
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9430107/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increasing oxygen functional groups of activated carbon with non-thermal plasma to enhance mercury removal efficiency for flue gases. Chemical Engineering Journal, 2015, 263, 1-8.	12.7	236
2	Effect of pyrolysis conditions on the char gasification with mixtures of CO2 and H2O. Proceedings of the Combustion Institute, 2013, 34, 2453-2460.	3.9	132
3	Efficient removal of elemental mercury by magnetic chlorinated biochars derived from co-pyrolysis of Fe(NO3)3-laden wood and polyvinyl chloride waste. Fuel, 2019, 239, 982-990.	6.4	110
4	Synergistic effects and kinetics thermal behaviour of petroleum coke/biomass blends during H2O co-gasification. Energy Conversion and Management, 2014, 79, 355-366.	9.2	104
5	Comparison of CaO's effect on the fate of heavy metals during thermal treatment of two typical types of MSWI fly ashes in China. Chemosphere, 2013, 93, 590-596.	8.2	102
6	The fate of sulfur during rapid pyrolysis of scrap tires. Chemosphere, 2014, 97, 102-107.	8.2	99
7	Emission characteristics of nitrogen- and sulfur-containing odorous compounds during different sewage sludge chemical conditioning processes. Journal of Hazardous Materials, 2012, 235-236, 298-306.	12.4	93
8	Identifying modes of occurrence of mercury in coal by temperature programmed pyrolysis. Proceedings of the Combustion Institute, 2011, 33, 2763-2769.	3.9	91
9	Using the Novel Method of Nonthermal Plasma To Add Cl Active Sites on Activated Carbon for Removal of Mercury from Flue Gas. Environmental Science & Technology, 2016, 50, 11837-11843.	10.0	87
10	CO2 co-gasification of lower sulphur petroleum coke and sugar cane bagasse via TG–FTIR analysis technique. Bioresource Technology, 2013, 136, 595-603.	9.6	78
11	Chlorine-Char composite synthesized by co-pyrolysis of biomass wastes and polyvinyl chloride for elemental mercury removal. Fuel, 2016, 183, 73-79.	6.4	76
12	Adsorption and catalytic oxidation of elemental mercury over regenerable magnetic Fe Ce mixed oxides modified by non-thermal plasma treatment. Chemical Engineering Journal, 2019, 358, 1454-1463.	12.7	76
13	Deep study on effects of activated carbon's oxygen functional groups for elemental mercury adsorption using temperature programmed desorption method. Fuel, 2017, 200, 100-106.	6.4	74
14	Carbon Nanotube-Silver Composite for Mercury Capture and Analysis. Energy & Fuels, 2010, 24, 419-426.	5.1	71
15	Surface modification of phosphoric acid activated carbon by using non-thermal plasma for enhancement of Cu(II) adsorption from aqueous solutions. Separation and Purification Technology, 2018, 197, 156-169.	7.9	70
16	Elemental mercury adsorption and regeneration performance of sorbents FeMnO x enhanced via non-thermal plasma. Chemical Engineering Journal, 2017, 309, 503-512.	12.7	69
17	Kinetic analyses and synergistic effects of CO2 co-gasification of low sulphur petroleum coke and biomass wastes. Bioresource Technology, 2018, 267, 54-62.	9.6	65
18	A gas-pressurized torrefaction method for biomass wastes. Energy Conversion and Management, 2018, 173, 29-36.	9.2	65

#	Article	IF	CITATIONS
19	Fate of chromium during thermal treatment of municipal solid waste incineration (MSWI) fly ash. Proceedings of the Combustion Institute, 2013, 34, 2795-2801.	3.9	60
20	Pyrolysis kinetics of biomasses pretreated by gas-pressurized torrefaction. Energy Conversion and Management, 2019, 182, 117-125.	9.2	52
21	Hg occurrence in coal and its removal before coal utilization. Fuel, 2013, 104, 70-76.	6.4	49
22	Enhancement of hydrogen production in steam gasification of sewage sludge by reusing the calcium in lime-conditioned sludge. International Journal of Hydrogen Energy, 2013, 38, 1332-1341.	7.1	48
23	Development of waste-derived sorbents from biomass and brominated flame retarded plastic for elemental mercury removal from coal-fired flue gas. Chemical Engineering Journal, 2018, 350, 911-919.	12.7	48
24	Natural ferruginous manganese ore for efficient immobilization of elemental mercury from coal combustion flue gas. Fuel, 2021, 283, 118946.	6.4	45
25	Using H2S plasma to modify activated carbon for elemental mercury removal. Fuel, 2019, 254, 115549.	6.4	44
26	Cost-effective sulfurized sorbents derived from one-step pyrolysis of wood and scrap tire for elemental mercury removal from flue gas. Fuel, 2021, 285, 119221.	6.4	40
27	A kinetic study on char oxidation in mixtures of O2, CO2 and H2O. Fuel Processing Technology, 2018, 179, 250-257.	7.2	34
28	Modeling Study of Selenium Migration Behavior in Wet Flue Gas Desulfurization Spray Towers. Environmental Science & Technology, 2020, 54, 16128-16137.	10.0	34
29	Effects of sulfur on lead partitioning during sludge incineration based on experiments and thermodynamic calculations. Waste Management, 2015, 38, 336-348.	7.4	32
30	Kinetics, thermodynamics and synergistic effects analyses of petroleum coke and biomass wastes during H2O co-gasification. International Journal of Hydrogen Energy, 2020, 45, 24502-24517.	7.1	31
31	Investigations of the structure and thermal kinetic analysis of sugarcane bagasse char during non-isothermal CO2 gasification. Journal of Analytical and Applied Pyrolysis, 2014, 107, 107-115.	5.5	30
32	Experiment and Kinetic Study of Elemental Mercury Adsorption over a Novel Chlorinated Sorbent Derived from Coal and Waste Polyvinyl Chloride. Energy & Fuels, 2016, 30, 10635-10642.	5.1	30
33	Experimental and Modeling Study of Char Gasification with Mixtures of CO ₂ and H ₂ O. Energy & Fuels, 2016, 30, 1628-1635.	5.1	29
34	Gas-pressurized torrefaction of biomass wastes: Roles of pressure and secondary reactions. Bioresource Technology, 2020, 313, 123640.	9.6	29
35	Selenium migration behaviors in wet flue gas desulfurization slurry and an in-situ treatment approach. Chemical Engineering Journal, 2020, 385, 123891.	12.7	28
36	Mercury stability of byproducts from wet flue gas desulfurization devices. Fuel, 2016, 186, 215-221.	6.4	27

#	Article	IF	CITATIONS
37	Gas-pressurized torrefaction of biomass wastes: The optimization of pressurization condition and the pyrolysis of torrefied biomass. Bioresource Technology, 2021, 319, 124216.	9.6	27
38	Gas-pressurized torrefaction of biomass wastes: Co-gasification of gas-pressurized torrefied biomass with coal. Bioresource Technology, 2021, 321, 124505.	9.6	26
39	Preparation of fly ash adsorbents utilizing non-thermal plasma to add S active sites for Hg0 removal from flue gas. Fuel, 2020, 266, 116936.	6.4	24
40	Kinetic Study on Coal Char Combustion in a Microfluidized Bed. Energy & amp; Fuels, 2017, 31, 3243-3252.	5.1	23
41	Homogeneous and heterogeneous contributions of CO 2 and recycled NO to NO emission difference between air and oxy-coal combustion. Fuel, 2016, 163, 1-7.	6.4	21
42	Degradative solvent extraction of low-rank coals by the mixture of low molecular weight extract and solvent as recycled solvent. Fuel Processing Technology, 2018, 173, 48-55.	7.2	21
43	Facile synthesis of phosphorus-doped porous biochars for efficient removal of elemental mercury from coal combustion flue gas. Chemical Engineering Journal, 2022, 432, 134440.	12.7	21
44	Kinetic study on in-situ and cooling char combustion in a two-step reaction analyzer. Proceedings of the Combustion Institute, 2017, 36, 2147-2154.	3.9	20
45	Effect of different sulfides on cadmium distribution during sludge combustion based on experimental and thermodynamic calculation approaches. Environmental Science and Pollution Research, 2015, 22, 1113-1126.	5.3	19
46	Temperature Effect on Central-Mode Particulate Matter Formation in Combustion of Coals with Different Mineral Compositions. Energy & Fuels, 2015, 29, 5245-5252.	5.1	19
47	Steam gasification behavior during coal combustion and CaO regeneration in O2/CO2/steam atmosphere. Fuel, 2016, 184, 409-417.	6.4	19
48	Preparation of activated carbon nanofibers using degradative solvent extraction products obtained from low-rank coal and their utilization in supercapacitors. RSC Advances, 2020, 10, 8172-8180.	3.6	19
49	Transformation of Organically Bound Chromium during Oxy-coal Combustion: The Influence of Steam and Mineral. Energy & Fuels, 2018, 32, 1992-1998.	5.1	18
50	Gas-pressurized torrefaction of biomass wastes: The effect of varied pressure on pyrolysis kinetics and mechanism of torrefied biomass. Fuel, 2020, 276, 118132.	6.4	18
51	Preparation of CeO ₂ /CaO with Anti-sintering for Efficient Capture of As ₂ O ₃ from Flue Gas at a High Temperature. Energy & Fuels, 2021, 35, 20197-20205.	5.1	18
52	Acceleration of the reaction of H2S and SO2 by non-thermal plasma to improve the mercury adsorption performance of activated carbon. Chemical Engineering Journal, 2021, 423, 130144.	12.7	17
53	Enhanced mercury removal performance of Cu-Fe binary oxide sorbents modified by non-thermal plasma. Chemical Engineering Journal, 2021, 425, 131851.	12.7	17
54	Study on the effects of carrier and modifier on mercury adsorption behavior over halides modified sorbents using temperature programmed desorption method. Fuel Processing Technology, 2018, 178, 293-300.	7.2	16

#	Article	IF	CITATIONS
55	Effect of CO ₂ and H ₂ O on Char Properties. Part 1: Pyrolysis Char Structure and Reactivity. Energy & Fuels, 2020, 34, 4243-4250.	5.1	16
56	Theoretical research on role of sulfur allotropes on activated carbon surface in adsorbing elemental mercury. Chemical Engineering Journal, 2021, 404, 126639.	12.7	16
57	Yield prediction of "Thermal-dissolution based carbon enrichment―treatment on biomass wastes through coupled model of artificial neural network and AdaBoost. Bioresource Technology, 2022, 343, 126083.	9.6	16
58	Microscopic Spherical α-Fe ₂ O ₃ for Highly Efficient Gaseous Arsenic Capture in Simulated Flue Gas Under a Wide Temperature Range. Energy & Fuels, 2021, 35, 19581-19591.	5.1	16
59	Deactivation mechanism of KCl and K2SO4 poisoned V2O5/WO3-TiO2 catalyst on gaseous elemental mercury oxidation. Fuel, 2020, 278, 118245.	6.4	15
60	Degradative solvent extraction of demineralized and ion-exchanged low-rank coals. Journal of Fuel Chemistry and Technology, 2014, 42, 897-904.	2.0	14
61	High-Efficiency CaO-Based Sorbent Modified by Aluminate Cement and Organic Fiber Through Wet Mixing Method. Industrial & Engineering Chemistry Research, 2019, 58, 22040-22047.	3.7	14
62	Particulate matter filtration of the flue gas from iron-ore sintering operations using a magnetically stabilized fluidized bed. Powder Technology, 2019, 342, 335-340.	4.2	14
63	Fate of chromium with the presence of HCl and steam during oxy-coal combustion: Quantum chemistry and experimental study. Journal of Hazardous Materials, 2021, 412, 125218.	12.4	14
64	Study on the elemental mercury removal performance of co-pyrolyzed Cl-loading activated carbon and the formation mechanism of C-Cl functional groups. Fuel, 2022, 322, 124229.	6.4	14
65	Limestone Decomposition in an O ₂ /CO ₂ /Steam Atmosphere Integrated with Coal Combustion. Energy & Fuels, 2016, 30, 5092-5100.	5.1	13
66	Experiment study on mercury migration across wet flue gas desulfurization slurry under oxy-coal combustion atmosphere. Fuel, 2016, 181, 1184-1190.	6.4	13
67	CFD simulation design and optimization of a novel zigzag wave-plate mist eliminator with perforated plate. Applied Thermal Engineering, 2021, 184, 116212.	6.0	13
68	Removal of mercury from flue gas using sewage sludge-based adsorbents. Journal of Material Cycles and Waste Management, 2014, 16, 101-107.	3.0	12
69	Pretreatment of Petroleum Coke To Enhance the Reactivity of Catalytic Gasification in Fluidized Beds. Energy & Fuels, 2018, 32, 8115-8120.	5.1	12
70	Potential hazards of novel waste-derived sorbents for efficient removal of mercury from coal combustion flue gas. Journal of Hazardous Materials, 2021, 412, 125226.	12.4	12
71	Modeling and Kinetic Study of Degradative Solvent Extraction of Biomass Wastes. Energy & Fuels, 2017, 31, 5097-5103.	5.1	11
72	Removal of elemental mercury from coal combustion flue gas using bentonite modified with Ce-Fe binary oxides. Applied Surface Science, 2022, 590, 153090.	6.1	11

#	Article	IF	CITATIONS
73	Partitioning behavior of mercury during coal combustion: the influence of lowâ€NOx burners and operation load of boiler. Asia-Pacific Journal of Chemical Engineering, 2009, 4, 480-486.	1.5	10
74	An updated acid dew point temperature estimation method for air-firing and oxy-fuel combustion processes. Fuel Processing Technology, 2016, 154, 204-209.	7.2	10
75	Influence of Hg occurrence in coal on accuracy of Hg direct measurement based on thermal decomposition. International Journal of Coal Geology, 2017, 170, 14-18.	5.0	10
76	Mercury stable isotope fractionation during gaseous elemental mercury adsorption onto coal fly ash particles: Experimental and field observations. Journal of Hazardous Materials, 2021, 405, 124280.	12.4	10
77	Gas-pressurized torrefaction of biomass wastes: Self-promoted deoxygenation of rice straw at low temperature. Fuel, 2022, 308, 122029.	6.4	10
78	Chemical Looping Combustion Pretreatment of Fuel Gas for a Novel Mercury Continuous Emissions Monitor by Cold Vapor Atomic Absorption Spectrometry. Energy & Fuels, 2014, 28, 192-198.	5.1	9
79	Influence of low pressure on mercury removal from coals via mild pyrolysis. Applied Thermal Engineering, 2017, 113, 1250-1255.	6.0	9
80	Surface CO/CO2 ratio of char combustion measured by thermogravimetry and differential scanning calorimetry. Fuel, 2018, 233, 480-485.	6.4	9
81	Theoretical research on reaction of solid sulfur allotropes with elemental mercury. Chemical Engineering Journal, 2021, 407, 127113.	12.7	9
82	Kinetic Study of Coal Char Thermal Deactivation. Energy & Fuels, 2019, 33, 11959-11967.	5.1	8
83	Interaction between low-rank coal and biomass during degradative solvent extraction. Journal of Fuel Chemistry and Technology, 2019, 47, 14-22.	2.0	8
84	Theoretical research on mercury-laden halogenated activated carbon adsorbent bonding nature. Chemical Engineering Journal, 2022, 428, 131076.	12.7	8
85	Pilot-scale study of volatilization behavior of Hg, Se, As, Cl, S during decoupled conversion of coal. Fuel, 2013, 112, 704-709.	6.4	7
86	Effect of CO ₂ and H ₂ O on Char Properties. Part 2: <i>In Situ</i> and <i>Ex Situ</i> Char in Oxy-Steam Combustion. Energy & Fuels, 2020, 34, 7554-7563.	5.1	7
87	Surface modification of fly ash by non-thermal air plasma for elemental mercury removal from coal-fired flue gas. Environmental Technology (United Kingdom), 2021, 42, 306-317.	2.2	7
88	Insight into mercury-laden activated carbon adsorbent product bonding nature by DFT calculations. Chemical Engineering Journal, 2022, 433, 134461.	12.7	7
89	Investigation of the anode reactions in solid oxide electrolyte based carbon fuel cells. International Journal of Hydrogen Energy, 2017, 42, 10264-10274.	7.1	6
90	Rod-Shaped Bi ₂ S ₃ Supported on Flaky Carbon Nitride for Effective Removal of Elemental Mercury in Flue Gas. Energy & Fuels, 2021, 35, 14634-14646.	5.1	6

#	Article	IF	CITATIONS
91	Investigation of the anode reactions in SO-DCFCs fueled by Sn–C mixture fuels. Proceedings of the Combustion Institute, 2017, 36, 4435-4442.	3.9	5
92	"Thermal-dissolution based carbon enrichment―treatment of biomass wastes: Mechanism study of biomass pyrolysis in a highly-dispersed medium. Energy Conversion and Management, 2021, 238, 114151.	9.2	5
93	Effect of Coal Combustion on the Reactivity of a CaO-Based Sorbent for CO ₂ Capture. Energy & Fuels, 2016, 30, 7571-7578.	5.1	4
94	Kinetic Study on Continuous Sampling of Coal Char from a Micro Fluidized Bed. ACS Omega, 2021, 6, 9086-9094.	3.5	4
95	Simultaneous catalytic oxidation of nitric oxide and elemental mercury over Cu-Fe binary oxide treated by oxygen non-thermal plasma. Fuel, 2022, 320, 123895.	6.4	4
96	"Thermal-dissolution based carbon enrichment―treatment of biomass: Modeling and kinetic study via combined lumped reaction model and machine learning algorithm. Fuel, 2022, 324, 124701.	6.4	4
97	Characteristics of "Three Zones" during Underground Coal Gasification. Advanced Materials Research, 2012, 524-527, 56-62.	0.3	3
98	Determination of the Apparent Carbon Oxidation Reaction Order by a Microfluidized Bed and Its Application to Kinetic Models. Energy & Fuels, 2016, 30, 10868-10874.	5.1	3
99	Influence of different distributions of Ca-mineral in coal on trimodal particulate matter formation during combustion. Journal of Fuel Chemistry and Technology, 2016, 44, 273-278.	2.0	3
100	Characterization of in-situ and cooling char from ten typical Chinese coals. Combustion and Flame, 2022, 238, 111884.	5.2	3
101	Effect of CO ₂ and H ₂ O on Char Properties. Part 3: Semi-Char from Continuous Sampling in a Microfluidized Bed. Energy & Fuels, 2021, 35, 13124-13132.	5.1	2
102	Boosted Thermal Storage Performance of LiOH·H2O by Carbon Nanotubes Isolated Multilayered Graphene Oxide Frames. Advances in Materials Science and Engineering, 2022, 2022, 1-11.	1.8	1
103	Removal of Tar during Pine Sawdust Fast Pyrolysis with Catalysts. Advanced Materials Research, 0, 512-515, 449-454.	0.3	0
104	Gas-Phase Mercury Removal by Modified Activated Carbons Treated with Ar-O2 Non-Thermal Plasma under Different O2 Concentrations. International Journal of Chemical Reactor Engineering, 2019, 17, .	1.1	0
105	Theoretical research on mercury-laden halogenated activated carbon adsorbent product stability. The Proceedings of the International Conference on Power Engineering (ICOPE), 2021, 2021.15, 2021-0167.	0.0	0