
Yutaka Asako

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/943133/publications.pdf Version: 2024-02-01

VIITAKA ASAKO

#	Article	IF	CITATIONS
1	Validity of performance factors used in recent studies on heat transfer enhancement by surface modification or insert devices. International Journal of Heat and Mass Transfer, 2022, 186, 122431.	4.8	5
2	Heat Transfer of Turbulent Gaseous Flow in Microtubes With Constant Wall Temperature. Journal of Heat Transfer, 2022, 144, .	2.1	2
3	Application of Superposition Principle for Solving a Nonlinear Energy Equation. Journal of Heat Transfer, 2022, , .	2.1	0
4	Validity of Performance Factors Used in Recent Studies on Heat Transfer Enhancement of Nanofluids. Journal of Heat Transfer, 2021, 143, .	2.1	3
5	Multivariable power least squares method: Complementary tool for Response Surface Methodology. Ain Shams Engineering Journal, 2020, 11, 161-169.	6.1	9
6	Experimental investigations of local friction factors of laminar and turbulent gas flows in smooth micro-tubes. International Journal of Heat and Mass Transfer, 2020, 158, 120035.	4.8	5
7	A review on development and applications of element-free galerkin methods in computational fluid dynamics. International Journal for Computational Methods in Engineering Science and Mechanics, 2020, 21, 252-275.	2.1	2
8	Pressure loss prediction of gaseous flow in a conduit-system of microchannel heat exchanger. Transactions of the JSME (in Japanese), 2020, 86, 20-00022-20-00022.	0.2	0
9	A comprehensive review of the influences of nanoparticles as a fuel additive in an internal combustion engine (ICE). Nanotechnology Reviews, 2020, 9, 1326-1349.	5.8	41
10	The Effect of Triangular Cavity Shape on the Hybrid Microchannel Heat Sink Performance. CFD Letters, 2020, 12, 1-14.	0.8	4
11	A review of passive methods in microchannel heat sink application through advanced geometric structure and nanofluids: Current advancements and challenges. Nanotechnology Reviews, 2020, 9, 1192-1216.	5.8	34
12	Transient thermal prediction methodology for parabolic trough solar collector tube using artificial neural network. Renewable Energy, 2019, 131, 168-179.	8.9	34
13	Delfim-Soares explicit time marching method for modelling of ultrasonic wave in microalgae pre-treatment. IOP Conference Series: Earth and Environmental Science, 2019, 268, 012106.	0.3	2
14	Energy equation of swirling flow in a cylindrical container. International Communications in Heat and Mass Transfer, 2019, 108, 104288.	5.6	0
15	Performance of a small-scale solar cogeneration system in the equatorial zone of Malaysia. Energy Conversion and Management, 2019, 184, 127-138.	9.2	11
16	Numerical analysis of irreversible processes in a piston-cylinder system using LB1S turbulence model. International Journal of Heat and Mass Transfer, 2019, 136, 730-739.	4.8	3
17	Data reduction of average friction factor of gas flow through adiabatic micro-channels. International Journal of Heat and Mass Transfer, 2019, 129, 427-431.	4.8	13
18	On temperature jump condition for turbulent slip flow in a quasi-fully developed region of micro-channel with constant wall temperature. International Journal of Thermal Sciences, 2019, 136, 467-472.	4.9	5

#	Article	IF	CITATIONS
19	Flow characteristics of gaseous flow through a microtube discharged into the atmosphere. International Journal of Heat and Mass Transfer, 2018, 121, 187-195.	4.8	10
20	Numerical analysis for irreversible processes in a piston-cylinder system. International Journal of Heat and Mass Transfer, 2018, 124, 1097-1106.	4.8	4
21	Outflow velocity for SIMPLE algorithm for unsteady forced convection flows with variable density. International Communications in Heat and Mass Transfer, 2018, 92, 73-77.	5.6	2
22	Flat electroencephalography's cluster centers movement tracking during epileptic seizure. AIP Conference Proceedings, 2018, , .	0.4	0
23	Letter to the editor: "Shear work contribution to convective heat transfer of dilute gases in slip flow regime―(P. Vocale, G.L. Morini, M. Spiga, S. Colin, European Journal of Mechanics B/Fluids, 64) Tj ETQq1 1	0.72854314	l rgBT /Overl
24	Notes on factitious shear work of slip flow in a channel. International Journal of Heat and Mass Transfer, 2018, 127, 444-447.	4.8	1
25	Modification of SIMPLE algorithm to handle supercritical natural circulation in a loop. International Journal of Heat and Mass Transfer, 2018, 126, 425-431.	4.8	3
26	Solar Radiation Forecast Using Cloud Velocity for Photovoltaic Systems. Journal of Engineering and Technological Sciences, 2018, 50, 479-492.	0.6	1
27	On Temperature Jump Condition for Slip Flow in a Microchannel With Constant Wall Temperature. Journal of Heat Transfer, 2017, 139, .	2.1	4
28	Recent development on biodegradable nanolubricant: A review. International Communications in Heat and Mass Transfer, 2017, 86, 159-165.	5.6	54
29	Heat transfer enhancement in microchannel heat sink using hybrid technique of ribs and secondary channels. International Journal of Heat and Mass Transfer, 2017, 114, 640-655.	4.8	107
30	Modification of SIMPLE algorithm to handle natural convection flows with zero-isothermal compressibility. International Journal of Heat and Mass Transfer, 2017, 106, 177-182.	4.8	7
31	Semi Local Friction Factor of Gas Flow Through a Micro-Tube. , 2017, , .		0
32	Experimental Investigations on Friction Factors of Gaseous Flow Through a Micro-Tube With Smooth Surface. , 2017, , .		1
33	Total Temperature Measurement of Gas at Microtube Outlet. , 2017, , .		0
34	Turbulent temperature profile in the quasi-fully developed region of a micro-tube. Journal of Thermal Science and Technology, 2017, 12, JTST0010-JTST0010.	1.1	1
35	Semi-local friction factor of turbulent gas flow through rectangular microchannels. International Journal of Heat and Mass Transfer, 2016, 98, 643-649.	4.8	17
36	Energy Equation of Gas Flow With Low Velocity in a Microchannel. Journal of Heat Transfer, 2016, 138,	2.1	6

#	Article	IF	CITATIONS
37	Mach number at outlet plane of a straight micro-tube. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, 230, 3420-3430.	2.1	10
38	Measurement of quasi-local friction factor of gas flow in a micro-tube. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, 230, 782-792.	2.1	4
39	Supersonic micro-jet of straight micro-tube exit. Journal of Thermal Science and Technology, 2015, 10, JTST0026-JTST0026.	1.1	6
40	Liquid Characteristics Under Melting/Solidification Conditions Using Energy Conserving Dissipative Particle Dynamics. , 2014, , .		0
41	Total Temperature Measurement of Laminar Gas Flow at Microtube Outlet: Cooled From the Wall. Heat Transfer Engineering, 2014, 35, 142-149.	1.9	4
42	Under-Expanded Gaseous Flow at a Straight Micro-Tube Exit. Journal of Fluids Engineering, Transactions of the ASME, 2014, 136, .	1.5	5
43	Energy Equation of Gas Flow With Low Velocity in a Micro-Channel. , 2014, , .		0
44	Convective Heat Transfer of Unchoked and Choked Gas Flow in Micro-Tubes. , 2014, , .		0
45	Total Temperature Measurement of Gas Flow in Micro-Tube With Constant Wall Temperature. , 2014, , .		0
46	Total Temperature Measurement of Micro Gas Jet. , 2014, , .		1
47	Experimental and numerical investigation of forced convection of subsonic gas flows in microtubes. International Journal of Heat and Mass Transfer, 2014, 78, 732-740.	4.8	6
48	Natural convective flow and heat transfer studies for supercritical water in a rectangular circulation loop. Nuclear Engineering and Design, 2014, 273, 304-320.	1.7	22
49	Data reduction of friction factor of compressible flow in micro-channels. International Journal of Heat and Mass Transfer, 2014, 77, 257-261.	4.8	17
50	Fluid Flow Characteristics in Micro-Gas-Jets. , 2014, , .		0
51	A finite volume method on distorted quadrilateral meshes for discretization of the energy equation's conduction term. Heat Transfer - Asian Research, 2013, 42, 163-184.	2.8	3
52	Steady state and stability characteristics of natural circulation loops operating with carbon dioxide at supercritical pressures for open and closed loop boundary conditions. Nuclear Engineering and Design, 2013, 265, 737-754.	1.7	51
53	Under-Expanded Gas Flow at a Straight Mini-Tube Exit. , 2013, , .		0
54	Effect of the Surface Tension of Liquid-Solid Interface on Liquid Flow in Parallel-Plate Sub-Micron Channels Using Multi-Body Dissipative Particle Dynamics. , 2013, , .		0

#	Article	IF	CITATIONS
55	Mach Number on Outlet Plane of a Straight Micro-Tube. , 2013, , .		1
56	Measurement of Semi-Local Friction Factor of Gas Flow in Micro-Tube. , 2013, , .		1
57	Total Temperature Measurement of Turbulent Gas Flow at Microtube Exit. , 2013, , .		1
58	Diffusive-Ballistic Heat Transport in a Two-Dimensional Square Plate Using Energy Conserving Dissipative Particle Dynamics. , 2013, , .		0
59	Numerical Study on the Diffusive-Ballistic Heat Transport in a Two-Dimensional Square Plate. , 2013, , .		0
60	Effect of Partition Wall on Heat Transfer Characteristics of a Gas-to-Gas Counterflow Microchannel Heat Exchanger. Heat Transfer Engineering, 2012, 33, 533-547.	1.9	4
61	Heat Transfer Characteristics of Compressible Laminar Flow Through Microtubes. Journal of Heat Transfer, 2012, 134, .	2.1	8
62	Simulations of Forced Convection Heat Transfer of Nanofluids in Parallel-Plate Microchannels Using Dissipative Particle Dynamics. , 2012, , .		0
63	Data Reduction of Friction Factor of Compressible Flow in Micro-Channels. , 2012, , .		Ο
64	Characteristics of Turbulent Gas Flow in Microtubes. , 2012, , .		1
65	Transitional and Turbulent Convective Heat Transfer of Compressible Gas Flows Through Microtubes. , 2012, , .		Ο
66	Flow and Heat Transfer Characteristics of Turbulent Gas Flow in Microtube with Constant Heat Flux. Journal of Physics: Conference Series, 2012, 362, 012022.	0.4	0
67	Simulation of Thermal Conductivity of Nanofluids Using Dissipative Particle Dynamics. , 2012, , .		0
68	Friction Factor Correlations for Compressible Gaseous Flow in a Concentric Micro Annular Tube. Numerical Heat Transfer; Part A: Applications, 2012, 61, 163-179.	2.1	3
69	Closure to "Discussion of â€~Friction Numbers and Viscous Dissipation Heating for Laminar Flows of Water in Microtubes'―(2008, ASME J. Heat Transfer, 130, p. 082405). Journal of Heat Transfer, 2012, 134, .	2.1	0
70	Simulation of Thermal Conductivity of Nanofluids Using Dissipative Particle Dynamics. Numerical Heat Transfer; Part A: Applications, 2012, 61, 323-337.	2.1	20
71	First law analysis for viscous dissipation in liquid flows in micro-channels. International Journal of Heat and Mass Transfer, 2012, 55, 2244-2248.	4.8	3
72	Experimental investigations of laminar, transitional and turbulent Gas flow in microchannels. International Journal of Heat and Mass Transfer, 2012, 55, 4397-4403.	4.8	17

#	Article	IF	CITATIONS
73	Dissipative particle dynamics for complex geometries using nonâ€orthogonal transformation. International Journal for Numerical Methods in Fluids, 2012, 68, 324-340.	1.6	5
74	Convective Heat Transfer of Turbulent Gas Flow in Micro-Tubes With Constant Wall Temperature (Cooled Case). , 2012, , .		0
75	Diffusive-Ballistic Heat Transport in Thin Films Using Energy Conserving Dissipative Particle Dynamics. , 2012, , .		0
76	Forced Convection Heat Transfer Simulation Using Dissipative Particle Dynamics. Numerical Heat Transfer; Part A: Applications, 2011, 60, 651-665.	2.1	29
77	Pressure loss of gaseous flow at a micro-tube outlet. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2011, 225, 649-657.	2.1	1
78	Local Pipe Friction Factor of Compressible Laminar or Turbulent Flow in Micro-Tubes. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2011, 77, 1429-1444.	0.2	2
79	Numerical Simulation on Heat Transfer Characteristics of Turbulent Gas Flow in Micro-Tubes. , 2011, , .		2
80	Experimental Investigations of Laminar, Transitional to Turbulent Gas Flow in Rib-Patterned Micro-Channels. , 2011, , .		0
81	Experimental Investigations of Turbulent Gas Flow in a Micro-Channel. , 2011, , .		3
82	Convection heat transfer in concentric micro annular tubes with constant wall temperature. International Journal of Heat and Mass Transfer, 2011, 54, 5242-5252.	4.8	13
83	Local Friction Factor of Compressible Laminar or Turbulent Flow in Micro-Tubes. , 2011, , .		7
84	Heat Transfer Characteristics of Gaseous Slip Flow in Concentric Micro-Annular Tubes. Journal of Heat Transfer, 2011, 133, .	2.1	7
85	Forced Convection Heat Transfer Simulation Using Dissipative Particle Dynamics With Energy Conservation. , 2011, , .		0
86	A Finite Volume Method on Distorted Quadrilateral Meshes for Discretization of Energy Equation's Conduction Term(Thermal Engineering). 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2010, 76, 2178-2187.	0.2	1
87	Some considerations on thermal boundary condition of slip flow. International Journal of Heat and Mass Transfer, 2010, 53, 3075-3079.	4.8	52
88	Fundamental Study on Washing Characteristics of a Novel Multi-Phase Flow System. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2010, 224, 223-231.	2.5	1
89	Experimental Investigation on Heat Transfer Characteristics of a Gas-to-Gas Counterflow Microchannel Heat Exchanger. Experimental Heat Transfer, 2010, 23, 130-143.	3.2	16
90	Ventilation of Compost Heating System by Permanent Magnets. Journal of Energy Resources Technology, Transactions of the ASME, 2010, 132, .	2.3	0

#	Article	IF	CITATIONS
91	Three Dimensional Simulation of Dynamics and Deformation of Red Blood Cells in Capillary Flow. , 2010, , .		1
92	Flow Structure of Supersonic Jet From a Straight Micro-Tube. , 2010, , .		1
93	Heat transfer characteristics of gaseous slip flow in a micro-channel. Journal of Mechanical Science and Technology, 2010, 24, 2577-2585.	1.5	2
94	Enhancement of Oxygen Diffusion in a Gas Diffusion Layer of a Fuel Cell Electrode by Magnetizing Force. , 2010, , .		1
95	Experimental Investigation of Heat Transfer Characteristics on a Gas-to-Gas Parallel Flow Microchannel Heat Exchanger~!2009-07-27~!2009-10-13~!2010-04-02~!. Open Transport Phenomena Journal, 2010, 2, 1-8.	0.5	3
96	Heat Transfer Characteristics of Turbulent Gas Flow Through Micro-Tubes. , 2010, , .		2
97	Non-Orthogonal Transformation of Irregular Geometry for Particle Based Simulation. , 2010, , .		0
98	Experimental Investigations of Laminar, Transitional to Turbulent Gas Flow in a Micro-Channel. , 2010,		1
99	Enhanced Air Flow of Compost Heating System by Permanent Magnets~!2009-12-01~!2010-03-03~!2010-05-11~!. Open Transport Phenomena Journal, 2010, 2, 48-54.	0.5	Ο
100	AERATION OF COMPOST HEATING SYSTEM USING MAGNETIC FIELD. Frontiers in Heat and Mass Transfer, 2010, 1, .	0.2	0
101	Experimental Investigation of Gaseous Flow in a Micro-Tube. , 2009, , .		0
102	Supersonic Flow at Micro-Tube Outlet. , 2009, , .		1
103	Convection Heat Transfer in Concentric Micro Annular Tubes With Constant Wall Temperature. , 2009, , .		Ο
104	Effect of Partition Wall Thickness on Heat Transfer Characteristics of a Gas-to-Gas Counterflow Microchannel Heat Exchanger. , 2009, , .		1
105	From dissipative particle dynamics scales to physical scales: a coarse-graining study for water flow in microchannel. Microfluidics and Nanofluidics, 2009, 7, 467-477.	2.2	56
106	Poiseuille Number Correlations for Gas Slip Flow in Micro-Tubes. Numerical Heat Transfer; Part A: Applications, 2009, 56, 785-806.	2.1	10
107	Performance of Gas-to-Gas Micro-Heat Exchangers. Journal of Heat Transfer, 2009, 131, .	2.1	10
108	Estimation of Leak Flow Rates Through Narrow Cracks. Journal of Pressure Vessel Technology, Transactions of the ASME, 2009, 131, .	0.6	6

#	Article	IF	CITATIONS
109	Heat Transfer Characteristics of Gaseous Slip Flow in Concentric Micro Annular Tubes. , 2009, , .		О
110	Total Temperature Measurements of Gaseous Flow at Micro-Tube Outlet. , 2009, , .		0
111	Performance of Parallel-Flow Gas-to-Gas Micro-Double-Tubes-Heat Exchangers. , 2009, , .		Ο
112	Friction Factor Correlations of Gas Slip Flow in Concentric Micro Annular Tubes. , 2009, , .		0
113	Total Temperature Measurements of Gaseous Flow at Micro-Tube Outlet: Cooled From the Wall. , 2009, , .		О
114	Dynamic force reduction and heat transfer improvement for horizontal tubes in large-particle gas-fluidized beds. Journal of Thermal Science, 2008, 17, 77-83.	1.9	5
115	Heat transfer characteristics of gaseous flows in microtube with constant heat flux. Applied Thermal Engineering, 2008, 28, 1375-1385.	6.0	27
116	Heat Transfer Characteristics of Gaseous Flows in Micro-Channel with Negative Heat Flux. Heat Transfer Engineering, 2008, 29, 805-815.	1.9	19
117	Poiseuille number correlation for high speed micro-flows. Journal Physics D: Applied Physics, 2008, 41, 105111.	2.8	19
118	Mesoscopic Simulations of Flow in Microchannel and Comparison With Continuum Model. , 2008, , .		0
119	Pressure Loss of Gaseous Flow at Microtube Outlet. , 2008, , .		Ο
120	Heat Exchange Characteristics of a Gas-Gas Counterflow Microchannel Heat Exchanger. , 2008, , .		1
121	Poiseuille Number Correlations of Gas Flow in Concentric Micro Annular Tubes. , 2008, , .		0
122	Scale Effect on Gaseous Flow around a Micro-Scaled Gas Turbine Blade. Heat Transfer Engineering, 2007, 28, 696-703.	1.9	2
123	Oxygen Separation/Enrichment From Atmospheric Air Using Magnetizing Force. Journal of Fluids Engineering, Transactions of the ASME, 2007, 129, 438-445.	1.5	11
124	Friction Factor Correlations for Gas Flow in Slip Flow Regime. Journal of Fluids Engineering, Transactions of the ASME, 2007, 129, 1268-1276.	1.5	25
125	Convection Heat Transfer in Microchannels With High Speed Gas Flow. Journal of Heat Transfer, 2007, 129, 319-328.	2.1	10
126	Convection Enhancement in Melting by Electromagnetic Fields in a Low-Gravity Environment: Side Wall Heating. Numerical Heat Transfer; Part A: Applications, 2007, 51, 129-158.	2.1	4

YUTAKA ASAKO

#	Article	IF	CITATIONS
127	Heat Transfer Characteristics of Gaseous Flows in a Microchannel and a Microtube with Constant Wall Temperature. Numerical Heat Transfer; Part A: Applications, 2007, 52, 219-238.	2.1	39
128	Friction Factor Correlations of Slip Flow in Micro-Tubes. , 2007, , .		2
129	Heat transfer characteristics of gaseous flows in micro-channel with constant heat flux. International Journal of Thermal Sciences, 2007, 46, 1153-1162.	4.9	23
130	Performance of Gaseous Counter-Flow Micro Heat Exchangers. , 2007, , .		0
131	Heat Transfer Characteristics of Gaseous Flows in Micro-Channels With Negative Heat Flux. , 2006, , .		3
132	Scale Effect on the Gaseous Flow Around a Micro-Scaled Gas Turbine Blade. , 2006, , .		0
133	Phase change in a threeâ€dimensional rectangular cavity under electromagnetically simulated lowâ€gravity. International Journal of Numerical Methods for Heat and Fluid Flow, 2005, 15, 710-739.	2.8	9
134	Effect of compressibility on gaseous flows in a micro-tube. International Journal of Heat and Mass Transfer, 2005, 48, 4985-4994.	4.8	76
135	HEAT TRANSFER CHARACTERISTICS OF GASEOUS FLOWS IN MICROCHANNELS. Microscale Thermophysical Engineering, 2005, 9, 15-31.	1.2	22
136	NUMERICAL SOLUTION OF MELTING IN SIDE-HEATED RECTANGULAR ENCLOSURE UNDER ELECTROMAGNETICALLY SIMULATED LOW GRAVITY. Numerical Heat Transfer; Part A: Applications, 2005, 47, 315-332.	2.1	10
137	Oxygen Separation/Enrichment From Atmospheric Air Using Magnetizing Force: Air Flow in a Duct Under Magnetic Field Gradient. , 2005, , 321.		0
138	Heat Transfer Characteristics of Gaseous Flows in Micro-Channels With Constant Heat Flux. , 2005, , 433.		3
139	Phase Change in a Three-Dimensional Rectangular Cavity Under Electromagnetically Simulated Low Gravity: Top Wall Heating With an Unfixed Material. Numerical Heat Transfer; Part A: Applications, 2005, 48, 849-878.	2.1	6
140	Oxygen Separation/Enrichment From Atmospheric Air Using Magnetizing Force. , 2004, , 281.		1
141	FIRE RESISTANCE CHARACTERISTICS OF MATERIALS WITH POLYMER GELS WHICH ABSORB AQUEOUS SOLUTION OF CALCIUM CHLORIDE. Numerical Heat Transfer; Part A: Applications, 2004, 45, 49-66.	2.1	15
142	NUMERICAL SOLUTION OF MELTING PROCESSES FOR UNFIXED PHASE-CHANGE MATERIAL IN THE PRESENCE OF ELECTROMAGNETICALLY SIMULATED LOW GRAVITY. Numerical Heat Transfer; Part A: Applications, 2004, 46, 343-365.	2.1	11
143	Effect of Viscosity on Gaseous Flow in a Micro-Nozzle. , 2004, , 275.		0

144 Effect of Compressibility on Heat Transfer in Microchannels. , 2004, , 341.

#	Article	IF	CITATIONS
145	Enhancement of large-particle gas-fluidization by adding liquid. AICHE Journal, 2003, 49, 675-681.	3.6	13
146	Effect of compressibility on gaseous flows in micro-channels. International Journal of Heat and Mass Transfer, 2003, 46, 3041-3050.	4.8	89
147	Heat Transfer Characteristics of Gaseous Flows in Micro-Channels. , 2003, , 311.		1
148	Effect of Compressibility on Gaseous Flows in a Micro-Tube. , 2003, , 289.		2
149	NUMERICAL SOLUTION OF MELTING PROCESSES FOR FIXED AND UNFIXED PHASE CHANGE MATERIAL IN THE PRESENCE OF MAGNETIC FIELD-SIMULATION OF LOW-GRAVITY ENVIRONMENT. Numerical Heat Transfer; Part A: Applications, 2002, 42, 565-583.	2.1	18
150	Thermal Intumescent Characteristics of Heated Sodium Silicate. , 2002, , 205.		3
151	Numerical Solution of Melting Processes for Unfixed Phase Change Material in the Presence of Electromagnetic Field: Simulation of Low Gravity Environment. , 2002, , 453.		1
152	Effective thermal conductivity of compressed woods. International Journal of Heat and Mass Transfer, 2002, 45, 2243-2253.	4.8	31
153	Effect of Partition Wall on Natural Convection Heat Transfer in a Vertical Air Layer. Journal of Heat Transfer, 2001, 123, 441-449.	2.1	12
154	Fire resistance test for fire protection materials with high water content. International Journal of Heat and Mass Transfer, 2000, 43, 4395-4404.	4.8	25
155	Thermal and water storage characteristics of super-absorbent polymer gel which absorbed aqueous solution of calcium chloride. International Journal of Heat and Mass Transfer, 2000, 43, 3407-3415.	4.8	12
156	Combined Effects of Rotation and Skew Angle on the Convective Heat Transfer in a Two-pass Passage with a 180-degree Turn. Journal of Enhanced Heat Transfer, 2000, 7, 185-199.	1.1	1
157	Natural convection and radiation heat transfer in a vertical porous layer with a hexagonal honeycomb core (Part 1: numerical analysis). Heat Transfer - Asian Research, 1999, 28, 278-294.	2.8	0
158	Natural convection and radiation heat transfer in a vertical porous layer with a hexagonal honeycomb core (Part 2: heat transfer experiment). Heat Transfer - Asian Research, 1999, 28, 295-306.	2.8	0
159	Dynamic forces on a horizontal tube due to passing bubbles in fluidized beds. Powder Technology, 1998, 98, 177-182.	4.2	9
160	PARAMETRIC STUDY ON THERMAL RESPONSES OF A HIGHLY WATER CONTENT FIRE WALL. Numerical Heat Transfer; Part A: Applications, 1998, 33, 403-414.	2.1	5
161	Numerical Modeling of Fire Walls to Simulate Fire Resistance Test. Journal of Heat Transfer, 1998, 120, 661-666.	2.1	5
162	Swirling Effect in Immersion Nozzle on Flow and Heat Transport in Billet Continuous Casting Mold ISIJ International, 1998, 38, 827-833.	1.4	68

#	Article	IF	CITATIONS
163	Removal of Inclusion through Bubble Curtain Created by Swirl Motion in Submerged Entry Nozzle ISIJ International, 1998, 38, 1086-1092.	1.4	30
164	Prevention of Air Suction from the Contact-part between Sliding Gate and Immersion Nozzle ISIJ International, 1998, 38, 1346-1352.	1.4	11
165	Characteristic of Nozzle with Step for Prevention of Uneven Flow. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1996, 82, 581-586.	0.4	3
166	PREDICTION OF TURBULENT HEAT TRANSFER IN THE ENTRANCE OF AN ARRAY OF HEATED BLOCKS USING LOW-REYNOLDS-NUMBER κ-ε MODEL. Numerical Heat Transfer; Part A: Applications, 1995, 28, 263-277.	2.1	6
167	PREDICTION OF TURBULENT THREE-DIMENSIONAL HEAT TRANSFER OF HEATED BLOCKS USING LOW-REYNOLDS NUMBER TWO-EQUATION MODEL. Numerical Heat Transfer; Part A: Applications, 1994, 26, 87-101.	2.1	9
168	NUMERICAL ANALYSIS FOR SUPERSONIC FLOWS IN A COOLED NOZZLE. Numerical Heat Transfer; Part A: Applications, 1994, 26, 631-641.	2.1	7
169	Parametric study of turbulent three-dimensional heat transfer of arrays of heated blocks encountered in electronic equipment. International Journal of Heat and Mass Transfer, 1994, 37, 469-478.	4.8	23
170	NUMERICAL SOLUTION FOR MELTING OF UNFIXED RECTANGULAR PHASE-CHANGE MATERIAL UNDER LOW-GRAVITY ENVIRONMENT. Numerical Heat Transfer; Part A: Applications, 1994, 25, 191-208.	2.1	34
171	Control of Immersion Nozzle Outlet Flow Pattern through the Use of Swirling Flow in Continuous Casting ISIJ International, 1994, 34, 883-888.	1.4	48
172	Numerical Study of Immersion Nozzle Outlet Flow Pattern with Swirling Flow in Continuous Casting ISIJ International, 1994, 34, 889-895.	1.4	45
173	Numerical Analysis of Immersion Nozzle Outlet Flow Pattern through Using Swirling Flow in Continuous Casting. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1994, 80, 759-764.	0.4	4
174	Control of Immersion Nozzle Outlet Flow Pattern by Using Swirling Flow in Continuous Casting. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1994, 80, 754-758.	0.4	2
175	Experimental Verification of Electro-magnetically Driven Flow in the Weld Pool Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 1994, 12, 89-93.	0.5	0
176	Three-dimensional natural convection in a vertical porous layer with hexagonal honeycomb core of negligible thickness. International Journal of Heat and Mass Transfer, 1993, 36, 3403-3406.	4.8	9
177	Fluid Flow and Heat Transfer in a Periodically Diverging-Converging Turbulent Duct Flow JSME International Journal Series B, 1993, 36, 207-213.	0.3	4
178	Sedimentary furrows and organized flow structure: A study in Lake Superior. Limnology and Oceanography, 1992, 37, 797-812.	3.1	30
179	Fluid Flow and Heat Transfer in a Periodically Diverging-Converging Turbulent Duct Flow 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1991, 57, 2962-2969.	0.2	2
180	Numerical solution of convection-diffusion problems in irregular domains mapped onto a circle. Journal of Thermophysics and Heat Transfer, 1991, 5, 103-109.	1.6	2

YUTAKA ASAKO

#	Article	IF	CITATIONS
181	THREE-DIMENSIONAL LAMINAR NATURAL CONVECTION IN A HONEYCOMB ENCLOSURE WITH HEXAGONAL END WALLS. Numerical Heat Transfer; Part A: Applications, 1989, 15, 67-86.	2.1	5
182	Three-dimensional heat transfer analysis of arrays of heated square blocks. International Journal of Heat and Mass Transfer, 1989, 32, 395-405.	4.8	42
183	Heat transfer and pressure drop characteristics in a corrugated duct with rounded corners. International Journal of Heat and Mass Transfer, 1988, 31, 1237-1245.	4.8	73
184	Developing laminar flow and heat transfer in the entrance region of regular polygonal ducts. International Journal of Heat and Mass Transfer, 1988, 31, 2590-2593.	4.8	42
185	THREE-DIMENSIONAL HEAT TRANSFER AND FLUID FLOW ANALYSIS OF ARRAYS OF SQUARE BLOCKS ENCOUNTERED IN ELECTRONIC EQUIPMENT. Numerical Heat Transfer, 1988, 13, 481-498.	0.5	28
186	Convection in weld pool and its effect on penetration shape in stationary arc welds Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 1988, 6, 455-462.	0.5	6
187	NATURAL CONVECTION HEAT TRANSFER IN A VERTICAL AIR SLOT PARTITIONED BY CORRUGATED PLATES. Numerical Heat Transfer, 1987, 11, 77-94.	0.5	3
188	Heat transfer and pressure drop characteristics in a converging-diverging duct. Heat transfer and pressure responses to rounding of peaks 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1986, 52, 2170-2176.	0.2	2
189	Periodic, fully developed, natural convection in a channel with corrugated confining walls. International Journal of Heat and Mass Transfer, 1986, 29, 1931-1936.	4.8	8
190	Heat Transfer in a Parallelogram Shaped Enclosure : 4th Report, Combined free convection, radiation and conduction heat transfer. Bulletin of the JSME, 1984, 27, 1144-1151.	0.1	11
191	Heat Transfer in a Parallelogram Shaped Enclosure : 4th Report, Combined Free Convection, Rediation and Conduction Heat Transfer. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1983, 49, 2154-2162.	0.2	1
192	Heat Transfer in a Parallelogram Shaped Enclosure : 3rd Report, Combined Free Convection and Radiation Heat Transfer. Bulletin of the JSME, 1982, 25, 1419-1427.	0.1	16
193	Heat Transfer in a Parallelogram Shaped Enclosure : 3rd Report, Combined Free Convection and Radiation Heat Transfer. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1982, 48, 113-121.	0.2	Ο
194	Heat Transfer in a Parallelogram Shaped Enclosure : 2nd Report, Free Convection in Infinitely Stacked Parallelogram Shaped Enclosure. Bulletin of the JSME, 1982, 25, 1412-1418.	0.1	10
195	Heat Transfer in a Parallelogram Shaped Enclosure : 2nd Report, Free Convection in the Infinitely Stacked Parallelogram Shaped Enclosures. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1982, 48, 105-112.	0.2	3
196	HEAT TRANSFER BY FREE CONVECTION BETWEEN TWO PARALLEL FLAT PLATES. Numerical Heat Transfer, 1982, 5, 95-106.	0.5	65
197	Heat Transfer in a Parallelogram Shaped Enclosure : 1st Report, Heat Transfer by Free Convection. Bulletin of the JSME, 1980, 23, 1827-1834.	0.1	17
198	Laminar Free Convection from a Horizontal Cylinder with Uniform Cross Section of Arbitrary Shape. Bulletin of the JSME, 1978, 21, 471-478.	0.1	13

#	Article	IF	CITATIONS
199	EFFECT OF CYLINDER DIAMETER ON STATE QUANTITIES FOR IRREVERSIBLE PROCESS IN PISTON-CYLINDER SYSTEM. Frontiers in Heat and Mass Transfer, 0, 13, .	0.2	0
200	Alternative expression for Boltzmann temperature of dissipative-particle-dynamics particles. Numerical Heat Transfer; Part A: Applications, 0, , 1-17.	2.1	0