List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9428681/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wheat Gluten Peptides Enhance Ethanol Stress Tolerance by Regulating the Membrane Lipid Composition in Yeast. Journal of Agricultural and Food Chemistry, 2022, 70, 5057-5065.	5.2	13
2	Effect of dry hopping on the oxidative stability of beer. Food Chemistry, 2022, 394, 133480.	8.2	1
3	Retention of Iron and Copper during Mashing of Roasted Malts. Journal of the American Society of Brewing Chemists, 2021, 79, 138-144.	1.1	8
4	ESR spin trapping for in situ detection of radicals involved in the early stages of lipid oxidation of dried microencapsulated oils. Food Chemistry, 2021, 341, 128227.	8.2	17
5	Lipid oxidation studied by electron paramagnetic resonance (EPR). , 2021, , 201-213.		0
6	Measurement of hydrogen peroxide vapor in powders with potassium titanium oxide oxalate loaded cellulose pellets as probes. MethodsX, 2021, 8, 101405.	1.6	4
7	Optimization of Beer Brewing by Monitoring α-Amylase and β-Amylase Activities during Mashing. Beverages, 2021, 7, 13.	2.8	7
8	Copper Binding in Sweet Worts Made from Specialty Malts. Journal of Agricultural and Food Chemistry, 2021, 69, 6613-6622.	5.2	1
9	Reactivity of anatase and rutile titanium dioxide powder with hydrogen peroxide vapour: Implication for reactive coating systems for laundry enzymes. Powder Technology, 2021, 391, 353-361.	4.2	0
10	Physical State of βâ€Carotene at High Concentrations in a Solid Triglyceride Matrix. European Journal of Lipid Science and Technology, 2020, 122, 1900250.	1.5	2
11	Emulsifying peptides from potato protein predicted by bioinformatics: Stabilization of fish oil-in-water emulsions. Food Hydrocolloids, 2020, 101, 105529.	10.7	45
12	Multiresponse Kinetic Modeling of Heat-Induced Equilibrium of β-Carotene cis–trans Isomerization in Medium-Chain Triglyceride Oil. Journal of Agricultural and Food Chemistry, 2020, 68, 845-855.	5.2	2
13	Characterisation of protein-polyphenol interactions in beer during forced aging. Journal of the Institute of Brewing, 2020, 126, 371.	2.3	4
14	Modulation of gastrointestinal digestion of β-lactoglobulin and micellar casein following binding by (â^')-epigallocatechin-3-gallate (EGCG) and green tea flavanols. Food and Function, 2020, 11, 6038-6053.	4.6	17
15	Trapping of Carbonyl Compounds by Epicatechin: Reaction Kinetics and Identification of Epicatechin Adducts in Stored UHT Milk. Journal of Agricultural and Food Chemistry, 2020, 68, 7718-7726.	5.2	24
16	Quantitation of Protein Cysteine–Phenol Adducts in Minced Beef Containing 4-Methyl Catechol. Journal of Agricultural and Food Chemistry, 2020, 68, 2506-2515.	5.2	15
17	The effect of molecular structure of polyphenols on the kinetics of the trapping reactions with methylglyoxal. Food Chemistry, 2020, 319, 126500.	8.2	19
18	Effects of humidity on cellulose pellets loaded with potassium titanium oxide oxalate for detection of hydrogen peroxide vapor in powders. Powder Technology, 2020, 366, 348-357.	4.2	9

#	Article	IF	CITATIONS
19	Covalent Protein-Polyphenol Bonding as Initial Steps of Haze Formation in Beer. Journal of the American Society of Brewing Chemists, 2020, 78, 153-164.	1.1	9
20	Identification of emulsifier potato peptides by bioinformatics: application to omega-3 delivery emulsions and release from potato industry side streams. Scientific Reports, 2020, 10, 690.	3.3	41
21	Effect of pH on the reaction between naringenin and methylglyoxal: A kinetic study. Food Chemistry, 2019, 298, 125086.	8.2	34
22	Morphology and Structure of Solid Lipid Nanoparticles Loaded with High Concentrations of β-Carotene. Journal of Agricultural and Food Chemistry, 2019, 67, 12273-12282.	5.2	20
23	Laccase Induced Lignin Radical Formation Kinetics Evaluated by Electron Paramagnetic Resonance Spectroscopy. ACS Sustainable Chemistry and Engineering, 2019, 7, 10425-10434.	6.7	16
24	Oxygen permeability and oxidative stability of fish oil-loaded electrosprayed capsules measured by Electron Spin Resonance: Effect of dextran and glucose syrup as main encapsulating materials. Food Chemistry, 2019, 287, 287-294.	8.2	28
25	Interactions of dietary fiber bound antioxidants with hydroxycinnamic and hydroxybenzoic acids in aqueous and liposome media. Food Chemistry, 2019, 278, 294-304.	8.2	11
26	Characterization and reactivity of soot from fast pyrolysis of lignocellulosic compounds and monolignols. Applied Energy, 2018, 212, 1489-1500.	10.1	41
27	Interactions of coffee and bread crust melanoidins with hydroxycinnamic and hydroxybenzoic acids in aqueous radical environment. Food Research International, 2018, 108, 286-294.	6.2	10
28	Influence of mediators on laccase catalyzed radical formation in lignin. Enzyme and Microbial Technology, 2018, 116, 48-56.	3.2	41
29	The Nature of Stable Char Radicals: An ESR and DFT Study of Structural and Hydrogen Bonding Requirements. ChemPlusChem, 2018, 83, 780-786.	2.8	5
30	ESR Spectroscopy for the Study of Oxidative Processes in Food and Beverages. , 2018, , 1781-1794.		1
31	ESR Spectroscopy for the Study of Oxidative Processes in Food and Beverages. , 2018, , 1-14.		3
32	Interactions between macromolecule-bound antioxidants and Trolox during liposome autoxidation: A multivariate approach. Food Chemistry, 2017, 237, 989-996.	8.2	8
33	Direct rate assessment of laccase catalysed radical formation in lignin by electron paramagnetic resonance spectroscopy. Enzyme and Microbial Technology, 2017, 106, 88-96.	3.2	35
34	Kinetic Models for the Role of Protein Thiols during Oxidation in Beer. Journal of Agricultural and Food Chemistry, 2017, 65, 10820-10828.	5.2	13
35	Quinone-induced protein modifications: Kinetic preference for reaction of 1,2-benzoquinones with thiol groups in proteins. Free Radical Biology and Medicine, 2016, 97, 148-157.	2.9	100
36	Characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperatures. Biomass and Bioenergy, 2016, 94, 117-129.	5.7	64

#	Article	IF	CITATIONS
37	Implications of Xanthohumol Enrichment on the Oxidative Stability of Pale and Dark Beers. Journal of the American Society of Brewing Chemists, 2016, 74, 24-29.	1.1	3
38	Localized lipid autoxidation initiated by two-photon irradiation within single oil droplets in oil-in-water emulsions. Food Chemistry, 2016, 199, 760-767.	8.2	19
39	High molecular weight compounds generated by roasting barley malt are pro-oxidants in metal-catalyzed oxidations. European Food Research and Technology, 2016, 242, 1545-1553.	3.3	21
40	Free radical formation by Lactobacillus acidophilus NCFM is enhanced by antioxidants and decreased by catalase. Food Research International, 2016, 79, 81-87.	6.2	14
41	Liquid-core nanocellulose-shell capsules with tunable oxygen permeability. Carbohydrate Polymers, 2016, 136, 292-299.	10.2	39
42	Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer. Scientific Reports, 2015, 5, 18561.	3.3	180
43	Effect of Protease Treatment during Mashing on Protein-Derived Thiol Content and Flavor Stability of Beer during Storage. Journal of the American Society of Brewing Chemists, 2015, 73, 287-295.	1.1	11
44	Fatty acids and oxidative stability of meat from lambs fed carob-containing diets. Food Chemistry, 2015, 182, 27-34.	8.2	30
45	Partial coalescence in emulsions: The impact of solid fat content and fatty acid composition. European Journal of Lipid Science and Technology, 2015, 117, 1627-1635.	1.5	24
46	Catalase Expression Is Modulated by Vancomycin and Ciprofloxacin and Influences the Formation of Free Radicals in Staphylococcus aureus Cultures. Applied and Environmental Microbiology, 2015, 81, 6393-6398.	3.1	13
47	Characterisation of a whey protein hydrolysate as antioxidant. International Dairy Journal, 2015, 47, 86-93.	3.0	26
48	Antioxidative Mechanisms of Sulfite and Protein-Derived Thiols during Early Stages of Metal Induced Oxidative Reactions in Beer. Journal of Agricultural and Food Chemistry, 2015, 63, 8254-8261.	5.2	20
49	Quality of pilsner malt and roasted malt during storage. Journal of the Institute of Brewing, 2014, 120, n/a-n/a.	2.3	4
50	Evidence for Transfer of Radicals between Oil-in-Water Emulsion Droplets as Detected by the Probe (<i>E</i> , <i>E</i>)-3,5-Bis(4-phenyl-1,3-butadienyl)-4,4-difluoro-4-bora-3a,4a-diaza- <i>s</i> -indacene, BODIPY ^{665/676} . Journal of Agricultural and Food Chemistry, 2014, 62, 12428-12435.	5.2	15
51	Mechanisms of radical formation in beef and chicken meat during high pressure processing evaluated by electron spin resonance detection and the addition of antioxidants. Food Chemistry, 2014, 150, 422-428.	8.2	44
52	Dietary citrus pulp improves protein stability in lamb meat stored under aerobic conditions. Meat Science, 2014, 97, 231-236.	5.5	31
53	Detection of radicals in single droplets of oil-in-water emulsions with the lipophilic fluorescent probe BODIPY665/676 and confocal laser scanning microscopy. Free Radical Biology and Medicine, 2014, 70, 233-240.	2.9	19
54	Competitive Displacement of Sodium Caseinate by Low-Molecular-Weight Emulsifiers and the Effects on Emulsion Texture and Rheology. Langmuir, 2014, 30, 8687-8696.	3.5	56

#	Article	IF	CITATIONS
55	The effects of low-molecular-weight emulsifiers in O/W-emulsions on microviscosity of non-solidified oil in fat globules and the mobility of emulsifiers at the globule surfaces. Journal of Colloid and Interface Science, 2014, 419, 134-141.	9.4	29
56	Modulating the structural properties of β-d-glucan degradation products by alternative reaction pathways. Carbohydrate Polymers, 2014, 99, 679-686.	10.2	29
57	Oxidative stabilization of mixed mayonnaises made with linseed oil and saturated medium-chain triglyceride oil. Food Chemistry, 2014, 152, 378-385.	8.2	21
58	Epicatechin and epigallocatechin gallate inhibit formation of intermediary radicals during heating of lysine and glucose. Food Chemistry, 2014, 146, 48-55.	8.2	47
59	ESR spin trapping for characterization of radical formation in Lactobacillus acidophilus NCFM and Listeria innocua. Journal of Microbiological Methods, 2013, 94, 205-212.	1.6	8
60	Thiol oxidation and protein cross-link formation during chill storage of pork patties added essential oil of oregano, rosemary, or garlic. Meat Science, 2013, 95, 177-184.	5.5	67
61	Beer Thiol-Containing Compounds and Redox Stability: Kinetic Study of 1-Hydroxyethyl Radical Scavenging Ability. Journal of Agricultural and Food Chemistry, 2013, 61, 9444-9452.	5.2	27
62	Radical mediated degradation of cereal β-glucan. Free Radical Biology and Medicine, 2013, 65, S16-S17.	2.9	1
63	Stability of whippable oil-in-water emulsions: Effect of monoglycerides on crystallization of palm kernel oil. Food Research International, 2013, 54, 1738-1745.	6.2	46
64	Quantification of protein thiols using ThioGloÂ1 fluorescent derivatives and HPLC separation. Analyst, The, 2013, 138, 2096.	3.5	20
65	Reduction of Ferrylmyoglobin by Theanine and Green Tea Catechins. Importance of Specific Acid Catalysis. Journal of Agricultural and Food Chemistry, 2013, 61, 3159-3166.	5.2	11
66	Formation of radicals during heating lysine and glucose in solution with an intermediate water activity. Free Radical Research, 2013, 47, 643-650.	3.3	11
67	Influence of Barley Varieties on Wort Quality and Performance. Journal of Agricultural and Food Chemistry, 2013, 61, 1968-1976.	5.2	13
68	Storage stability of pasteurized non-filtered beer. Journal of the Institute of Brewing, 2013, 119, n/a-n/a.	2.3	9
69	Determination of Sulfite in Beer Based on Fluorescent Derivatives and Liquid Chromatographic Separation. Journal of the American Society of Brewing Chemists, 2012, 70, 296-302.	1.1	18
70	Effect of Pasteurization on the Protein Composition and Oxidative Stability of Beer during Storage. Journal of Agricultural and Food Chemistry, 2012, 60, 12362-12370.	5.2	12
71	Radical formation during heating of solutions of lysine and glucose. Free Radical Biology and Medicine, 2012, 53, S143.	2.9	0
72	Influence of Malt Roasting on the Oxidative Stability of Sweet Wort. Journal of Agricultural and Food Chemistry, 2012, 60, 5652-5659.	5.2	35

#	Article	IF	CITATIONS
73	Green tea extract as food antioxidant. Synergism and antagonism with α-tocopherol in vegetable oils and their colloidal systems. Food Chemistry, 2012, 135, 2195-2202.	8.2	99
74	Ascorbic acid induced degradation of beta-glucan: Hydroxyl radicals as intermediates studied by spin trapping and electron spin resonance spectroscopy. Carbohydrate Polymers, 2012, 87, 2160-2168.	10.2	42
75	Formation of oxidising species and their role in the viscosity loss of cereal beta-glucan extracts. Food Chemistry, 2012, 132, 2007-2013.	8.2	10
76	Oxidative stability of whole wheat bread during storage. LWT - Food Science and Technology, 2011, 44, 637-642.	5.2	40
77	Heat induced formation of free radicals in wheat flour. Journal of Cereal Science, 2011, 54, 494-498.	3.7	8
78	Detection of Thiol Groups in Beer and Their Correlation with Oxidative Stability. Journal of the American Society of Brewing Chemists, 2011, 69, 163-169.	1.1	24
79	Textural and biochemical changes during ripening of old-fashioned salted herrings. Journal of the Science of Food and Agriculture, 2011, 91, 330-336.	3.5	17
80	Characterisation of a stable radical from dark roasted malt in wort and beer. Food Chemistry, 2011, 125, 380-387.	8.2	16
81	Interactions between tocopherols, tocotrienols and carotenoids during autoxidation of mixed palm olein and fish oil. Food Chemistry, 2011, 127, 1792-1797.	8.2	43
82	Antioxidant active packaging for chicken meat processed by high pressure treatment. Food Chemistry, 2011, 129, 1406-1412.	8.2	124
83	The role of phenolic compounds during formation of turbidity in an aromatic bitter. Food Chemistry, 2010, 123, 1035-1039.	8.2	6
84	A role for taurine in mitochondrial function. Journal of Biomedical Science, 2010, 17, S23.	7.0	124
85	Light-induced quality changes in food and beverages. , 2010, , 113-139.		7
86	Chemical deterioration and physical instability of food and beverages. , 2010, , .		16
87	Beer and ESR Spin Trapping. , 2009, , 1043-1053.		2
88	Modifications of amino acids during ferulic acid-mediated, laccase-catalysed cross-linking of peptides. Free Radical Research, 2009, 43, 1167-1178.	3.3	6
89	Galloylated Polyphenols Efficiently Reduce α-Tocopherol Radicals in a Phospholipid Model System Composed of Sodium Dodecyl Sulfate (SDS) Micelles. Journal of Agricultural and Food Chemistry, 2009, 57, 5042-5048.	5.2	23
90	Caffeic Acid as Antioxidant in Fish Muscle: Mechanism of Synergism with Endogenous Ascorbic Acid and α-Tocopherol. Journal of Agricultural and Food Chemistry, 2009, 57, 675-681.	5.2	51

#	Article	IF	CITATIONS
91	Efficiency of Hemoglobin from Rainbow Trout, Cod, and Herring in Promotion of Hydroperoxide-Derived Free Radicals. Journal of Agricultural and Food Chemistry, 2009, 57, 8661-8667.	5.2	3
92	Identification of Free Radical Intermediates in Oxidized Wine Using Electron Paramagnetic Resonance Spin Trapping. Journal of Agricultural and Food Chemistry, 2009, 57, 4359-4365.	5.2	93
93	Antioxidant synergism between fruit juice and α-tocopherol. A comparison between high phenolic black chokeberry (Aronia melanocarpa) and high ascorbic blackcurrant (Ribes nigrum). European Food Research and Technology, 2008, 226, 737-743.	3.3	40
94	Extracts of plant cell cultures of Lavandula vera and Rosa damascena as sources of phenolic antioxidants for use in foods. European Food Research and Technology, 2008, 227, 1243-1249.	3.3	31
95	Cross-Linking Proteins by Laccase-Catalyzed Oxidation: Importance Relative to Other Modifications. Journal of Agricultural and Food Chemistry, 2008, 56, 12002-12010.	5.2	64
96	Heme-Mediated Production of Free Radicals via Preformed Lipid Hydroperoxide Fragmentation. Journal of Agricultural and Food Chemistry, 2008, 56, 11478-11484.	5.2	23
97	Oxidation of Porcine Myosin by Hypervalent Myoglobin: The Role of Thiol Groups. Journal of Agricultural and Food Chemistry, 2008, 56, 3297-3304.	5.2	50
98	Oxidative Reactions during Early Stages of Beer Brewing Studied by Electron Spin Resonance and Spin Trapping. Journal of Agricultural and Food Chemistry, 2008, 56, 8514-8520.	5.2	36
99	In Vivo ESR Spin Trapping Detection of Carbon-Centered α-Farnesene Radicals. Journal of Agricultural and Food Chemistry, 2008, 56, 4333-4339.	5.2	5
100	Effects of Maillard and Caramelization Products on Oxidative Reactions in Lager Beer. Journal of the American Society of Brewing Chemists, 2007, 65, 15-20.	1.1	26
101	Efficiency of Natural Phenolic Compounds Regenerating α-Tocopherol from α-Tocopheroxyl Radical. Journal of Agricultural and Food Chemistry, 2007, 55, 3661-3666.	5.2	50
102	Characterization of Oxidative Changes in Salted Herring (<i>Clupea harengus</i>) During Ripening. Journal of Agricultural and Food Chemistry, 2007, 55, 9545-9553.	5.2	48
103	Puerarin and Conjugate Bases as Radical Scavengers and Antioxidants: Molecular Mechanism and Synergism with β-Carotene. Journal of Agricultural and Food Chemistry, 2007, 55, 2384-2391.	5.2	79
104	Antioxidative effects of leaves from Azadirachta species of different provenience. Food Chemistry, 2007, 104, 1539-1549.	8.2	12
105	Lipid Oxidation, Antioxidants, and Spin Trapping. ACS Symposium Series, 2007, , 106-117.	0.5	5
106	Flavin-induced photodecomposition of sulfur-containing amino acids is decisive in the formation of beer lightstruck flavor. Photochemical and Photobiological Sciences, 2006, 5, 961.	2.9	44
107	Oxidation of bovine serum albumin initiated by the Fenton reaction—effect of EDTA,tert-butylhydroperoxide and tetrahydrofuran. Free Radical Research, 2006, 40, 409-417.	3.3	30
108	Amino Acid and Protein Scavenging of Radicals Generated by Iron/Hydroperoxide System:Â An Electron Spin Resonance Spin Trapping Study. Journal of Agricultural and Food Chemistry, 2006, 54, 10215-10221.	5.2	39

MOGENS L ANDERSEN

#	Article	IF	CITATIONS
109	Volatile Monoterpenes in Black Currant (Ribes nigrumL.) Juice:Â Effects of Heating and Enzymatic Treatment by β-Glucosidase. Journal of Agricultural and Food Chemistry, 2006, 54, 2298-2302.	5.2	24
110	Antioxidative and prooxidative effects of extracts made from cherry liqueur pomace. Food Chemistry, 2006, 99, 6-14.	8.2	54
111	The Important Role of Taurine in Oxidative Metabolism. , 2006, 583, 129-135.		79
112	Identification and quantification of phenolics in aromatic bitter and cherry liqueur by HPLC with electrochemical detection. European Food Research and Technology, 2006, 223, 663-668.	3.3	19
113	Glycosidically bound alcohols of blackcurrant juice. Developments in Food Science, 2006, 43, 477-480.	0.0	1
114	Storage stabilities of pork scratchings, peanuts, oatmeal and muesli: Comparison of ESR spectroscopy, headspace-GC and sensory evaluation for detection of oxidation in dry foods. Food Chemistry, 2005, 91, 25-38.	8.2	44
115	Detection of radical development by ESR spectroscopy techniques for assessment of oxidative susceptibility of fish oils. European Food Research and Technology, 2005, 221, 667-674.	3.3	20
116	Heterometallic manganese/zinc-phytate complex as a model compound for metal storage in wheat grains. Journal of Inorganic Biochemistry, 2005, 99, 1973-1982.	3.5	59
117	Electron Spin Resonance Spin Trapping for Analysis of Lipid Oxidation in Oils:Â Inhibiting Effect of the Spin Trap α-Phenyl-N-tert-butylnitrone on Lipid Oxidation. Journal of Agricultural and Food Chemistry, 2005, 53, 1328-1336.	5.2	60
118	Photooxidative Degradation of Beer Bittering Principles:Â A Key Step on the Route to Lightstruck Flavor Formation in Beer. Journal of Agricultural and Food Chemistry, 2005, 53, 1489-1494.	5.2	42
119	Mechanism of Oxymyoglobin Oxidation in the Presence of Oxidizing Lipids in Bovine Muscle. Journal of Agricultural and Food Chemistry, 2005, 53, 5734-5738.	5.2	36
120	Evaluation of oxidative stability of vegetable oils by monitoring the tendency to radical formation. A comparison of electron spin resonance spectroscopy with the Rancimat method and differential scanning calorimetry. Food Chemistry, 2004, 85, 623-632.	8.2	204
121	Riboflavin-sensitized photooxidation of isohumulones and derivatives. Photochemical and Photobiological Sciences, 2004, 3, 337.	2.9	32
122	Reactivity of Bovine Whey Proteins, Peptides, and Amino Acids toward Triplet Riboflavin as Studied by Laser Flash Photolysis. Journal of Agricultural and Food Chemistry, 2004, 52, 6602-6606.	5.2	76
123	Influence of Thermal Treatment on Black Currant (Ribes nigrumL.) Juice Aroma. Journal of Agricultural and Food Chemistry, 2004, 52, 7628-7636.	5.2	46
124	Effect of Temperature and Glassy States on the Molecular Mobility of Solutes in Frozen Tuna Muscle As Studied by Electron Spin Resonance Spectroscopy with Spin Probe Detection. Journal of Agricultural and Food Chemistry, 2004, 52, 2269-2276.	5.2	15
125	Oxidative stability of frozen pork patties: Effect of fluctuating temperature on lipid oxidation. Meat Science, 2004, 68, 185-191.	5.5	44
126	The Question of High- or Low-Temperature Glass Transition in Frozen Fish. Construction of the Supplemented State Diagram for Tuna Muscle by Differential Scanning Calorimetry. Journal of Agricultural and Food Chemistry, 2003, 51, 211-217.	5.2	35

MOGENS L ANDERSEN

#	Article	IF	CITATIONS
127	Radicaloid-Type Oxidative Decomposition Of Beer Bittering Agents Revealed. Chemistry - A European Journal, 2003, 9, 4693-4699.	3.3	36
128	The effect of pH on the oxidation of bovine serum albumin by hypervalent myoglobin species. Archives of Biochemistry and Biophysics, 2003, 416, 202-208.	3.0	19
129	Mobility of solutes in frozen pork studied by electron spin resonance spectroscopy. Meat Science, 2003, 63, 63-67.	5.5	8
130	Optimising the use of phenolic compounds in foods. , 2003, , 315-346.		20
131	Pseudoperoxidase Activity of Myoglobin: Pigment Catalyzed Formation of Radicals in Meat Systems. ACS Symposium Series, 2002, , 138-150.	0.5	3
132	Detection of early events in lipid oxidation by electron spin resonance spectroscopy. European Journal of Lipid Science and Technology, 2002, 104, 65-68.	1.5	45
133	Phenols and metals in sugar-cane spirits. Quantitative analysis and effect on radical formation and radical scavenging. European Food Research and Technology, 2002, 215, 169-175.	3.3	30
134	Modification of the Levels of Polyphenols in Wort and Beer by Addition of Hexamethylenetetramine or Sulfite during Mashing. Journal of Agricultural and Food Chemistry, 2001, 49, 5232-5237.	5.2	29
135	Oxidative stability of processed pork. Assay based on ESR-detection of radicals. European Food Research and Technology, 2001, 213, 170-173.	3.3	32
136	Oxygen permeation through an oil-encapsulating glassy food matrix studied by ESR line broadening using a nitroxyl spin probe. Food Chemistry, 2000, 70, 499-508.	8.2	66
137	Reduction of ferrylmyoglobin by the spin trapN-tert-butyl-α-phenylnitrone (PBN) in aqueous solution and during freezing. Free Radical Research, 2000, 32, 313-325.	3.3	1
138	Potential Antioxidants in Beer Assessed by ESR Spin Trapping. Journal of Agricultural and Food Chemistry, 2000, 48, 3106-3111.	5.2	125
139	Acid-catalysed autoreduction of ferrylmyoglobin in aqueous solution studied by freeze quenching and ESR spectroscopy. Free Radical Research, 1999, 30, 305-314.	3.3	13
140	Electrochemistry of Electron Transfer Probes. alpha-Aryloxyacetoveratrones and Implications for the Mechanism of Photo-yellowing of Pulp Acta Chemica Scandinavica, 1999, 53, 830-836.	0.7	13
141	Electron Spin Resonance Spin Trapping Identification of Radicals Formed during Aerobic Forced Aging of Beer. Journal of Agricultural and Food Chemistry, 1998, 46, 1272-1275.	5.2	115
142	Electrochemistry of Electron Transfer Probes. Observation of the Transition from Activation to Counterdiffusion Control in the Fragmentation of α-Aryloxyacetophenone Radical Anions1a. Journal of the American Chemical Society, 1997, 119, 6590-6595.	13.7	32
143	The Dimerization of 2,5-Diaryl-1,4-dithiin Radical Cations Acta Chemica Scandinavica, 1997, 51, 94-107.	0.7	8
144	Electrochemistry of Electron-Transfer Probes. The Role of the Leaving Group in the Cleavage of Radical Anions of α-Aryloxyacetophenones1. Journal of the American Chemical Society, 1996, 118, 4871-4879.	13.7	32

#	Article	IF	CITATIONS
145	Electrochemistry of electron transfer probes. competition between ece and disp mechanisms in the reduction of α-aryloxyacetophenones. Journal of Electroanalytical Chemistry, 1996, 412, 53-58.	3.8	10
146	Substituent Effects on Homolytic Bond Dissociation Free Energies of OxygenAcetyl Bonds in Phenyl Acetates and NitrogenAcetyl Bonds in Acetanilides Acta Chemica Scandinavica, 1996, 50, 1045-1049.	0.7	2
147	The Electrochemical Reduction and a Novel Base-Catalyzed Rearrangement of 2,5-Diaryl-1,4-dithiins Acta Chemica Scandinavica, 1995, 49, 503-514.	0.7	8
148	Oxidation of Aromatic Compounds by Diazonium Ions. Unexpectedly Facile Electron Transfer Reactions Acta Chemica Scandinavica, 1991, 45, 983-985.	0.7	4
149	Kinetics and Mechanisms of the Voltammetric Reduction of Heteroaromatic N-Oxides in Aprotic Media. The Protonation of 1,4-Diphenylphthalazine N-Oxide Anion Radical by Diethyl Malonate in N,N-Dimethylformamide Acta Chemica Scandinavica, 1985, 39b, 603-605.	0.7	1