
Tharmalingam Punniyamurthy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9429836/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Palladium-Catalyzed 2-fold C–H Activation/C–C Coupling for C4-Arylation of Indoles Using Weak Chelation. Organic Letters, 2022, 24, 554-558.	4.6	12
2	Expedient Ni-catalyzed C–H/C–H cross-dehydrogenative coupling of aryl amides with azoles. Chemical Communications, 2022, 58, 5980-5983.	4.1	3
3	Expedient cobalt-catalyzed stereospecific cascade C–N and C–O bond formation of styrene oxides with hydrazones. Chemical Communications, 2022, 58, 7090-7093.	4.1	5
4	Dual Metallaphotoredoxâ€Catalyzed Directed C(sp ²)â^'H Functionalization: Access to Câr'C/Câ€Heteroatom Bonds. European Journal of Organic Chemistry, 2022, 2022, .	2.4	5
5	Expedient Ni(OTf) ₂ /visible light photoredox-catalyzed annulation of donor–acceptor cyclopropanes with cyclic secondary amines. Chemical Communications, 2022, 58, 8670-8673.	4.1	6
6	Bi-Catalyzed 1,2-Reactivity of Spirocyclopropyl Oxindoles with Dithianediol: Access to Spiroheterocycles. Organic Letters, 2022, 24, 4965-4970.	4.6	6
7	Recent advances in transition-metal-mediated Csp2-B and Csp2-P cross-coupling reactions. Coordination Chemistry Reviews, 2021, 431, 213675.	18.8	44
8	The transition-metal-catalyzed stereoselective ring-expansion of vinylaziridines and vinyloxiranes. Organic and Biomolecular Chemistry, 2021, 19, 3776-3790.	2.8	18
9	Recent advances in the application of tetrabromomethane in organic synthesis. Organic Chemistry Frontiers, 2021, 8, 4288-4314.	4.5	13
10	Transitionâ€Metal atalyzed Directing Group Assisted (Hetero)aryl Câ^'H Functionalization: Construction of Câ^'C/Câ€Heteroatom Bonds. Chemical Record, 2021, 21, 3758-3778.	5.8	20
11	Pd-Catalyzed sp ³ C–H alkoxycarbonylation of 8-methylquinolines using Mo(CO) ₆ as a CO surrogate. Chemical Communications, 2021, 57, 3359-3362.	4.1	6
12	Pd-catalyzed bidentate auxiliary assisted remote C(sp ³)–H functionalization. Chemical Communications, 2021, 57, 13221-13233.	4.1	11
13	Site-Selective Rh-Catalyzed C-7 and C-6 Dual C–H Functionalization of Indolines: Synthesis of Functionalized Pyrrolocarbazoles. Journal of Organic Chemistry, 2020, 85, 2793-2805.	3.2	16
14	Recent Advances in Stereoselective Ring Expansion of Spirocyclopropanes: Access to the Spirocyclic Compounds. ACS Omega, 2020, 5, 26316-26328.	3.5	32
15	Recent Advances in Metalâ€catalyzed Alkylation, Alkenylation and Alkynylation of Indole/indoline Benzenoid Nucleus. Chemistry - an Asian Journal, 2020, 15, 4184-4198.	3.3	45
16	Transition-Metal-Free Stereospecific Oxidative Annulative Coupling of Indolines with Aziridines. Journal of Organic Chemistry, 2020, 85, 8261-8270.	3.2	10
17	Cp*Co(III)-Catalyzed C-7 C–C Coupling of Indolines with Aziridines: Merging C–H Activation and Ring Opening. Journal of Organic Chemistry, 2020, 85, 4785-4794.	3.2	23
18	Oxidative C–H/N–H Annulation of Aromatic Amides with Dialkyl Malonates: Access to Isoindolinones and Dihydrobenzoindoles. Journal of Organic Chemistry, 2020, 85, 5741-5749.	3.2	7

#	Article	IF	CITATIONS
19	Weak Coordination Enabled Switchable C4-Alkenylation and Alkylation of Indoles with Allyl Alcohols. Organic Letters, 2020, 22, 1720-1725.	4.6	47
20	Expedient iron-catalyzed stereospecific synthesis of triazines <i>via</i> cycloaddition of aziridines with diaziridines. Chemical Communications, 2020, 56, 3381-3384.	4.1	21
21	Transition metal-catalyzed coupling of heterocyclic alkenes <i>via</i> C–H functionalization: recent trends and applications. Organic Chemistry Frontiers, 2020, 7, 1527-1569.	4.5	75
22	Stereospecific Copper(II)-Catalyzed Tandem Ring Opening/Oxidative Alkylation of Donor–Acceptor Cyclopropanes with Hydrazones: Synthesis of Tetrahydropyridazines. Journal of Organic Chemistry, 2019, 84, 10901-10910.	3.2	17
23	Iron-Catalyzed Regioselective Remote C(sp ²)-H Carboxylation of Naphthyl and Quinoline Amides. Journal of Organic Chemistry, 2019, 84, 10481-10489.	3.2	19
24	Exploiting Strained Rings in Chelation Guided Câ^'H Functionalization: Integration of Câ^'H Activation with Ring Cleavage. Chemistry - an Asian Journal, 2019, 14, 4520-4533.	3.3	36
25	Stereospecific Assembly of Fused Imidazolidines via Tandem Ring Opening/Oxidative Amination of Aziridines with Cyclic Secondary Amines Using Photoredox Catalysis. Organic Letters, 2019, 21, 7649-7654.	4.6	18
26	Rh-Catalyzed tandem C–C/C–N bond formation of quinoxalines with alkynes leading to heterocyclic ammonium salts. Organic and Biomolecular Chemistry, 2019, 17, 2148-2152.	2.8	13
27	Transition-metal-catalyzed site-selective C7-functionalization of indoles: advancement and future prospects. Chemical Communications, 2019, 55, 572-587.	4.1	114
28	Stereospecific assembly of tetrahydroquinolines <i>via</i> tandem ring-opening/oxidative cyclization of donor–acceptor cyclopropanes with <i>N</i> -alkyl anilines. Chemical Communications, 2019, 55, 8083-8086.	4.1	9
29	Rh-Catalyzed C–C/C–N bond formation <i>via</i> C–H activation: synthesis of 2 <i>H</i> -indazol-2-yl-benzo[<i>a</i>]carbazoles. Organic Chemistry Frontiers, 2019, 6, 3885-3890.	4.5	23
30	Cp*Co(III)-Catalyzed Regioselective C2 Amidation of Indoles Using Acyl Azides. Journal of Organic Chemistry, 2019, 84, 16278-16285.	3.2	24
31	BINOL accelerated Ru(II)-catalyzed regioselective C-H functionalization of arenes with disulfides and diselenides. Journal of Chemical Sciences, 2019, 131, 1.	1.5	4
32	Weak Coordination-Guided Regioselective Direct Redox-Neutral C4 Allylation of Indoles with Morita–Baylis–Hillman Adducts. Organic Letters, 2019, 21, 9898-9903.	4.6	38
33	Ru ^{II} atalysed Regioselective <i>C–N</i> Bond Formation of Indolines and Carbazole with Acyl Azides. European Journal of Organic Chemistry, 2019, 2019, 1677-1684.	2.4	17
34	Stereospecific Alâ€Catalysed Tandem <i>Câ^'N</i> / <i>Câ^'Se</i> Bond Formation of Isoselenocyanates with Aziridines: Synthesis and DFT Study. Advanced Synthesis and Catalysis, 2019, 361, 55-58.	4.3	10
35	Iodine-Mediated Intramolecular C–H Amination of Benzimidazoles: A Metal-Free Route to Dihydroimidazobenzimidazoles. Synthesis, 2018, 50, 3224-3230.	2.3	6
36	Expedient cobalt(<scp>ii</scp>)-catalyzed site-selective C7-arylation of indolines with arylboronic acids. Chemical Communications, 2018, 54, 2494-2497.	4.1	53

#	Article	IF	CITATIONS
37	Chiral Feâ€Dendrimerâ€Catalyzed Domino Michael and Aldol Reactions of Chalcones with 1,4â€Dithianeâ€2,5â€diol. ChemistrySelect, 2018, 3, 859-863.	1.5	7
38	Copper-mediated regioselective C–H etherification of naphthylamides with arylboronic acids using water as an oxygen source. Chemical Communications, 2018, 54, 3899-3902.	4.1	44
39	Expedient stereospecific Co-catalyzed tandem C–N and C–O bond formation of <i>N</i> -methylanilines with styrene oxides. Chemical Communications, 2018, 54, 11813-11816.	4.1	19
40	Ruthenium(II)-Catalyzed Positional Selective C–H Oxygenation of <i>N</i> -Aryl-2-pyrimidines. Journal of Organic Chemistry, 2018, 83, 6444-6453.	3.2	23
41	Ru(<scp>ii</scp>)-Catalyzed C7-acyloxylation of indolines with carboxylic acids. Organic and Biomolecular Chemistry, 2018, 16, 5889-5898.	2.8	28
42	Stereospecific Ring Opening and Cycloisomerization of Aziridines with Propargylamines: Synthesis of Functionalized Piperazines and Tetrahydropyrazines. Organic Letters, 2018, 20, 4444-4448.	4.6	16
43	Rh-Catalyzed regioselective C–H activation and C–C bond formation: synthesis and photophysical studies of indazolo[2,3- <i>a</i>]quinolines. Organic Chemistry Frontiers, 2018, 5, 2630-2635.	4.5	40
44	Regiospecific Biâ€Catalysed Domino Câ€N/Câ€S Bonds Formation: Synthesis of 1,4â€Thiazines/1,4â€Thiomorpholines. Advanced Synthesis and Catalysis, 2018, 360, 3030-3037.	4.3	8
45	Metalâ€Free [3+2]â€Cycloaddition of Thiiranes with Isothiocyanates, Isoselenocyanates and Carbodiimides: Synthesis of 2â€Iminoâ€Dithiolane/Thiaselenolane/Thiazolidines. Asian Journal of Organic Chemistry, 2018, 7, 1583-1586.	2.7	6
46	K ₂ S ₂ O ₈ â€Mediated Dioxygenation of Aryl Alkenes Using <i>N</i> â€Hydroxylamines and Air. ChemistrySelect, 2018, 3, 6152-6155.	1.5	10
47	Stereoselective Copper-Catalyzed Cross-Coupling of Aziridines with Benzimidazoles via Nucleophilic Ring Opening and C(sp ²)–H Functionalization. Journal of Organic Chemistry, 2017, 82, 3183-3191.	3.2	21
48	Copper(II)-Mediated Chelation-Assisted Regioselective N-Naphthylation of Indoles, Pyrazoles and Pyrrole through Dehydrogenative Cross-Coupling. Journal of Organic Chemistry, 2017, 82, 4883-4890.	3.2	57
49	Synthesis and Stereochemical Properties of Chiral Hetero[7]helicenes Structured by a Benzodiheterole Ring Core. Chemistry Letters, 2017, 46, 1214-1216.	1.3	9
50	Stereospecific Copper-Catalyzed Domino Ring Opening and sp ³ C–H Functionalization of Activated Aziridines with <i>N</i> Alkylanilines. Organic Letters, 2017, 19, 158-161.	4.6	41
51	Aerobic Metal-Free Dioxygenation of Alkenes with <i>tert</i> -Butyl Nitrite and <i>N</i> -Hydroxylamines. ACS Omega, 2017, 2, 6278-6290.	3.5	23
52	Recent Advances in Radical Dioxygenation of Olefins. European Journal of Organic Chemistry, 2017, 2017, 2017, 5424-5438.	2.4	49
53	Copper(II)-Catalyzed Oxidative Coupling of Anilines, Methyl Arenes, and TMSN ₃ via C(sp ³ /sp ²)–H Functionalization and C–N Bond Formation. Organic Letters, 2017, 19, 6554-6557.	4.6	33
54	Copper(II) atalyzed Nitroaldol (Henry) Reactions: Recent Developments. Chemical Record, 2016, 16, 1906-1917.	5.8	32

#	Article	IF	CITATIONS
55	Domino Synthesis of Tetrasubstituted Thiophenes from 1,3-Enynes with Mercaptoacetaldehyde. Journal of Organic Chemistry, 2016, 81, 2670-2674.	3.2	42
56	Enantiospecific Aluminum-Catalyzed (3+2) Cycloaddition of Unactivated Aziridines with Isothiocyanates. Journal of Organic Chemistry, 2016, 81, 11508-11513.	3.2	28
57	"On Water―C(<i>sp</i> ³)–H Functionalization/C–O/C–N Bonds Formations: Synthesis o Functionalized Oxazolidines and Imidazolidines. Journal of Organic Chemistry, 2016, 81, 9792-9801.	f _{3.2}	37
58	Copper(II)-Catalyzed Oxidative Cross-Coupling of Anilines, Primary Alkyl Amines, and Sodium Azide Using TBHP: A Route to 2-Substituted Benzimidazoles. Journal of Organic Chemistry, 2016, 81, 3227-3234.	3.2	70
59	Iron(<scp>iii</scp>)-catalyzed aerobic dioxygenation of styrenes using N-hydroxyphthalimide and N-hydroxybenzotriazole. Organic and Biomolecular Chemistry, 2016, 14, 3246-3255.	2.8	44
60	Copper(<scp>ii</scp>)-mediated regioselective N-arylation of pyrroles, indoles, pyrazoles and carbazole via dehydrogenative coupling. Chemical Communications, 2016, 52, 2803-2806.	4.1	51
61	Microwave-Assisted Copper-Catalyzed Four-Component Tandem Synthesis of 3- <i>N</i> -Sulfonylamidine Coumarins. Journal of Organic Chemistry, 2015, 80, 6291-6299.	3.2	40
62	Iron(III)-Mediated Radical Nitration of Bisarylsulfonyl Hydrazones: Synthesis of Bisarylnitromethyl Sulfones. Journal of Organic Chemistry, 2015, 80, 6776-6783.	3.2	24
63	Copper(I)-Catalyzed Regioselective Amination of <i>N</i> -Aryl Imines Using TMSN ₃ and TBHP: A Route to Substituted Benzimidazoles. Journal of Organic Chemistry, 2015, 80, 1644-1650.	3.2	86
64	Expedient synthesis of tetrasubstituted pyrroles via a copper-catalyzed cascade inter-/intramolecular cyclization of 1,3-enynes carry a nitro group with amines. Organic and Biomolecular Chemistry, 2015, 13, 2786-2792.	2.8	34
65	Room-Temperature Cu(II)-Catalyzed Chemo- and Regioselective <i>Ortho</i> -Nitration of Arenes via C–H Functionalization. Journal of Organic Chemistry, 2015, 80, 8245-8253.	3.2	32
66	Copper(II)-Catalyzed Direct Dioxygenation of Alkenes with Air and N-Hydroxyphthalimide: Synthesis of β-Keto-N-alkoxyphthalimides. Organic Letters, 2015, 17, 2010-2013.	4.6	72
67	Synthesis of Functionalized Pyrazoles via Vanadium-Catalyzed C–N Dehydrogenative Cross-Coupling and Fluorescence Switch-On Sensing of BSA Protein. Organic Letters, 2015, 17, 5308-5311.	4.6	44
68	Synthesis of Substituted Pyrazoles from Vinylhydrozones via Bromoamination and Hydroamination with 2,2,6,6â€Tetramethylpiperidineâ€1â€oxyl and <i>N</i> â€Bromosuccinimide. Asian Journal of Organic Chemistry, 2014, 3, 638-643.	2.7	7
69	Room-Temperature Cu(II)-Catalyzed Chemo- and Regioselective Ortho-Nitration of Arenes via C–H Functionalization. Journal of Organic Chemistry, 2014, 79, 8541-8549.	3.2	21
70	Organocatalytic Syntheses of Benzoxazoles and Benzothiazoles using Aryl lodide and Oxone via C–H Functionalization and C–O/S Bond Formation. Journal of Organic Chemistry, 2014, 79, 7502-7511.	3.2	70
71	Efficient pyrrolidine catalyzed cycloaddition of aziridines with isothiocyanates, isoselenocyanates and carbon disulfide "on water― RSC Advances, 2014, 4, 54149-54157.	3.6	31
72	Effect of ligand N,N-substituents on the reactivity of chiral copper(II) salalen, salan, and salalan complexes toward asymmetric nitroaldol reactions. Tetrahedron: Asymmetry, 2014, 25, 1331-1339.	1.8	24

#	Article	IF	CITATIONS
73	Novel Copper-Catalyzed Multicomponent Cascade Synthesis of Iminocoumarin Aryl Methyl Ethers. Organic Letters, 2013, 15, 3828-3831.	4.6	37
74	A Novel Tandem Sequence to Pyrrole Syntheses by 5- <i>endo</i> - <i>dig</i> Cyclization of 1,3-Enynes with Amines. Organic Letters, 2013, 15, 4996-4999.	4.6	65
75	Oxidative Aromatic Cĩ£¿H Functionalization Promoted by Phenyliodine(III) Diacetate to form Cĩ£¿N, Cĩ£¿S, and Cĩ£¿Se Bonds. Asian Journal of Organic Chemistry, 2013, 2, 843-847.	2.7	12
76	"On Water― Efficient Ironâ€Catalyzed Cycloaddition of Aziridines with Heterocumulenes. Angewandte Chemie - International Edition, 2013, 52, 572-575.	13.8	80
77	Iodobenzene Catalyzed C–H Amination of <i>N</i> -Substituted Amidines Using <i>m</i> -Chloroperbenzoic Acid. Organic Letters, 2013, 15, 1334-1337.	4.6	141
78	Pd(II)-Catalyzed Aminotetrazole-Directed Ortho-Selective Halogenation of Arenes. Journal of Organic Chemistry, 2013, 78, 6104-6111.	3.2	55
79	Copper-Catalyzed Synthesis of 2-Arylbenzoxazoles in Tetrabutylammonium Bromide. Synthesis, 2013, 45, 501-506.	2.3	6
80	Palladium-catalyzed aerobic oxidative C–H amination: synthesis of 2-unsubstituted and 2-substituted N-aryl benzimidazoles. RSC Advances, 2012, 2, 4616.	3.6	39
81	Role of temperature in [3+2]-cycloaddition of isoselenocyanates with oxiranes using BF3·Et2O. RSC Advances, 2012, 2, 2736.	3.6	14
82	Fluorescent OFF–ON polymer chemosensor bonded alternatively with 1,4-dioctyloxybenzene and (R,R)-salen for cascade Zn2+ and chiral recognition. Tetrahedron: Asymmetry, 2012, 23, 570-576.	1.8	13
83	Preparation of 2â€Azidoâ€1â€Substitutedâ€1 <i>H</i> â€Benzo[<i>d</i>]imidazoles Using a Copperâ€Prom Threeâ€Component Reaction and Their Further Conversion into 2â€Amino and 2â€Triazolyl Derivatives. Chemistry - A European Journal, 2012, 18, 13279-13283.	oted 3.3	50
84	Copper-catalysed one-pot synthesis of N-substituted benzo[d]isothiazol-3(2H)-ones via C-S/N-S bond formation. RSC Advances, 2012, 2, 7057.	3.6	24
85	Copper(II)-Catalyzed Aerobic Oxidative Synthesis of Substituted 1,2,3- and 1,2,4-Triazoles from Bisarylhydrazones via C–H Functionalization/C–C/N–N/C–N Bonds Formation. Journal of Organic Chemistry, 2012, 77, 5063-5073.	3.2	105
86	Fluorescent non-linear chiral polymer chemosensor bonded alternatively with 1,4-diethynyl-2,5-dioctyloxybenzene and (R,R)-salen for Zn2+recognition. Tetrahedron: Asymmetry, 2012, 23, 101-107.	1.8	15
87	Copper(II)-Catalyzed Conversion of Bisaryloxime Ethers to 2-Arylbenzoxazoles via Câ^'H Functionalization/Câ^'N/Câ^'O Bonds Formation. Organic Letters, 2011, 13, 1194-1197.	4.6	83
88	Pd-Catalyzed Câ^'H Activation/Câ^'N Bond Formation: A New Route to 1-Aryl-1 <i>H</i> -benzotriazoles. Organic Letters, 2011, 13, 2102-2105.	4.6	75
89	Copper-Mediated Synthesis of Substituted 2-Aryl- <i>N</i> -benzylbenzimidazoles and 2-Arylbenzoxazoles via C–H Functionalization/C–N/C–O Bond Formation. Journal of Organic Chemistry, 2011, 76, 5295-5308.	3.2	118
90	Copperâ€Catalyzed Domino Oneâ€Pot Synthesis of 2â€(Arylselanyl)arylcyanamides. European Journal of Organic Chemistry, 2011, 2011, 4757-4759.	2.4	8

#	Article	IF	CITATIONS
91	Domino Ligand-Free Copper-Catalyzed Synthesis of Polysubstituted Indoles. Synlett, 2011, 2011, 623-626.	1.8	6
92	Palladium atalyzed Oneâ€Pot Conversion of Aldehydes to Amides. Advanced Synthesis and Catalysis, 2010, 352, 288-292.	4.3	99
93	Chiral linear polymers bonded alternatively with salen and 1,4-dialkoxybenzene: synthesis and application for Ti-catalyzed asymmetric TMSCN addition to aldehydes. Tetrahedron: Asymmetry, 2010, 21, 2834-2840.	1.8	16
94	Copper-Catalyzed Hydroxylation of Aryl Halides with Tetrabutylammonium Hydroxide: Synthesis of Substituted Phenols and Alkyl Aryl Ethers. Synthesis, 2010, 2010, 4268-4272.	2.3	18
95	Efficient Copper-Catalyzed N-Arylation of Amides and Imidazoles with Aryl Iodides. Synthesis, 2010, 2010, 908-910.	2.3	5
96	Copper-Catalyzed Domino Intra- and Intermolecular Câ^'S Cross-Coupling Reactions: Synthesis of 2-(Arylthio)arylcyanamides. Organic Letters, 2010, 12, 84-87.	4.6	65
97	Cobalt-catalyzed intramolecular C–N and C–O cross-coupling reactions: synthesis of benzimidazoles and benzoxazoles. Organic and Biomolecular Chemistry, 2010, 8, 5692.	2.8	127
98	Reusable Cu2O-Nanoparticle-Catalyzed Amidation of Aryl Iodides. Synlett, 2009, 2009, 3323-3327.	1.8	4
99	Synthesis, Structure and Catalysis of Tetranuclear Copper(II) Open Cubane for Henry Reaction on Water. European Journal of Inorganic Chemistry, 2009, 2009, 2508-2511.	2.0	32
100	Synthesis, Structure, and Application of Selfâ€Assembled Copper(II) Aqua Complex by Hâ€Bonding for Acceleration of the Nitroaldol Reaction on Water. Chemistry - an Asian Journal, 2009, 4, 314-320.	3.3	45
101	CuO Nanoparticles Catalyzed Câ^'N, Câ^'O, and Câ^'S Cross-Coupling Reactions: Scope and Mechanism. Journal of Organic Chemistry, 2009, 74, 1971-1976.	3.2	348
102	Ligand-Free Copper-Catalyzed Synthesis of Substituted Benzimidazoles, 2-Aminobenzimidazoles, 2-Aminobenzothiazoles, and Benzoxazoles. Journal of Organic Chemistry, 2009, 74, 8719-8725.	3.2	323
103	Efficient Copper(I) atalyzed C–S Cross Coupling of Thiols with Aryl Halides in Water. European Journal of Organic Chemistry, 2008, 2008, 640-643.	2.4	136
104	Cadmium(II) atalyzed CN Cross oupling of Amines with Aryl Iodides. Advanced Synthesis and Catalysis, 2008, 350, 395-398.	4.3	34
105	Recent advances in copper-catalyzed oxidation of organic compounds. Coordination Chemistry Reviews, 2008, 252, 134-154.	18.8	303
106	Chiral binuclear copper(II) catalyzed nitroaldol reaction: scope and mechanism. Tetrahedron, 2008, 64, 11724-11731.	1.9	37
107	Efficient ligand-free nickel-catalyzed C–S cross-coupling of thiols with aryl iodides. Tetrahedron Letters, 2008, 49, 1484-1487.	1.4	194
108	Synthesis, Structure and Application of Chiral Copper(II) Coordination Polymers for Asymmetric Acylation. Inorganic Chemistry, 2008, 47, 5093-5098.	4.0	30

#	Article	IF	CITATIONS
109	Enantiomerically pure bicyclo[3.3.1]nona-2,6-diene as the sole source of enantioselectivity in BIPHEP-Rh asymmetric hydrogenation. Chemical Communications, 2008, , 5092.	4.1	48
110	Efficient CuO-Nanoparticle-Catalyzed CS Cross-Coupling of Thiols with Iodobenzene. Angewandte Chemie - International Edition, 2007, 46, 5583-5586.	13.8	312
111	Vanadium-Catalyzed Selective Oxidation of Alcohols to Aldehydes and Ketones withtert-Butyl Hydroperoxide. Advanced Synthesis and Catalysis, 2007, 349, 846-848.	4.3	43
112	Chiral linear polymers bonded alternatively with salen and 1,4-dialkoxy-2,6-diethynylbenzene: synthesis and application to diethylzinc addition to aldehydes. Tetrahedron: Asymmetry, 2007, 18, 2016-2020.	1.8	23
113	Copper(II) catalyzed selective oxidation of primary alcohols to aldehydes with atmospheric oxygen. Tetrahedron Letters, 2006, 47, 923-926.	1.4	110
114	Copper catalyzed oxidation of sulfides to sulfoxides with aqueous hydrogen peroxide. Tetrahedron Letters, 2005, 46, 3819-3822.	1.4	70
115	Cobalt(II)-catalyzed direct acetylation of alcohols with acetic acid. Tetrahedron, 2005, 61, 2011-2015.	1.9	38
116	Recent Advances in Transition Metal Catalyzed Oxidation of Organic Substrates with Molecular Oxygen. Chemical Reviews, 2005, 105, 2329-2364.	47.7	1,606
117	Silica-Supported Vanadium-CatalyzedN-Oxidation of Tertiary Amines with Aqueous Hydrogen Peroxide. Advanced Synthesis and Catalysis, 2005, 347, 1958-1960.	4.3	47
118	Copper(II)-Catalyzed Oxidation of Alcohols to Carbonyl Compounds with Hydrogen Peroxide ChemInform, 2004, 35, no.	0.0	0
119	Cobalt(II) catalyzed tosylation of alcohols with p-toluenesulfonic acid. Tetrahedron Letters, 2004, 45, 203-205.	1.4	29
120	Polyaniline supported vanadium catalyzed aerobic oxidation of alcohols to aldehydes and ketones. Tetrahedron Letters, 2004, 45, 3561-3564.	1.4	102
121	Copper(II)-Catalyzed Oxidation of Alcohols to Carbonyl Compounds with Hydrogen Peroxide. European Journal of Organic Chemistry, 2003, 2003, 3913-3915.	2.4	57
122	Copper(II)-catalyzed Cî—,H oxidation of alkylbenzenes and cyclohexane with hydrogen peroxide. Tetrahedron Letters, 2003, 44, 8955-8957.	1.4	117
123	Molybdenum(VI)-peroxo complex catalyzed oxidation of alkylbenzenes with hydrogen peroxide. Tetrahedron Letters, 2003, 44, 4915-4917.	1.4	49
124	Cobalt(II)-catalyzed oxidation of alcohols into carboxylic acids and ketones with hydrogen peroxide. Tetrahedron Letters, 2003, 44, 6033-6035.	1.4	80