Jeffrey C Nolz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9432174/publications.pdf

Version: 2024-02-01

361413 434195 2,166 31 20 31 citations h-index g-index papers 32 32 32 3570 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Infection-induced lymphatic zippering restricts fluid transport and viral dissemination from skin. Journal of Experimental Medicine, 2022, 219, .	8.5	17
2	Cellular and Humoral Immune Responses in Mice Immunized with Vaccinia Virus Expressing the SARS-CoV-2 Spike Protein. Journal of Immunology, 2021, 206, 2596-2604.	0.8	4
3	Control of memory CD8+ T cell longevity and effector functions by IL-15. Molecular Immunology, 2020, 117, 180-188.	2.2	42
4	P2X7R: The Achilles heel of follicular helper memory T cells. Science Immunology, 2020, 5, .	11.9	1
5	GCNT1-Mediated <i>O</i> -Glycosylation of the Sialomucin CD43 Is a Sensitive Indicator of Notch Signaling in Activated T Cells. Journal of Immunology, 2020, 204, 1674-1688.	0.8	17
6	Vaccinia Virus Vectors Targeting Peptides for MHC Class II Presentation to CD4+ T Cells. ImmunoHorizons, 2020, 4, 1-13.	1.8	3
7	Central memory CD8+ T cells become CD69+ tissue-residents during viral skin infection independent of CD62L-mediated lymph node surveillance. PLoS Pathogens, 2019, 15, e1007633.	4.7	45
8	Targeted Expansion of Tissue-Resident CD8+ T Cells to Boost Cellular Immunity in the Skin. Cell Reports, 2019, 29, 2990-2997.e2.	6.4	15
9	Activation and trafficking of CD8+ T cells during viral skin infection: immunological lessons learned from vaccinia virus. Current Opinion in Virology, 2018, 28, 12-19.	5 . 4	7
10	Lymphatic Vessels Balance Viral Dissemination and Immune Activation following Cutaneous Viral Infection. Cell Reports, 2017, 20, 3176-3187.	6.4	52
11	Enzymatic synthesis of core 2 O-glycans governs the tissue-trafficking potential of memory CD8 ⁺ T cells. Science Immunology, 2017, 2, .	11.9	40
12	Regulation of T Cell Trafficking by Enzymatic Synthesis of O-Glycans. Frontiers in Immunology, 2017, 8, 600.	4.8	39
13	Local antigen in nonlymphoid tissue promotes resident memory CD8+ T cell formation during viral infection. Journal of Experimental Medicine, 2016, 213, 951-966.	8.5	171
14	Strength in Numbers: Visualizing CTL-Mediated Killing InÂVivo. Immunity, 2016, 44, 207-208.	14.3	5
15	Molecular mechanisms of CD8+ T cell trafficking and localization. Cellular and Molecular Life Sciences, 2015, 72, 2461-2473.	5.4	74
16	IL-15 regulates memory CD8+ T cell O-glycan synthesis and affects trafficking. Journal of Clinical Investigation, 2014, 124, 1013-1026.	8.2	78
17	Pathogen-Specific Inflammatory Milieux Tune the Antigen Sensitivity of CD8+ T Cells by Enhancing T Cell Receptor Signaling. Immunity, 2013, 38, 140-152.	14.3	136
18	One Bug or Another: Promiscuous T Cells Form Lifelong Memory. Immunity, 2013, 38, 207-208.	14.3	1

#	Article	IF	CITATIONS
19	Division-linked generation of death-intermediates regulates the numerical stability of memory CD8 T cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6199-6204.	7.1	33
20	Strategies and Implications for Prime-Boost Vaccination to Generate Memory CD8 T Cells. Advances in Experimental Medicine and Biology, 2011, 780, 69-83.	1.6	35
21	Immunologic considerations for generating memory CD8 T cells through vaccination. Cellular Microbiology, 2011, 13, 925-933.	2.1	65
22	Protective Capacity of Memory CD8+ T Cells Is Dictated by Antigen Exposure History and Nature of the Infection. Immunity, 2011, 34, 781-793.	14.3	106
23	Naive, effector and memory CD8 T-cell trafficking: parallels and distinctions. Immunotherapy, 2011, 3, 1223-1233.	2.0	135
24	The WAVE2 complex regulates T cell receptor signaling to integrins via Abl- and CrkL–C3G-mediated activation of Rap1. Journal of Cell Biology, 2008, 182, 1231-1244.	5.2	112
25	WAVE2 Regulates High-Affinity Integrin Binding by Recruiting Vinculin and Talin to the Immunological Synapse. Molecular and Cellular Biology, 2007, 27, 5986-6000.	2.3	106
26	TCR/CD28-Stimulated Actin Dynamics Are Required for NFAT1-Mediated Transcription of c- <i>rel</i> Leading to CD28 Response Element Activation. Journal of Immunology, 2007, 179, 1104-1112.	0.8	21
27	Regulation of T-cell activation by the cytoskeleton. Nature Reviews Immunology, 2007, 7, 131-143.	22.7	342
28	HS1 Functions as an Essential Actin-Regulatory Adaptor Protein at the Immune Synapse. Immunity, 2006, 24, 741-752.	14.3	203
29	The WAVE2 Complex Regulates Actin Cytoskeletal Reorganization and CRAC-Mediated Calcium Entry during T Cell Activation. Current Biology, 2006, 16, 24-34.	3.9	225
30	The Ezh2 methyltransferase complex: actin up in the cytosol. Trends in Cell Biology, 2005, 15, 514-517.	7.9	25
31	ZAP-70 Expression Associated with Activation in Normal Human B Cells and B Cell Chronic Lymphocytic Leukemia Blood, 2004, 104, 2794-2794.	1.4	11