Marisa S Otegui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9431206/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electron microscopy for imaging organelles in plants and algae. Plant Physiology, 2022, 188, 713-725.	4.8	17
2	Fifteen compelling open questions in plant cell biology. Plant Cell, 2022, 34, 72-102.	6.6	27
3	A glossary of plant cell structures: Current insights and future questions. Plant Cell, 2022, 34, 10-52.	6.6	27
4	FYVE2, a phosphatidylinositol 3-phosphate effector, interacts with the COPII machinery to control autophagosome formation in Arabidopsis. Plant Cell, 2022, 34, 351-373.	6.6	19
5	Microautophagy Mediates Vacuolar Delivery of Storage Proteins in Maize Aleurone Cells. Frontiers in Plant Science, 2022, 13, 833612.	3.6	11
6	The Plant Cell Atlas: focusing new technologies on the kingdom that nourishes the planet. Plant Physiology, 2022, 188, 675-679.	4.8	7
7	Class III Peroxidases PRX01, PRX44, and PRX73 Control Root Hair Growth in Arabidopsis thaliana. International Journal of Molecular Sciences, 2022, 23, 5375.	4.1	15
8	An Arabidopsis Retention and Splicing complex regulates root and embryo development through pre-mRNA splicing. Plant Physiology, 2022, 190, 621-639.	4.8	4
9	Plant endosomes as protein sorting hubs. FEBS Letters, 2022, 596, 2288-2304.	2.8	11
10	Defects in autophagy lead to selective in vivo changes in turnover of cytosolic and organelle proteins in Arabidopsis. Plant Cell, 2022, 34, 3936-3960.	6.6	7
11	Transient expression of fluorescently tagged proteins in developing maize aleurone cells. MethodsX, 2021, 8, 101446.	1.6	2
12	Hyperdimensional Imaging Contrast Using an Optical Fiber. Sensors, 2021, 21, 1201.	3.8	2
13	A plantâ€unique ESCRT component, FYVE4, regulates multivesicular endosome biogenesis and plant growth. New Phytologist, 2021, 231, 193-209.	7.3	20
14	ESCRT components ISTL1 andLIP5 are required for tapetal function and pollen viability. Plant Cell, 2021, 33, 2850-2868.	6.6	19
15	<i>Arabidopsis</i> vascular complexity and connectivity controls PIN-FORMED1 dynamics and lateral vein patterning during embryogenesis. Development (Cambridge), 2021, 148, .	2.5	9
16	A prion-like protein regulator of seed germination undergoes hydration-dependent phase separation. Cell, 2021, 184, 4284-4298.e27.	28.9	99
17	Vision, challenges and opportunities for a Plant Cell Atlas. ELife, 2021, 10, .	6.0	31
18	High-Pressure Freezing and Freeze Substitution for Transmission Electron Microscopy Imaging and Immunogold-Labeling. Methods in Molecular Biology, 2021, 2200, 337-347.	0.9	5

#	Article	IF	CITATIONS
19	Endomembrane Mediated-Trafficking Of Seed Storage Proteins: From Arabidopsis To Cereal Crops. Journal of Experimental Botany, 2021, , .	4.8	10
20	Electron Tomography to Analyze Vesiculation in Plant Endosomes. Microscopy and Microanalysis, 2020, 26, 144-145.	0.4	0
21	Synergy between the anthocyanin and RDR6/SGS3/DCL4 siRNA pathways expose hidden features of Arabidopsis carbon metabolism. Nature Communications, 2020, 11, 2456.	12.8	17
22	Autophagy Plays Prominent Roles in Amino Acid, Nucleotide, and Carbohydrate Metabolism during Fixed-Carbon Starvation in Maize. Plant Cell, 2020, 32, 2699-2724.	6.6	53
23	Electron tomography and immunogold labeling of plant cells. Methods in Cell Biology, 2020, 160, 21-36.	1.1	3
24	Imaging Plant Cells by High-Pressure Freezing and Serial block-face scanning electron microscopy. Methods in Molecular Biology, 2020, 2177, 69-81.	0.9	10
25	Reticulon proteins modulate autophagy of the endoplasmic reticulum in maize endosperm. ELife, 2020, 9, .	6.0	53
26	Cell-Free Protein Translation System for Expression of Lipid-Binding Proteins Tagged with Small epitopes and Their Use in Protein–Lipid Overlay Assays. Methods in Molecular Biology, 2020, 2177, 143-152.	0.9	0
27	Electron Tomography and Immunogold Labeling as Tools to Analyze De Novo Assembly of Plant Cell Walls. Methods in Molecular Biology, 2020, 2149, 365-382.	0.9	2
28	Purification of Plant ESCRT Proteins for Polyclonal Antibody Production. Methods in Molecular Biology, 2019, 1998, 227-238.	0.9	0
29	Genetic Analyses of the Arabidopsis ATG1 Kinase Complex Reveal Both Kinase-Dependent and Independent Autophagic Routes during Fixed-Carbon Starvation. Plant Cell, 2019, 31, 2973-2995.	6.6	97
30	Manganese co-localizes with calcium and phosphorus in Chlamydomonas acidocalcisomes and is mobilized in manganese-deficient conditions. Journal of Biological Chemistry, 2019, 294, 17626-17641.	3.4	53
31	For <i>Microscopy</i> special issue on â€~Plant Science'. Microscopy (Oxford, England), 2019, 68, 3-3.	1.5	1
32	<i>At<scp>BUD</scp>13</i> affects preâ€ <scp>mRNA</scp> splicing and is essential for embryo development in Arabidopsis. Plant Journal, 2019, 98, 714-726.	5.7	22
33	AtU2 <scp>AF</scp> 65b functions in abscisic acid mediated flowering via regulating the precursor messenger <scp>RNA</scp> splicing of <i><scp>ABI</scp>5</i> and <i><scp>FLC</scp></i> in <i>Arabidopsis</i> . New Phytologist, 2019, 223, 277-292.	7.3	59
34	Electron tomography in plant cell biology. Microscopy (Oxford, England), 2019, 68, 69-79.	1.5	22
35	ESCRT-mediated sorting and intralumenal vesicle concatenation in plants. Biochemical Society Transactions, 2018, 46, 537-545.	3.4	23
36	Vacuolar degradation of chloroplast components: autophagy and beyond. Journal of Experimental Botany, 2018, 69, 741-750.	4.8	72

#	Article	IF	CITATIONS
37	Vacuolar Trafficking Protein VPS38 Is Dispensable for Autophagy. Plant Physiology, 2018, 176, 1559-1572.	4.8	34
38	Maize multi-omics reveal roles for autophagic recycling in proteome remodelling and lipid turnover. Nature Plants, 2018, 4, 1056-1070.	9.3	124
39	Arabidopsis MATE 45 antagonizes local abscisic acid signaling to mediate development and abiotic stress responses. Plant Direct, 2018, 2, e00087.	1.9	8
40	Plant autophagy: new flavors on the menu. Current Opinion in Plant Biology, 2018, 46, 113-121.	7.1	47
41	Imaging Vacuolar Anthocyanins with Fluorescence Lifetime Microscopy (FLIM). Methods in Molecular Biology, 2018, 1789, 131-141.	0.9	3
42	Distribution of Endogenous NO Regulates Early Gravitropic Response and PIN2 Localization in Arabidopsis Roots. Frontiers in Plant Science, 2018, 9, 495.	3.6	21
43	Nonselective Chemical Inhibition of Sec7 Domain-Containing ARF GTPase Exchange Factors. Plant Cell, 2018, 30, 2573-2593.	6.6	16
44	ESCRT-mediated vesicle concatenation in plant endosomes. Journal of Cell Biology, 2017, 216, 2167-2177.	5.2	51
45	Fabrication approaches for the creation of physical models from microscopy data. 3D Printing in Medicine, 2017, 3, 2.	3.1	1
46	Plant Cytokinesis: Terminology for Structures and Processes. Trends in Cell Biology, 2017, 27, 885-894.	7.9	155
47	Cryo-electron tomography reveals novel features of a viral RNA replication compartment. ELife, 2017, 6, .	6.0	89
48	Endocytosis and Endosomal Trafficking in Plants. Annual Review of Plant Biology, 2016, 67, 309-335.	18.7	259
49	Using fluorescence lifetime microscopy to study the subcellular localization of anthocyanins. Plant Journal, 2016, 88, 895-903.	5.7	19
50	Role of SKD1 Regulators LIP5 and IST1-LIKE1 in Endosomal Sorting and Plant Development. Plant Physiology, 2016, 171, 251-264.	4.8	61
51	Control of Anther Cell Differentiation by the Small Protein Ligand TPD1 and Its Receptor EMS1 in Arabidopsis. PLoS Genetics, 2016, 12, e1006147.	3.5	58
52	ER network homeostasis is critical for plant endosome streaming and endocytosis. Cell Discovery, 2015, 1, 15033.	6.7	39
53	Complex Regulation of Prolyl-4-Hydroxylases Impacts Root Hair Expansion. Molecular Plant, 2015, 8, 734-746.	8.3	70
54	<scp>TFG</scp> clusters <scp>COPII</scp> â€coated transport carriers and promotes early secretory pathway organization. EMBO Journal, 2015, 34, 811-827.	7.8	92

#	Article	IF	CITATIONS
55	The Endosomal Protein CHARGED MULTIVESICULAR BODY PROTEIN1 Regulates the Autophagic Turnover of Plastids in Arabidopsis. Plant Cell, 2015, 27, 391-402.	6.6	112
56	Abiotic stresses induce different localizations of anthocyanins in Arabidopsis. Plant Signaling and Behavior, 2015, 10, e1027850.	2.4	118
57	Autophagic Recycling Plays a Central Role in Maize Nitrogen Remobilization. Plant Cell, 2015, 27, 1389-1408.	6.6	211
58	pH Regulation by NHX-Type Antiporters Is Required for Receptor-Mediated Protein Trafficking to the Vacuole in Arabidopsis. Plant Cell, 2015, 27, 1200-1217.	6.6	126
59	Anthocyanin Vacuolar Inclusions Form by a Microautophagy Mechanism. Plant Cell, 2015, 27, 2545-2559.	6.6	153
60	<i>Arabidopsis</i> ALIX is required for the endosomal localization of the deubiquitinating enzyme AMSH3. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5543-51.	7.1	56
61	The VASCULATURE COMPLEXITY AND CONNECTIVITY Gene Encodes a Plant-Specific Protein Required for Embryo Provasculature Development. Plant Physiology, 2014, 166, 889-902.	4.8	28
62	A Novel Endosomal Sorting Complex Required for Transport (ESCRT) Component in Arabidopsis thaliana Controls Cell Expansion and Development. Journal of Biological Chemistry, 2014, 289, 4980-4988.	3.4	42
63	Structural analysis and modeling reveals new mechanisms governing ESCRT-III spiral filament assembly. Journal of Cell Biology, 2014, 206, 763-777.	5.2	115
64	Not all anthocyanins are born equal: distinct patterns induced by stress in Arabidopsis. Planta, 2014, 240, 931-940.	3.2	129
65	Insights into the Localization and Function of the Membrane Trafficking Regulator GNOM ARF-GEF at the Golgi Apparatus in <i>Arabidopsis </i> Â. Plant Cell, 2014, 26, 3062-3076.	6.6	121
66	Immunogold Labeling and Electron Tomography of Plant Endosomes. Methods in Molecular Biology, 2014, 1209, 63-80.	0.9	2
67	Electron Tomography of Plant Cells. , 2014, , 1-14.		1
68	The catalytic domain CysPc of the <scp>DEK</scp> 1 calpain is functionally conserved in land plants. Plant Journal, 2013, 75, 742-754.	5.7	27
69	MTV1 and MTV4 Encode Plant-Specific ENTH and ARF GAP Proteins That Mediate Clathrin-Dependent Trafficking of Vacuolar Cargo from the Trans-Golgi Network. Plant Cell, 2013, 25, 2217-2235.	6.6	60
70	ESCRT-Dependent Sorting in Late Endosomes. , 2012, , 249-270.		0
71	Methylation of a Phosphatase Specifies Dephosphorylation and Degradation of Activated Brassinosteroid Receptors. Science Signaling, 2011, 4, ra29.	3.6	121
72	Electron Tomography and Immunogold Labelling as Tools to Analyse De Novo Assembly of Plant Cell Walls. Methods in Molecular Biology, 2011, 715, 123-140.	0.9	7

#	Article	IF	CITATIONS
73	Reply: Internal Membranes in Maize Aleurone Protein Storage Vacuoles: Beyond Autophagy. Plant Cell, 2011, 23, 4171-4172.	6.6	0
74	Plant endosomal trafficking pathways. Current Opinion in Plant Biology, 2011, 14, 666-673.	7.1	140
75	Nuclear membranes control symbiotic calcium signaling of legumes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14348-14353.	7.1	191
76	Delivery of Prolamins to the Protein Storage Vacuole in Maize Aleurone Cells. Plant Cell, 2011, 23, 769-784.	6.6	137
77	Molecular Characterization of Mutant Arabidopsis Plants with Reduced Plasma Membrane Proton Pump Activity. Journal of Biological Chemistry, 2010, 285, 17918-17929.	3.4	161
78	<i>Agrobacterium tumefaciens</i> -Mediated Transformation of Maize Endosperm as a Tool to Study Endosperm Cell Biology Â. Plant Physiology, 2010, 153, 624-631.	4.8	35
79	The ER-Localized TWD1 Immunophilin Is Necessary for Localization of Multidrug Resistance-Like Proteins Required for Polar Auxin Transport in <i>Arabidopsis</i> Roots. Plant Cell, 2010, 22, 3295-3304.	6.6	98
80	A Role for the TOC Complex in Arabidopsis Root Gravitropism Â. Plant Physiology, 2009, 149, 1896-1905.	4.8	79
81	The ESCRT-Related CHMP1A and B Proteins Mediate Multivesicular Body Sorting of Auxin Carriers in <i>Arabidopsis</i> and Are Required for Plant Development. Plant Cell, 2009, 21, 749-766.	6.6	193
82	Mutation of the Membrane-Associated M1 Protease APM1 Results in Distinct Embryonic and Seedling Developmental Defects in <i>Arabidopsis</i> Â Â. Plant Cell, 2009, 21, 1693-1721.	6.6	51
83	Endosomal Functions in Plants. Traffic, 2008, 9, 1589-1598.	2.7	110
84	â€~Senescenceâ€associated vacuoles' are involved in the degradation of chloroplast proteins in tobacco leaves. Plant Journal, 2008, 56, 196-206.	5.7	133
85	A SNARE Complex Unique to Seed Plants Is Required for Protein Storage Vacuole Biogenesis and Seed Development of <i>Arabidopsis thaliana</i> . Plant Cell, 2008, 20, 3006-3021.	6.6	213
86	The Secretory System of Arabidopsis. The Arabidopsis Book, 2008, 6, e0116.	0.5	118
87	INCREASED SIZE EXCLUSION LIMIT2 Encodes a Putative DEVH Box RNA Helicase Involved in Plasmodesmata Function during Arabidopsis Embryogenesis. Plant Cell, 2007, 19, 1885-1897.	6.6	122
88	The <i>Medicago truncatula</i> DMI1 Protein Modulates Cytosolic Calcium Signaling. Plant Physiology, 2007, 145, 192-203.	4.8	99
89	Subcellular Localization and Functional Domain Studies of DEFECTIVE KERNEL1 in Maize and <i>Arabidopsis</i> Suggest a Model for Aleurone Cell Fate Specification Involving CRINKLY4 and SUPERNUMERARY ALEURONE LAYER1. Plant Cell, 2007, 19, 3127-3145.	6.6	120
90	The Arabidopsis AAA ATPase SKD1 Is Involved in Multivesicular Endosome Function and Interacts with Its Positive Regulator LYST-INTERACTING PROTEIN5. Plant Cell, 2007, 19, 1295-1312.	6.6	195

#	Article	IF	CITATIONS
91	Endosperm Cell Walls: Formation, Composition, and Functions. , 2007, , 159-177.		16
92	The Maize <i>Floury1</i> Gene Encodes a Novel Endoplasmic Reticulum Protein Involved in Zein Protein Body Formation. Plant Cell, 2007, 19, 2569-2582.	6.6	116
93	Plant Cytokinesis – Insights Gained from Electron Tomography Studies. Plant Cell Monographs, 2007, , 251-287.	0.4	18
94	The Ubiquitin-Specific Protease Subfamily UBP3/UBP4 Is Essential for Pollen Development and Transmission in Arabidopsis. Plant Physiology, 2007, 145, 801-813.	4.8	61
95	Visualization of Membrane–Cytoskeletal Interactions During Plant Cytokinesis. Methods in Cell Biology, 2007, 79, 221-240.	1.1	14
96	Electron Tomography in Plant Cell Biology. Journal of Integrative Plant Biology, 2007, 49, 1091-1099.	8.5	7
97	The Proteolytic Processing of Seed Storage Proteins in Arabidopsis Embryo Cells Starts in the Multivesicular Bodies. Plant Cell, 2006, 18, 2567-2581.	6.6	188
98	A KDEL-tagged monoclonal antibody is efficiently retained in the endoplasmic reticulum in leaves, but is both partially secreted and sorted to protein storage vacuoles in seeds. Plant Biotechnology Journal, 2006, 4, 060606025943002-???.	8.3	137
99	The protein kinase genesMAP3K É> 1andMAP3K É> 2are required for pollen viability inArabidopsis thaliana. Plant Journal, 2006, 48, 193-205.	5.7	38
100	A role for the RabA4b effector protein PI-4Kβ1 in polarized expansion of root hair cells in Arabidopsis thaliana. Journal of Cell Biology, 2006, 172, 991-998.	5.2	274
101	Sunflower storage proteins are transported in dense vesicles that contain proteins homologous to the pumpkin vacuolar sorting receptor PV 72. Electronic Journal of Biotechnology, 2006, 9, 0-0.	2.2	2
102	Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. Plant Journal, 2005, 41, 831-844.	5.7	296
103	Midbodies and phragmoplasts: analogous structures involved in cytokinesis. Trends in Cell Biology, 2005, 15, 404-413.	7.9	117
104	Electron tomographic analysis of post-meiotic cytokinesis during pollen development in Arabidopsis thaliana. Planta, 2004, 218, 501-515.	3.2	107
105	Developing Seeds of Arabidopsis Store Different Minerals in Two Types of Vacuoles and in the Endoplasmic Reticulum. Plant Cell, 2002, 14, 1311-1327.	6.6	160
106	Three-Dimensional Analysis of Syncytial-Type Cell Plates during Endosperm Cellularization Visualized by High Resolution Electron Tomography[W]. Plant Cell, 2001, 13, 2033-2051.	6.6	175
107	Three-Dimensional Analysis of Syncytial-Type Cell Plates during Endosperm Cellularization Visualized by High Resolution Electron Tomography. Plant Cell, 2001, 13, 2033.	6.6	0
108	Cytokinesis in flowering plants: more than one way to divide a cell. Current Opinion in Plant Biology, 2000, 3, 493-502.	7.1	127

#	Article	IF	CITATIONS
109	Syncytial-Type Cell Plates: A Novel Kind of Cell Plate Involved in Endosperm Cellularization of Arabidopsis. Plant Cell, 2000, 12, 933-947.	6.6	124
110	Syncytial-Type Cell Plates: A Novel Kind of Cell Plate Involved in Endosperm Cellularization of Arabidopsis. Plant Cell, 2000, 12, 933.	6.6	1
111	Development of the Endosperm of Myrsine laetevirens (Myrsinaceae). I. Cellularization and Deposition of Cellâ€Wall Storage Carbohydrates. International Journal of Plant Sciences, 1999, 160, 491-500.	1.3	9
112	Flower morphology and biology of Myrsine laetevirens, structural and evolutionary implications of anemophily in Myrsinaceae. Nordic Journal of Botany, 1999, 19, 71-85.	0.5	20
113	Development of the Endosperm ofMyrsine laetevirens(Myrsinaceae). II. Formation of Protein and Lipid Bodies. International Journal of Plant Sciences, 1999, 160, 501-509.	1.3	6
114	Histological and Chemical Characterization of Myrsine laetevirens Seed. International Journal of Plant Sciences, 1998, 159, 762-772.	1.3	15
115	Secretory tissues of the flower of <i>Sanango racemosum</i> (Gesneriaceae). I. Light microscopy. Acta Botanica Neerlandica, 1997, 46, 413-420.	0.9	7
116	Occurrence of Perforated Ray Cells and Ray Splitting in Rapanea Laetevirens and R. Lorentziana (Myrsinaceae). IAWA Journal, 1994, 15, 257-263.	2.7	6