Yoshikazu Imanishi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9429642/publications.pdf

Version: 2024-02-01

56 papers 3,646 citations

147801 31 h-index 53 g-index

58 all docs 58 docs citations

58 times ranked 3305 citing authors

#	Article	IF	CITATIONS
1	Lecithin-retinol Acyltransferase Is Essential for Accumulation of All-trans-Retinyl Esters in the Eye and in the Liver. Journal of Biological Chemistry, 2004, 279, 10422-10432.	3.4	321
2	Essential role of Ca2+-binding protein 4, a Cav1.4 channel regulator, in photoreceptor synaptic function. Nature Neuroscience, 2004, 7, 1079-1087.	14.8	272
3	Noninvasive two-photon imaging reveals retinyl ester storage structures in the eye. Journal of Cell Biology, 2004, 164, 373-383.	5.2	192
4	Pharmacological Chaperone-mediated in Vivo Folding and Stabilization of the P23H-opsin Mutant Associated with Autosomal Dominant Retinitis Pigmentosa. Journal of Biological Chemistry, 2003, 278, 14442-14450.	3.4	183
5	Dual-substrate Specificity Short Chain Retinol Dehydrogenases from the Vertebrate Retina. Journal of Biological Chemistry, 2002, 277, 45537-45546.	3.4	179
6	RBP4 Disrupts Vitamin A Uptake Homeostasis in a STRA6-Deficient Animal Model for Matthew-Wood Syndrome. Cell Metabolism, 2008, 7, 258-268.	16.2	163
7	Calcium-Binding Proteins: Intracellular Sensors from the Calmodulin Superfamily. Biochemical and Biophysical Research Communications, 2002, 290, 615-623.	2.1	149
8	Role of Photoreceptor-specific Retinol Dehydrogenase in the Retinoid Cycle in Vivo. Journal of Biological Chemistry, 2005, 280, 18822-18832.	3.4	139
9	Rhodopsin phosphorylation: 30 years later. Progress in Retinal and Eye Research, 2003, 22, 417-434.	15.5	138
10	Pharmacological and rAAV Gene Therapy Rescue of Visual Functions in a Blind Mouse Model of Leber Congenital Amaurosis. PLoS Medicine, 2005, 2, e333.	8.4	120
11	Diversity of Guanylate Cyclase-Activating Proteins (GCAPs) in Teleost Fish: Characterization of Three Novel GCAPs (GCAP4, GCAP5, GCAP7) from Zebrafish (Danio rerio) and Prediction of Eight GCAPs (GCAP1-8) in Pufferfish (Fugu rubripes). Journal of Molecular Evolution, 2004, 59, 204-217.	1.8	98
12	Retinol Dehydrogenase (RDH12) Protects Photoreceptors from Light-induced Degeneration in Mice. Journal of Biological Chemistry, 2006, 281, 37697-37704.	3.4	98
13	Characterization of retinal guanylate cyclase-activating protein 3 (GCAP3) from zebrafish to man. European Journal of Neuroscience, 2002, 15, 63-78.	2.6	95
14	A novel subtype of G-protein-coupled receptor kinase, GRK7, in teleost cone photoreceptors. FEBS Letters, 1998, 424, 159-164.	2.8	94
15	Retinosomes. Journal of Cell Biology, 2004, 166, 447-453.	5 . 2	94
16	Identification of All-trans-Retinol:All-trans-13,14-dihydroretinol Saturase. Journal of Biological Chemistry, 2004, 279, 50230-50242.	3.4	89
17	Effects of Potent Inhibitors of the Retinoid Cycle on Visual Function and Photoreceptor Protection from Light Damage in Mice. Molecular Pharmacology, 2006, 70, 1220-1229.	2.3	82
18	Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes. Nature Medicine, 2010, 16, 1444-1449.	30.7	78

#	Article	IF	Citations
19	Usher syndrome IIIA gene clarin-1 is essential for hair cell function and associated neural activation. Human Molecular Genetics, 2009, 18, 2748-2760.	2.9	74
20	Rhodopsin Trafficking and Mistrafficking. Progress in Molecular Biology and Translational Science, 2015, 132, 39-71.	1.7	69
21	An Unconventional Secretory Pathway Mediates the Cilia Targeting of Peripherin/rds. Journal of Neuroscience, 2014, 34, 992-1006.	3.6	66
22	Retinoid cycle in the vertebrate retina: experimental approaches and mechanisms of isomerization. Vision Research, 2003, 43, 2959-2981.	1.4	63
23	Lecithin:Retinol Acyltransferase Is Responsible for Amidation of Retinylamine, a Potent Inhibitor of the Retinoid Cycle. Journal of Biological Chemistry, 2005, 280, 42263-42273.	3.4	56
24	Two-Photon Microscopy:  Shedding Light on the Chemistry of Vision. Biochemistry, 2007, 46, 9674-9684.	2.5	56
25	Signals Governing the Trafficking and Mistrafficking of a Ciliary GPCR, Rhodopsin. Journal of Neuroscience, 2013, 33, 13621-13638.	3.6	56
26	Topology and Membrane Association of Lecithin: Retinol Acyltransferase. Journal of Biological Chemistry, 2007, 282, 2081-2090.	3.4	53
27	The Mechanosensory Structure of the Hair Cell Requires Clarin-1, a Protein Encoded by Usher Syndrome III Causative Gene. Journal of Neuroscience, 2012, 32, 9485-9498.	3.6	52
28	Clarin-1, Encoded by the Usher Syndrome III Causative Gene, Forms a Membranous Microdomain. Journal of Biological Chemistry, 2009, 284, 18980-18993.	3.4	51
29	Mýller glia phagocytose dead photoreceptor cells in a mouse model of retinal degenerative disease. FASEB Journal, 2019, 33, 3680-3692.	0.5	51
30	A small molecule mitigates hearing loss in a mouse model of Usher syndrome III. Nature Chemical Biology, 2016, 12, 444-451.	8.0	43
31	Aberrant Metabolites in Mouse Models of Congenital Blinding Diseases: Formation and Storage of Retinyl Estersâ€. Biochemistry, 2006, 45, 4210-4219.	2.5	35
32	Submembrane Assembly and Renewal of Rod Photoreceptor cGMP-Gated Channel: Insight into the Actin-Dependent Process of Outer Segment Morphogenesis. Journal of Neuroscience, 2014, 34, 8164-8174.	3.6	31
33	Three Kinds of Guanylate Cyclase Expressed in Medaka Photoreceptor Cells in Both Retina and Pineal Organ. Biochemical and Biophysical Research Communications, 1999, 255, 216-220.	2.1	30
34	Applications of phototransformable fluorescent proteins for tracking the dynamics of cellular components. Photochemical and Photobiological Sciences, 2015, 14, 1787-1806.	2.9	27
35	Retinyl Ester Homeostasis in the Adipose Differentiation-related Protein-deficient Retina. Journal of Biological Chemistry, 2008, 283, 25091-25102.	3.4	25
36	Arrestins expressed in killifish photoreceptor cells. FEBS Letters, 1997, 411, 12-18.	2.8	21

3

#	Article	IF	Citations
37	Autosomal Recessive Retinitis Pigmentosa and E150K Mutation in the Opsin Gene. Journal of Biological Chemistry, 2006, 281, 22289-22298.	3.4	21
38	Proteomic Changes in the Photoreceptor Outer Segment upon Intense Light Exposure. Journal of Proteome Research, 2010, 9, 1173-1181.	3.7	21
39	Organization of cGMP sensing structures on the rod photoreceptor outer segment plasma membrane. Channels, 2014, 8, 528-535.	2.8	18
40	Hippocalcin in the olfactory epithelium: a mediator of second messenger signaling. Biochemical and Biophysical Research Communications, 2004, 322, 1131-1139.	2.1	16
41	Aster proteins mediate carotenoid transport in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200068119.	7.1	15
42	Protein Sorting in Healthy and Diseased Photoreceptors. Annual Review of Vision Science, 2019, 5, 73-98.	4.4	14
43	Visualization of Retinoid Storage and Trafficking by Two-Photon Microscopy. Methods in Molecular Biology, 2010, 652, 247-261.	0.9	14
44	Two types of arrestins expressed in medaka rod photoreceptors. FEBS Letters, 1999, 462, 31-36.	2.8	13
45	Impairment of Vision in a Mouse Model of Usher Syndrome Type III. , 2016, 57, 866.		13
46	Retinol dehydrogenase 8 and ATPâ€binding cassette transporter 4 modulate dark adaptation of Mâ€cones in mammalian retina. Journal of Physiology, 2015, 593, 4923-4941.	2.9	12
47	Retrograde intraciliary trafficking of opsin during the maintenance of coneâ€shaped photoreceptor outer segments of <i>Xenopus laevis</i> . Journal of Comparative Neurology, 2014, 522, 3577-3589.	1.6	11
48	Disrupted Plasma Membrane Protein Homeostasis in a Xenopus Laevis Model of Retinitis Pigmentosa. Journal of Neuroscience, 2019, 39, 5581-5593.	3.6	10
49	RPE Cells Engulf Microvesicles Secreted by Degenerating Rod Photoreceptors. ENeuro, 2020, 7, ENEURO.0507-19.2020.	1.9	8
50	Monitoring of Rhodopsin Trafficking and Mistrafficking in Live Photoreceptors. Methods in Molecular Biology, 2015, 1271, 293-307.	0.9	6
51	Pharmacological chaperone-mediated in vivo folding and stabilization of the P23H-opsin mutant associated with autosomal dominant retinitis pigmentosa. Journal of Biological Chemistry, 2003, 278, 21314.	3.4	4
52	A Third Photoreceptor-Specific GRK Found in the Retina of Oryzias latipes (Japanese killifish). Zoological Science, 2007, 24, 87-93.	0.7	3
53	Evolution of Visual Pigments and Related Molecules. Novartis Foundation Symposium, 1999, 224, 44-53.	1.1	3
54	A smartphone based method for mouse fundus imaging. Experimental Eye Research, 2021, 206, 108530.	2.6	1

#	Article	IF	CITATIONS
55	Retrograde intraciliary trafficking of opsin during the maintenance of cone-shaped photoreceptor outer segments of Xenopus laevis. Journal of Comparative Neurology, 2014, 522, Spc1-Spc1.	1.6	O
56	Spatiotemporal Analysis of Protein Transport and Membrane Morphogenesis in Vertebrate Photoreceptors. Seibutsu Butsuri, 2016, 56, 018-022.	0.1	0