evidence for Sub-Haplogroup H5 of Mitochondrial DNA as a Risk Factor for Late Onset Alzheimer's Disease. PLoS ONE, 2010, 5, e12037.	2.5	117
89	Handgrip Strength Among Nonagenarians and Centenarians in Three European Regions. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2006, 61, 707-712.	3.6	86
90	Sex and Age Specificity of Susceptibility Genes Modulating Survival at Old Age. Human Heredity, 2006, 62, 213-220.	0.8	46

#	Article	IF	Citations
91	A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics, 2005, 85, 258-263.	2.9	339
92	Different genetic components in the Norwegian population revealed by the analysis of mtDNA and Y chromosome polymorphisms. European Journal of Human Genetics, 2002, 10, 521-529.	2.8	55
93	The 49a,f haplotype 11 is a new marker of the EU19 lineage that traces migrations from northern regions of the black sea. Human Immunology, 2001, 62, 922-932.	2.4	27
94	Y Chromosome Binary Markers to Study the High Prevalence of Males in Sardinian Centenarians and the Genetic Structure of the Sardinian Population. Human Heredity, 2001, 52, 136-139.	0.8	36
95	Maori origins, Y-chromosome haplotypes and implications for human history in the Pacific. Human Mutation, 2001, 17, 271-280.	2.5	70
96	Paradoxes in longevity: sequence analysis of mtDNA haplogroup J in centenarians. European Journal of Human Genetics, 2001, 9, 701-707.	2.8	116
97	Y chromosome sequence variation and the history of human populations. Nature Genetics, 2000, 26, 358-361.	21.4	935
98	MtDNA and Y chromosome polymorphisms in Hungary: inferences from the palaeolithic, neolithic and Uralic influences on the modern Hungarian gene pool. European Journal of Human Genetics, 2000, 8, 339-346.	2.8	52
99	The Genetic Legacy of Paleolithic <i>Homo sapiens sapiens </i> in Extant Europeans: A Y Chromosome Perspective. Science, 2000, 290, 1155-1159.	12.6	783
100	Different Genetic Components in the Ethiopian Population, Identified by mtDNA and Y-Chromosome Polymorphisms. American Journal of Human Genetics, 1998, 62, 420-434.	6.2	140