Luiz Pessoa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9429738/publications.pdf

Version: 2024-02-01

30551 17373 17,307 133 56 126 h-index citations g-index papers 149 149 149 16091 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Distributed and Multifaceted Effects of Threat and Safety. Journal of Cognitive Neuroscience, 2022, 34, 495-516.	1.1	11
2	Refocusing neuroscience: moving away from mental categories and towards complex behaviours. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200534.	1.8	40
3	Sources of Information Waste in Neuroimaging: Mishandling Structures, Thinking Dichotomously, and Over-Reducing Data., 2022, 2021, .		2
4	A call for more clarity around causality in neuroscience. Trends in Neurosciences, 2022, 45, 654-655.	4.2	18
5	To pool or not to pool: Can we ignore cross-trial variability in FMRI?. Neurolmage, 2021, 225, 117496.	2.1	21
6	Controllability over stressor decreases responses in key threat-related brain areas. Communications Biology, 2021, 4, 42.	2.0	31
7	Lessons from Leslie: A Tribute to an Extraordinary Scientist and Mentor. Trends in Neurosciences, 2021, 44, 241-243.	4.2	1
8	How representative are neuroimaging samples? Large-scale evidence for trait anxiety differences between fMRI and behaviour-only research participants. Social Cognitive and Affective Neuroscience, 2021, 16, 1057-1070.	1.5	24
9	Geodesic Distance on Optimally Regularized Functional Connectomes Uncovers Individual Fingerprints. Brain Connectivity, 2021, 11, 333-348.	0.8	15
10	Learning brain dynamics for decoding and predicting individual differences. PLoS Computational Biology, 2021, 17, e1008943.	1.5	4
11	Comparing functional connectivity matrices: A geometry-aware approach applied to participant identification. Neurolmage, 2020, 207, 116398.	2.1	64
12	Fighting or embracing multiplicity in neuroimaging? neighborhood leverage versus global calibration. Neurolmage, 2020, 206, 116320.	2.1	21
13	Neuropsychologia special issue editorial: The neural basis of emotion. Neuropsychologia, 2020, 145, 107507.	0.7	2
14	Interactions between emotion and action in the brain. Neurolmage, 2020, 214, 116728.	2.1	32
15	Intelligent architectures for robotics: The merging of cognition and emotion. Physics of Life Reviews, 2019, 31, 157-170.	1.5	14
16	Representational Organization of Novel Task Sets during Proactive Encoding. Journal of Neuroscience, 2019, 39, 8386-8397.	1.7	17
17	Neural dynamics of emotion and cognition: From trajectories to underlying neural geometry. Neural Networks, 2019, 120, 158-166.	3.3	16
18	Neural architecture of the vertebrate brain: implications for the interaction between emotion and cognition. Neuroscience and Biobehavioral Reviews, 2019, 107, 296-312.	2.9	55

#	Article	lF	CITATIONS
19	An integrative Bayesian approach to matrixâ€based analysis in neuroimaging. Human Brain Mapping, 2019, 40, 4072-4090.	1.9	24
20	What drives prioritized visual processing? A motivational relevance account. Progress in Brain Research, 2019, 247, 111-148.	0.9	15
21	Interactions between reward motivation and emotional processing. Progress in Brain Research, 2019, 247, 1-21.	0.9	12
22	Embracing integration and complexity: placing emotion within a science of brain and behaviour. Cognition and Emotion, 2019, 33, 55-60.	1.2	18
23	Brain dynamics and temporal trajectories during task and naturalistic processing. Neurolmage, 2019, 186, 410-423.	2.1	15
24	Dynamic Threat Processing. Journal of Cognitive Neuroscience, 2019, 31, 522-542.	1.1	33
25	Overlapping and dynamic networks of the emotional brain. , 2019, , 43-61.		1
26	Brain networks for emotion and cognition: Implications and tools for understanding mental disorders and pathophysiology. Behavioral and Brain Sciences, 2019, 42, e23.	0.4	3
27	Opportunities and challenges for a maturing science of consciousness. Nature Human Behaviour, 2019, 3, 104-107.	6.2	58
28	Diversity in action: exchange of perspectives and reflections on taxonomies of individual differences. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170172.	1.8	6
29	Information about peer choices shapes human risky decision-making. Scientific Reports, 2018, 8, 5129.	1.6	11
30	LEICA: Laplacian eigenmaps for group ICA decomposition of fMRI data. NeuroImage, 2018, 169, 363-373.	2.1	15
31	Altered segregation between task-positive and task-negative regions in mild traumatic brain injury. Brain Imaging and Behavior, 2018, 12, 697-709.	1.1	8
32	Understanding emotion with brain networks. Current Opinion in Behavioral Sciences, 2018, 19, 19-25.	2.0	86
33	Emotion and the Interactive Brain: Insights From Comparative Neuroanatomy and Complex Systems. Emotion Review, 2018, 10, 204-216.	2.1	39
34	Author Reply: Placing Emotion Within a Science of Brain and Behavior. Emotion Review, 2018, 10, 236-238.	2.1	1
35	Attentional capture by simultaneous pleasant and unpleasant emotional distractors Emotion, 2018, 18, 1189-1194.	1.5	11
36	Potential reward reduces the adverse impact of negative distractor stimuli. Social Cognitive and Affective Neuroscience, 2017, 12, 1402-1413.	1.5	27

#	Article	IF	Citations
37	A Network Model of the Emotional Brain. Trends in Cognitive Sciences, 2017, 21, 357-371.	4.0	268
38	Do Intelligent Robots Need Emotion?. Trends in Cognitive Sciences, 2017, 21, 817-819.	4.0	29
39	Dynamic Networks in the Emotional Brain. Neuroscientist, 2017, 23, 383-396.	2.6	36
40	Dynamics of Intersubject Brain Networks during Anxious Anticipation. Frontiers in Human Neuroscience, 2017, 11, 552.	1.0	21
41	Cognitive-motivational interactions: Beyond boxes-and-arrows models of the mind-brain Motivation Science, 2017, 3, 287-303.	1.2	15
42	Beyond disjoint brain networks: Overlapping networks for cognition and emotion. Behavioral and Brain Sciences, 2016, 39, e129.	0.4	11
43	Overlapping communities reveal rich structure in large-scale brain networks during rest and task conditions. Neurolmage, 2016, 135, 92-106.	2.1	88
44	The cognitive-emotional amalgam. Behavioral and Brain Sciences, 2015, 38, e91.	0.4	21
45	From Paul Broca's great limbic lobe to the limbic system. Journal of Comparative Neurology, 2015, 523, 2495-2500.	0.9	36
46	Complex-system causality in large-scale brain networks. Physics of Life Reviews, 2015, 15, 124-127.	1.5	3
47	Counteracting effect of threat on reward enhancements during working memory. Cognition and Emotion, 2015, 29, 1517-1526.	1.2	15
48	Multiple influences of reward on perception and attention. Visual Cognition, 2015, 23, 272-290.	0.9	64
49	Reward learning and negative emotion during rapid attentional competition. Frontiers in Psychology, 2015, 6, 269.	1.1	21
50	Précis on <i>The Cognitive-Emotional Brain</i> li>. Behavioral and Brain Sciences, 2015, 38, e71.	0.4	52
51	The neurobiology of emotionââ,¬â€œcognition interactions: fundamental questions and strategies for future research. Frontiers in Human Neuroscience, 2015, 9, 58.	1.0	260
52	An fMRI Pilot Study of Cognitive Reappraisal in Children: Divergent Effects on Brain and Behavior. Journal of Psychopathology and Behavioral Assessment, 2015, 37, 634-644.	0.7	24
53	Discovering networks altered by potential threat ("anxietyâ€) using quadratic discriminant analysis. Neurolmage, 2015, 116, 1-9.	2.1	17
54	Reward vs. Emotion in Visual Selective Attention. Journal of Vision, 2015, 15, 451.	0.1	0

#	Article	IF	Citations
55	Impact of appetitive and aversive outcomes on brain responses: linking the animal and human literatures. Frontiers in Systems Neuroscience, 2014, 8, 24.	1.2	41
56	Beyond the Tripartite Cognition–Emotion–Interoception Model of the Human Insular Cortex. Journal of Cognitive Neuroscience, 2014, 26, 16-27.	1.1	227
57	Network Organization Unfolds over Time during Periods of Anxious Anticipation. Journal of Neuroscience, 2014, 34, 11261-11273.	1.7	126
58	Pervasive competition between threat and reward in the brain. Social Cognitive and Affective Neuroscience, 2014, 9, 737-750.	1.5	49
59	Brain networks: Moving beyond graphs. Physics of Life Reviews, 2014, 11, 462-466.	1.5	1
60	Understanding brain networks and brain organization. Physics of Life Reviews, 2014, 11, 400-435.	1.5	294
61	Mechanisms of motivation–cognition interaction: challenges and opportunities. Cognitive, Affective and Behavioral Neuroscience, 2014, 14, 443-472.	1.0	263
62	Motivation versus aversive processing during perception Emotion, 2014, 14, 450-454.	1.5	27
63	Introduction to the special research topic on the neurobiology of emotion-cognition interactions. Frontiers in Human Neuroscience, 2014, 8, 1051.	1.0	4
64	Interactions between reward and threat during visual processing. Neuropsychologia, 2013, 51, 1763-1772.	0.7	52
65	Describing functional diversity of brain regions and brain networks. Neurolmage, 2013, 73, 50-58.	2.1	183
66	The Cognitive-Emotional Brain., 2013,,.		208
67	Interactions between cognition and emotion during response inhibition Emotion, 2012, 12, 192-197.	1.5	178
68	Threat of bodily harm has opposing effects on cognition Emotion, 2012, 12, 28-32.	1.5	52
69	Beyond brain regions: Network perspective of cognition–emotion interactions. Behavioral and Brain Sciences, 2012, 35, 158-159.	0.4	88
70	Impact of state anxiety on the interaction between threat monitoring and cognition. NeuroImage, 2012, 59, 1912-1923.	2.1	172
71	The functional connectivity of the human caudate: An application of meta-analytic connectivity modeling with behavioral filtering. Neurolmage, 2012, 60, 117-129.	2.1	222
72	Network Analysis Reveals Increased Integration during Emotional and Motivational Processing. Journal of Neuroscience, 2012, 32, 8361-8372.	1.7	171

#	Article	IF	Citations
73	Emotion and the brain: multiple roads are better than one. Nature Reviews Neuroscience, 2011, 12, 425-425.	4.9	40
74	Reprint of: Emotion and cognition and the amygdala: From "what is it?―to "what's to be done?― Neuropsychologia, 2011, 49, 681-694.	0.7	44
75	Negative Emotion Impairs Conflict-Driven Executive Control. Frontiers in Psychology, 2011, 2, 192.	1.1	112
76	Reward Reduces Conflict by Enhancing Attentional Control and Biasing Visual Cortical Processing. Journal of Cognitive Neuroscience, 2011, 23, 3419-3432.	1.1	326
77	Emotion affects action: Midcingulate cortex as a pivotal node of interaction between negative emotion and motor signals. Cognitive, Affective and Behavioral Neuroscience, 2010, 10, 94-106.	1.0	124
78	Moment-to-moment fluctuations in fMRI amplitude and interregion coupling are predictive of inhibitory performance. Cognitive, Affective and Behavioral Neuroscience, 2010, 10, 279-297.	1.0	15
79	Emotion and cognition and the amygdala: From "what is it?―to "what's to be done?― Neuropsychologia, 2010, 48, 3416-3429.	0.7	362
80	Interactions between cognition and motivation during response inhibition. Neuropsychologia, 2010, 48, 558-565.	0.7	158
81	Emotion processing and the amygdala: from a 'low road' to 'many roads' of evaluating biological significance. Nature Reviews Neuroscience, 2010, 11, 773-782.	4.9	1,515
82	Embedding reward signals into perception and cognition. Frontiers in Neuroscience, 2010, 4, .	1.4	216
83	Emergent processes in cognitive-emotional interactions. Dialogues in Clinical Neuroscience, 2010, 12, 433-448.	1.8	108
84	Combined effects of attention and motivation on visual task performance: Transient and sustained motivational effects. Frontiers in Human Neuroscience, 2009, 3, 4.	1.0	230
85	Segregating the significant from the mundane on a moment-to-moment basis via direct and indirect amygdala contributions. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16841-16846.	3.3	214
86	Affective learning enhances activity and functional connectivity in early visual cortex. Neuropsychologia, 2009, 47, 2480-2487.	0.7	83
87	Attentional control during the transient updating of cue information. Brain Research, 2009, 1247, 149-158.	1.1	31
88	The prefrontal cortex and the executive control of attention. Experimental Brain Research, 2009, 192, 489-497.	0.7	269
89	How do emotion and motivation direct executive control?. Trends in Cognitive Sciences, 2009, 13, 160-166.	4.0	1,037
90	Individual differences in valence modulation of face-selective m170 response Emotion, 2009, 9, 59-69.	1.5	36

#	Article	IF	Citations
91	On the relationship between emotion and cognition. Nature Reviews Neuroscience, 2008, 9, 148-158.	4.9	1,680
92	Affective learning modulates spatial competition during low-load attentional conditions. Neuropsychologia, 2008, 46, 1267-1278.	0.7	81
93	Measuring consciousness: relating behavioural and neurophysiological approaches. Trends in Cognitive Sciences, 2008, 12, 314-321.	4.0	303
94	Affective Learning Enhances Visual Detection and Responses in Primary Visual Cortex. Journal of Neuroscience, 2008, 28, 6202-6210.	1.7	180
95	Affective learning increases sensitivity to graded emotional faces Emotion, 2008, 8, 96-103.	1.5	46
96	Neural Correlates of Perceptual Choice and Decision Making during Fear-Disgust Discrimination. Journal of Neuroscience, 2007, 27, 2908-2917.	1.7	153
97	Bihemispheric Leftward Bias in a Visuospatial Attention-Related Network. Journal of Neuroscience, 2007, 27, 11271-11278.	1.7	116
98	Motivation sharpens exogenous spatial attention Emotion, 2007, 7, 668-674.	1.5	200
99	Dissociable effects of bottom-up and top-down factors on the processing of unattended fearful faces. Neuropsychologia, 2007, 45, 3075-3086.	0.7	34
100	Decoding Near-Threshold Perception of Fear from Distributed Single-Trial Brain Activation. Cerebral Cortex, 2006, 17, 691-701.	1.6	89
101	Target Visibility and Visual Awareness Modulate Amygdala Responses to Fearful Faces. Cerebral Cortex, 2006, 16, 366-375.	1.6	239
102	Sustained and transient modulation of performance induced by emotional picture viewing. Emotion, 2006, 6, 622-634.	1.5	75
103	Load-dependent modulation of affective picture processing. Cognitive, Affective and Behavioral Neuroscience, 2005, 5, 388-395.	1.0	159
104	To what extent are emotional visual stimuli processed without attention and awareness?. Current Opinion in Neurobiology, 2005, 15, 188-196.	2.0	420
105	Visual Awareness and the Detection of Fearful Faces Emotion, 2005, 5, 243-247.	1.5	205
106	Quantitative prediction of perceptual decisions during near-threshold fear detection. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5612-5617.	3.3	87
107	Fate of unattended fearful faces in the amygdala is determined by both attentional resources and cognitive modulation. Neurolmage, 2005, 28, 249-255.	2.1	314
108	Captura da atenção por estÃmulos emocionais. Paideia, 2004, 14, 35-44.	0.1	4

#	Article	IF	CITATIONS
109	Neural Correlates of Change Detection and Change Blindness in a Working Memory Task. Cerebral Cortex, 2004, 14, 511-520.	1.6	117
110	Repetition suppression of faces is modulated by emotion. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9827-9832.	3. 3	248
111	Neuroimaging studies of attention and the processing of emotion-laden stimuli. Progress in Brain Research, 2004, 144, 171-182.	0.9	195
112	NEUROSCIENCE: Seeing the World in the Same Way. Science, 2004, 303, 1617-1618.	6.0	4
113	From Humble Neural Beginnings Comes Knowledge of Numbers. Neuron, 2003, 37, 4-6.	3.8	3
114	Neuroimaging Studies of Attention: From Modulation of Sensory Processing to Top-Down Control. Journal of Neuroscience, 2003, 23, 3990-3998.	1.7	400
115	Contour integration in the primary visual cortex of the opossum. NeuroReport, 2002, 13, 2001-2004.	0.6	7
116	The Neural Correlates of Moral Sensitivity: A Functional Magnetic Resonance Imaging Investigation of Basic and Moral Emotions. Journal of Neuroscience, 2002, 22, 2730-2736.	1.7	622
117	Neural Correlates of Visual Working Memory. Neuron, 2002, 35, 975-987.	3.8	424
118	Attentional control of the processing of neutral and emotional stimuli. Cognitive Brain Research, 2002, 15, 31-45.	3.3	435
119	Filling-in: One or many?. Behavioral and Brain Sciences, 2001, 24, 1137-1139.	0.4	0
120	Visual filling-in for computing perceptual surface properties. Biological Cybernetics, 2001, 85, 355-369.	0.6	32
121	Lightness from contrast: A selective integration model. Perception & Psychophysics, 2000, 62, 1160-1181.	2.3	65
122	Beyond the Grand Illusion: What Change Blindness Really Teaches Us About Vision. Visual Cognition, 2000, 7, 93-106.	0.9	193
123	Interaction of ON and OFF pathways for visual contrast measurement. Biological Cybernetics, 1999, 81, 515-532.	0.6	17
124	A neural architecture of brightness perception: non-linear contrast detection and geometry-driven diffusion. Image and Vision Computing, 1998, 16, 423-446.	2.7	11
125	Why does the brain fill in?. Trends in Cognitive Sciences, 1998, 2, 422-424.	4.0	62
126	Texture segregation, surface representation and figure–ground separation. Vision Research, 1998, 38, 2657-2684.	0.7	85

Luiz Pessoa

#	Article	IF	CITATION
127	Finding out about filling-in: A guide to perceptual completion for visual science and the philosophy of perception. Behavioral and Brain Sciences, 1998, 21, 723-748.	0.4	597
128	Filling-in is for finding out. Behavioral and Brain Sciences, 1998, 21, 781-796.	0.4	13
129	Perceived texture segregation in chromatic element-arrangement patterns: High intensity interference. Vision Research, 1996, 36, 1745-1760.	0.7	16
130	Mach Bands: How Many Models are Possible? Recent Experimental Findings and Modeling Attempts. Vision Research, 1996, 36, 3205-3227.	0.7	83
131	Mach-Band Attenuation by Adjacent Stimuli: Experiment and Filling-in Simulations. Perception, 1996, 25, 425-442.	0.5	12
132	The perception of lightness in 3-D curved objects. Perception & Psychophysics, 1996, 58, 1293-1305.	2.3	24
133	A Contrast- and Luminance-driven Multiscale Network Model of Brightness Perception. Vision Research, 1995, 35, 2201-2223.	0.7	177