James Hower

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9428580/publications.pdf Version: 2024-02-01

	9786	16650
18,146	73	123
citations	h-index	g-index
270	270	5474
docs citations	times ranked	citing authors
	citations 270	18,146 73 citations h-index 270 270

INMES HOWED

#	Article	IF	CITATIONS
1	Artisanal ceramic factories using wood combustion: A nanoparticles and human health study. Geoscience Frontiers, 2022, 13, 101151.	8.4	5
2	Deposition of nanoparticles on school eyeglasses in urban and rural areas: A methodology for a more real assessment of the possible impacts. Geoscience Frontiers, 2022, 13, 101135.	8.4	3
3	Possibilities of using silicate rock powder: An overview. Geoscience Frontiers, 2022, 13, 101185.	8.4	29
4	A review of rare earth elements and yttrium in coal ash: Content, modes of occurrences, combustion behavior, and extraction methods. Progress in Energy and Combustion Science, 2022, 88, 100954.	31.2	64
5	Rapid removal of PFOA and PFOS via modified industrial solid waste: Mechanisms and influences of water matrices. Chemical Engineering Journal, 2022, 433, 133271.	12.7	16
6	Aspects of rare earth element enrichment in Allegheny Plateau coals, Pennsylvania, USA. Applied Geochemistry, 2022, 136, 105150.	3.0	3
7	Origin of the tuff parting and associated enrichments of Zr, REY, redox-sensitive and other elements in the Early Miocene coal of the Siniy Utyes Basin, southwestern Primorye, Russia. International Journal of Coal Geology, 2022, 250, 103913.	5.0	16
8	Resources from coal beneficiation waste: Chemistry and petrology of the Ayrshire coal tailings ponds, Chandler, Indiana. Fuel, 2022, 313, 123054.	6.4	4
9	Mineralogical and geochemical characteristics of tonsteins from the Middle Jurassic Yan'an Formation, Ordos Basin, North China. International Journal of Coal Geology, 2022, 253, 103968.	5.0	14
10	Geochemical characteristics and paleoclimate implication of Middle Jurassic coal in the Ordos Basin, China. Ore Geology Reviews, 2022, 144, 104848.	2.7	18
11	Granite-bauxite provenance of abnormally enriched boehmite and critical elements (Nb, Ta, Zr, Hf and) Tj ETQq1 1 Geochemical Exploration, 2022, 239, 107016.	0.78431 3.2	4 rgBT /Ove 15
12	Geochemical, mineralogical, and petrological characteristics of the Cretaceous coal from the middle Benue Trough Basin, Nigeria: Implication for coal depositional environments. Energy Geoscience, 2022, 3, 300-313.	2.9	2
13	Influence of selected factors of Polish coking coals on the Hardgrove Grindability Index (HGI). International Journal of Coal Preparation and Utilization, 2021, 41, 789-802.	2.1	8
14	Nanomineralogy of evaporative precipitation of efflorescent compounds from coal mine drainage. Geoscience Frontiers, 2021, 12, 101003.	8.4	10
15	Portable dehumidifiers as an original matrix for the study of inhalable nanoparticles in school. Chemosphere, 2021, 262, 127295.	8.2	2
16	Estimation of heavy and light rare earth elements of coal by intelligent methods. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2021, 43, 70-79.	2.3	6
17	Titanium nanoparticles in sedimented dust aggregates from urban children's parks around coal ashes wastes. Fuel, 2021, 285, 119162.	6.4	15
18	Mercury stable isotope fractionation during gaseous elemental mercury adsorption onto coal fly ash particles: Experimental and field observations. Journal of Hazardous Materials, 2021, 405, 124280.	12.4	10

#	Article	IF	CITATIONS
19	Rare Earth-bearing particles in fly ash carbons: Examples from the combustion of eastern Kentucky coals. Energy Geoscience, 2021, 2, 90-98.	2.9	18
20	Sustainable Release of Macronutrients to Black Oat and Maize Crops from Organically-Altered Dacite Rock Powder. Natural Resources Research, 2021, 30, 1941-1953.	4.7	7
21	Volcanic emissions and atmospheric pollution: A study of nanoparticles. Geoscience Frontiers, 2021, 12, 746-755.	8.4	32
22	Distribution of rare earth elements in fly ash derived from the combustion of Illinois Basin coals. Fuel, 2021, 289, 119990.	6.4	19
23	Geochemistry and petrology of coal and coal fly ash from a thermal power plant in India. Fuel, 2021, 291, 120122.	6.4	10
24	Metal-Containing Nanoparticles in Low-Rank Coal-Derived Fly Ash from China: Characterization and Implications toward Human Lung Toxicity. Environmental Science & Technology, 2021, 55, 6644-6654.	10.0	28
25	Migmatite-like textures in anthracite: Further evidence for low-grade metamorphic melting and resolidification in high-rank coals. Geoscience Frontiers, 2021, 12, 101122.	8.4	5
26	Geochemistry, mineralogy and thermal analyses of Cretaceous coals from the Benue Trough basin Nigeria: Reconnaissance assessments. Journal of African Earth Sciences, 2021, 178, 104167.	2.0	1
27	The Tarim Basin, China, a prospect for plume-related Zr(Hf)-Nb(Ta)-REY-Ga-U mineralization. Ore Geology Reviews, 2021, 133, 104081.	2.7	12
28	Distribution of rare earth elements in the pilot-scale processing of fly ashes derived from eastern Kentucky coals: Comparisons of the feed and processed ashes. Fuel, 2021, 295, 120562.	6.4	18
29	The key roles of Fe-bearing minerals on arsenic capture and speciation transformation during high-As bituminous coal combustion: Experimental and theoretical investigations. Journal of Hazardous Materials, 2021, 415, 125610.	12.4	23
30	Modes of occurrence of elements in coal: A critical evaluation. Earth-Science Reviews, 2021, 222, 103815.	9.1	115
31	Lithium and redox-sensitive (Ge, U, Mo, V) element mineralization in the Pennsylvanian coals from the Huangtupo coalfield, Shanxi, northern China: With emphasis on the interaction of infiltrating seawater and exfiltrating groundwater. Fuel, 2021, 300, 120948.	6.4	27
32	Signatures of rare earth element distributions in fly ash derived from the combustion of Central Appalachian, Illinois, and Powder River basin coals. Fuel, 2021, 301, 121048.	6.4	13
33	Contrasts in maceral textures in progressive metamorphism versus near-surface hydrothermal metamorphism. International Journal of Coal Geology, 2021, 246, 103840.	5.0	10
34	Distribution of rare earth elements and other critical elements in beneficiated Pennsylvania anthracites. Fuel, 2021, 304, 121400.	6.4	16
35	Soft modelling of the Hardgrove grindability index of bituminous coals: An overview. International Journal of Coal Geology, 2021, 247, 103846.	5.0	7
36	Rare earth elements study of Cretaceous coals from Benue Trough basin, Nigeria: Modes of occurrence for greater sustainability of mining. Fuel, 2021, 304, 121468.	6.4	8

#	Article	IF	CITATIONS
37	Distribution of Rare Earth Elements in the Illinois Basin Coals. Mining, Metallurgy and Exploration, 2021, 38, 1645-1663.	0.8	4
38	Mineral Matter in the Late Permian C1 Coal from Yunnan Province, China, with Emphasis on Its Origins and Modes of Occurrence. Minerals (Basel, Switzerland), 2021, 11, 19.	2.0	16
39	Petrology of the Fire Clay coal, Bear Branch, Perry County, Kentucky. International Journal of Coal Geology, 2021, 249, 103891.	5.0	7
40	Mineralogy and geochemistry of the Late Triassic coal from the Caotang mine, northeastern Sichuan Basin, China, with emphasis on the enrichment of the critical element lithium. Ore Geology Reviews, 2021, 139, 104582.	2.7	29
41	Study Relationship Between the Coal Thermoplastic Factor With Its Organic and Inorganic Properties by the Support Vector Regression Method. International Journal of Coal Preparation and Utilization, 2020, 40, 743-754.	2.1	4
42	Leaching behavior of trace elements from fly ashes of five Chinese coal power plants. International Journal of Coal Geology, 2020, 219, 103381.	5.0	46
43	Characterization of superhigh-organic-sulfur RaÅja coal, Istria, Croatia, and its environmental implication. International Journal of Coal Geology, 2020, 217, 103344.	5.0	26
44	Organic associations of non-mineral elements in coal: A review. International Journal of Coal Geology, 2020, 218, 103347.	5.0	128
45	Recognition of peat depositional environments in coal: A review. International Journal of Coal Geology, 2020, 219, 103383.	5.0	237
46	History of applied coal petrology in the United States. IV. Reflections on the centennial of the introduction of coal petrology to North America. International Journal of Coal Geology, 2020, 229, 103576.	5.0	7
47	Could hot fluids be the cause of natural pyrolysis at the ragged edge of Herrin coal, Millport 7 ½' quadrangle, Hopkins County, Kentucky?. International Journal of Coal Geology, 2020, 231, 103603.	5.0	3
48	Aspects of rare earth element enrichment in Central Appalachian coals. Applied Geochemistry, 2020, 120, 104676.	3.0	22
49	Geochemical partitioning from pulverized coal to fly ash and bottom ash. Fuel, 2020, 279, 118542.	6.4	37
50	Geochemistry, petrology, and palynology of the Princess No. 3 coal, Greenup County, Kentucky. International Journal of Coal Science and Technology, 2020, 7, 633-651.	6.0	7
51	Thermal properties of Pennsylvania anthracite. Fuel, 2020, 266, 117101.	6.4	14
52	Mineralogy of a rare earth element-rich Manchester coal lithotype, Clay County, Kentucky. International Journal of Coal Geology, 2020, 220, 103413.	5.0	21
53	Distribution of Lanthanides, Yttrium, and Scandium in the Pilot-Scale Beneficiation of Fly Ashes Derived from Eastern Kentucky Coals. Minerals (Basel, Switzerland), 2020, 10, 105.	2.0	32
54	Evidence for multiple sources for inorganic components in the Tucheng coal deposit, western Guizhou, China and the lack of critical-elements. International Journal of Coal Geology, 2020, 223, 103468.	5.0	46

#	Article	IF	CITATIONS
55	Bio-geochemical evolution and critical element mineralization in the Cretaceous-Cenozoic coals from the southern Far East Russia and northeastern China. Applied Geochemistry, 2020, 117, 104602.	3.0	23
56	Characterization of stoker ash from the combustion of high-lanthanide coal at a Kentucky bourbon distillery. International Journal of Coal Geology, 2019, 213, 103260.	5.0	16
57	The importance of minerals in coal as the hosts of chemical elements: A review. International Journal of Coal Geology, 2019, 212, 103251.	5.0	232
58	Leaching characteristics of alkaline coal combustion by-products: A case study from a coal-fired power plant, Hebei Province, China. Fuel, 2019, 255, 115710.	6.4	34
59	Enrichment origin of critical elements (Li and rare earth elements) and a Mo-U-Se-Re assemblage in Pennsylvanian anthracite from the Jincheng Coalfield, southeastern Qinshui Basin, northern China. Ore Geology Reviews, 2019, 115, 103184.	2.7	52
60	Petrographic characteristics of the brecciated coals from Panxian county, Guizhou, southwestern China. Fuel, 2019, 243, 1-9.	6.4	7
61	Environmental evaluation and nano-mineralogical study of fresh and unsaturated weathered coal fly ashes. Science of the Total Environment, 2019, 663, 177-188.	8.0	51
62	Nano-Scale Rare Earth Distribution in Fly Ash Derived from the Combustion of the Fire Clay Coal, Kentucky. Minerals (Basel, Switzerland), 2019, 9, 206.	2.0	21
63	Selective Recovery of Rare Earth Elements from Coal Fly Ash Leachates Using Liquid Membrane Processes. Environmental Science & Technology, 2019, 53, 4490-4499.	10.0	88
64	Feasibility study of preparation of carbon quantum dots from Pennsylvania anthracite and Kentucky bituminous coals. Fuel, 2019, 243, 433-440.	6.4	47
65	Marine derived 87Sr/86Sr in coal, a new key to geochronology and palaeoenvironment: Elucidation of the India-Eurasia and China-Indochina collisions in Yunnan, China. International Journal of Coal Geology, 2019, 215, 103304.	5.0	60
66	Structure Determination, Functional Characterization, and Biosynthetic Implications of Nybomycin Metabolites from a Mining Reclamation Site-Associated <i>Streptomyces</i> . Journal of Natural Products, 2019, 82, 3469-3476.	3.0	12
67	Notes on the mechanisms of coal metamorphism in the Pennsylvania Anthracite Fields. International Journal of Coal Geology, 2019, 202, 161-170.	5.0	36
68	Rare earth elements and yttrium in coal ash from the Luzhou power plant in Sichuan, Southwest China: Concentration, characterization and optimized extraction. International Journal of Coal Geology, 2019, 203, 1-14.	5.0	151
69	A novel nature-inspired optimization based neural network simulator to predict coal grindability index. Engineering Computations, 2018, 35, 1003-1048.	1.4	6
70	Modes of occurrence and origin of mineral matter in the Palaeogene coal (No. 19-2) from the Hunchun Coalfield, Jilin Province, China. International Journal of Coal Geology, 2018, 189, 94-110.	5.0	57
71	Rare earth element associations in the Kentucky State University stoker ash. International Journal of Coal Geology, 2018, 189, 75-82.	5.0	41
72	Submicron-scale mineralogy of lithotypes and the implications for trace element associations: Blue Gem coal, Knox County, Kentucky. International Journal of Coal Geology, 2018, 192, 73-82.	5.0	24

#	Article	IF	CITATIONS
73	Relationships between noble metals as potential coal combustion products and conventional coal properties. Fuel, 2018, 226, 345-349.	6.4	12
74	Ranking Coal Ash Materials for Their Potential to Leach Arsenic and Selenium: Relative Importance of Ash Chemistry and Site Biogeochemistry. Environmental Engineering Science, 2018, 35, 728-738.	1.6	35
75	Geochemistry and Nanomineralogy of Feed Coals and Their Coal Combustion Residues from Two Different Coal-Based Industries in Northeast India. Energy & Fuels, 2018, 32, 3697-3708.	5.1	17
76	Origin of a kaolinite-NH 4 -illite-pyrophyllite-chlorite assemblage in a marine-influenced anthracite and associated strata from the Jincheng Coalfield, Qinshui Basin, Northern China. International Journal of Coal Geology, 2018, 185, 61-78.	5.0	70
77	A model for Nb–Zr–REE–Ga enrichment in Lopingian altered alkaline volcanic ashes: Key evidence of H-O isotopes. Lithos, 2018, 302-303, 359-369.	1.4	61
78	Rare earth minerals in a "no tonstein―section of the Dean (Fire Clay) coal, Knox County, Kentucky. International Journal of Coal Geology, 2018, 193, 73-86.	5.0	52
79	A comparative study on the mineralogy, chemical speciation, and combustion behavior of toxic elements of coal beneficiation products. Fuel, 2018, 228, 297-308.	6.4	36
80	Enrichment of Bi-Be-Mo-Cd-Pb-Nb-Ga, REEs and Y in the Permian coals of the Huainan Coalfield, Anhui, China: Discussion. Ore Geology Reviews, 2018, 102, 937-939.	2.7	6
81	Determination of Eu concentrations in coal, fly ash and sedimentary rocks using a cation exchange resin and inductively coupled plasma mass spectrometry (ICP-MS). International Journal of Coal Geology, 2018, 191, 152-156.	5.0	80
82	Valuable elements in Chinese coals: a review. International Geology Review, 2018, 60, 590-620.	2.1	170
83	Mineralogy and geochemistry of ash and slag from coal gasification in China: a review. International Geology Review, 2018, 60, 717-735.	2.1	39
84	Coal as a promising source of critical elements: Progress and future prospects. International Journal of Coal Geology, 2018, 186, 155-164.	5.0	396
85	Stone coal in China: a review. International Geology Review, 2018, 60, 736-753.	2.1	77
86	Coal geology in China: an overview. International Geology Review, 2018, 60, 531-534.	2.1	39
87	Differences in bulk and microscale yttrium speciation in coal combustion fly ash. Environmental Sciences: Processes and Impacts, 2018, 20, 1390-1403.	3.5	26
88	Determination of Chemical Speciation of Arsenic and Selenium in High-As Coal Combustion Ash by X-ray Photoelectron Spectroscopy: Examples from a Kentucky Stoker Ash. ACS Omega, 2018, 3, 17637-17645.	3.5	53
89	Ultrafine Mineral Associations in Superhigh-Organic-Sulfur Kentucky Coals. ACS Omega, 2018, 3, 12179-12187.	3.5	6
90	Aqueous acid and alkaline extraction of rare earth elements from coal combustion ash. International Journal of Coal Geology, 2018, 195, 75-83.	5.0	103

#	Article	IF	CITATIONS
91	Estimating REY content of eastern Kentucky coal samples based on their associated ash elements. Journal of Rare Earths, 2018, 36, 1234-1238.	4.8	10
92	Effects of roasting additives and leaching parameters on the extraction of rare earth elements from coal fly ash. International Journal of Coal Geology, 2018, 196, 106-114.	5.0	103
93	Emission and transformation behavior of minerals and hazardous trace elements (HTEs) during coal combustion in a circulating fluidized bed boiler. Environmental Pollution, 2018, 242, 1950-1960.	7.5	48
94	Comments on Geochemical Characteristics of Rare-Metal, Rare-Scattered, and Rare-Earth Elements and Minerals in the Late Permian Coals from the Moxinpo Mine, Chongqing, China. Energy & Fuels, 2018, 32, 8891-8894.	5.1	6
95	Modes of occurrence of non-mineral inorganic elements in lignites from the Mile Basin, Yunnan Province, China. Fuel, 2018, 222, 146-155.	6.4	39
96	Mississippian anthracites in Guangxi Province, southern China: Petrological, mineralogical, and rare earth element evidence for high-temperature solutions. International Journal of Coal Geology, 2018, 197, 84-114.	5.0	53
97	Maceral Liberation and Distribution of Bituminous Coal for Predicting Maceral-Separation Performance. International Journal of Coal Preparation and Utilization, 2017, 37, 237-251.	2.1	11
98	Size-Dependent Variations in Fly Ash Trace Element Chemistry: Examples from a Kentucky Power Plant and with Emphasis on Rare Earth Elements. Energy & Fuels, 2017, 31, 438-447.	5.1	35
99	Mccrearamycins A–D, Geldanamycinâ€Derived Cyclopentenone Macrolactams from an Eastern Kentucky Abandoned Coal Mine Microbe. Angewandte Chemie - International Edition, 2017, 56, 2994-2998.	13.8	31
100	Mccrearamycins A–D, Geldanamycinâ€Derived Cyclopentenone Macrolactams from an Eastern Kentucky Abandoned Coal Mine Microbe. Angewandte Chemie, 2017, 129, 3040-3044.	2.0	4
101	Mississippian (Serpukhovian; Chesterian Stage) coals from the Fluorspar District, Crittenden and Caldwell counties, Kentucky: Petrological and palynological compositions and their indications for peat-producing ecosystems. International Journal of Coal Geology, 2017, 174, 23-30.	5.0	8
102	Anomalies of rare metals in Lopingian super-high-organic-sulfur coals from the Yishan Coalfield, Guangxi, China. Ore Geology Reviews, 2017, 88, 235-250.	2.7	104
103	Enrichment of germanium and associated arsenic and tungsten in coal and roll-front uranium deposits. Chemical Geology, 2017, 463, 29-49.	3.3	70
104	Coal-derived unburned carbons in fly ash: A review. International Journal of Coal Geology, 2017, 179, 11-27.	5.0	158
105	Organic geochemistry of funginite (Miocene, Eel River, Mendocino County, California, USA) and macrinite (Cretaceous, Inner Mongolia, China). International Journal of Coal Geology, 2017, 179, 60-71.	5.0	6
106	Chemistry and petrology of paired feed coal and combustion ash from anthracite-burning stoker boilers. Fuel, 2017, 199, 438-446.	6.4	15
107	Bi- and Tetracyclic Spirotetronates from the Coal Mine Fire Isolate <i>Streptomyces</i> sp. LC-6-2. Journal of Natural Products, 2017, 80, 1141-1149.	3.0	32
108	Modeling of gross calorific value based on coal properties by support vector regression method. Modeling Earth Systems and Environment, 2017, 3, 1.	3.4	21

#	Article	IF	CITATIONS
109	Spoxazomicin D and Oxachelin C, Potent Neuroprotective Carboxamides from the Appalachian Coal Fire-Associated Isolate <i>Streptomyces</i> sp. RM-14-6. Journal of Natural Products, 2017, 80, 2-11.	3.0	45
110	Altered volcanic ashes in coal and coal-bearing sequences: A review of their nature and significance. Earth-Science Reviews, 2017, 175, 44-74.	9.1	145
111	Distribution of rare earth elements in coal combustion fly ash, determined by SHRIMP-RG ion microprobe. International Journal of Coal Geology, 2017, 184, 1-10.	5.0	179
112	Discovery and ramifications of incidental Magnéli phase generation and release from industrial coal-burning. Nature Communications, 2017, 8, 194.	12.8	44
113	Naturally Occurring Radioactive Materials in Uranium-Rich Coals and Associated Coal Combustion Residues from China. Environmental Science & amp; Technology, 2017, 51, 13487-13493.	10.0	41
114	Impact of coal source changes on mercury content in fly ash: Examples from a Kentucky power plant. International Journal of Coal Geology, 2017, 170, 2-6.	5.0	17
115	Non-isothermal TG-DSC study on prediction of caking properties of vitrinite-rich concentrates of bituminous coals. Fuel Processing Technology, 2017, 156, 500-504.	7.2	21
116	Rare Earth Element Distribution in Fly Ash Derived from the Fire Clay Coal, Kentucky. Coal Combustion and Gasification Products, 2017, 9, 22-33.	1.0	43
117	Ponded and Landfilled Fly Ash as a Source of Rare Earth Elements from a Kentucky Power Plant. Coal Combustion and Gasification Products, 2017, 9, 1-21.	1.0	28
118	Notes on Contributions to the Science of Rare Earth Element Enrichment in Coal and Coal Combustion Byproducts. Minerals (Basel, Switzerland), 2016, 6, 32.	2.0	195
119	Clay Mineralogy of Coal-Hosted Nb-Zr-REE-Ga Mineralized Beds from Late Permian Strata, Eastern Yunnan, SW China: Implications for Paleotemperature and Origin of the Micro-Quartz. Minerals (Basel, Switzerland), 2016, 6, 45.	2.0	34
120	A review of anomalous rare earth elements and yttrium in coal. International Journal of Coal Geology, 2016, 159, 82-95.	5.0	356
121	Water and soil quality at two eastern-Kentucky (USA) coal fires. Environmental Earth Sciences, 2016, 75, 1.	2.7	16
122	Fundamental evaluation of petrographic effects on coal grindability by seasonal autoregressive integrated moving average (SARIMA). International Journal of Mineral Processing, 2016, 154, 94-99.	2.6	10
123	Devolatilization and kinetics of maceral concentrates of bituminous coals. Fuel Processing Technology, 2016, 154, 147-155.	7.2	18
124	Explaining relationships among various coal analyses with coal grindability index by Random Forest. International Journal of Mineral Processing, 2016, 155, 140-146.	2.6	47
125	Explaining relationships between coke quality index and coal properties by Random Forest method. Fuel, 2016, 182, 754-760.	6.4	62
126	Trends in the Rare Earth Element Content of U.SBased Coal Combustion Fly Ashes. Environmental Science & Technology, 2016, 50, 5919-5926.	10.0	208

#	Article	IF	CITATIONS
127	Distribution of rare earth elements in eastern Kentucky coals: Indicators of multiple modes of enrichment?. International Journal of Coal Geology, 2016, 160-161, 73-81.	5.0	149
128	Metalliferous coal deposits in East Asia (Primorye of Russia and South China): A review of geodynamic controls and styles of mineralization. Gondwana Research, 2016, 29, 60-82.	6.0	144
129	Observations and Assessment of Fly Ashes from High-Sulfur Bituminous Coals and Blends of High-Sulfur Bituminous and Subbituminous Coals: Environmental Processes Recorded at the Macro- and Nanometer Scale. Energy & Fuels, 2015, 29, 7168-7177.	5.1	79
130	Notes on the Potential for the Concentration of Rare Earth Elements and Yttrium in Coal Combustion Fly Ash. Minerals (Basel, Switzerland), 2015, 5, 356-366.	2.0	54
131	A statistical assessment of carbon monoxide emissions from the Truman Shepherd coal fire, Floyd County, Kentucky. International Journal of Coal Geology, 2015, 144-145, 88-97.	5.0	17
132	Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang, Yunnan, southwestern China: Key role of N2–CO2-mixed hydrothermal solutions. International Journal of Coal Geology, 2015, 152, 19-46.	5.0	142
133	Petrological, geochemical, and mineralogical compositions of the low-Ge coals from the Shengli Coalfield, China: A comparative study with Ge-rich coals and a formation model for coal-hosted Ge ore deposit. Ore Geology Reviews, 2015, 71, 318-349.	2.7	121
134	Geochemical and mineralogical evidence for a coal-hosted uranium deposit in the Yili Basin, Xinjiang, northwestern China. Ore Geology Reviews, 2015, 70, 1-30.	2.7	189
135	Microanalysis of barkinite from Chinese coals of high volatile bituminous rank. International Journal of Coal Geology, 2015, 141-142, 103-108.	5.0	12
136	Elements and phosphorus minerals in the middle Jurassic inertinite-rich coals of the Muli Coalfield on the Tibetan Plateau. International Journal of Coal Geology, 2015, 144-145, 23-47.	5.0	105
137	Terfestatins B and C, New <i>p</i> -Terphenyl Glycosides Produced by <i>Streptomyces</i> sp. RM-5–8. Organic Letters, 2015, 17, 2796-2799.	4.6	42
138	Naturally Occurring Radioactive Materials in Coals and Coal Combustion Residuals in the United States. Environmental Science & amp; Technology, 2015, 49, 11227-11233.	10.0	71
139	Mineralogical and geochemical compositions of the Pennsylvanian coal in the Hailiushu Mine, Daqingshan Coalfield, Inner Mongolia, China: Implications of sediment-source region and acid hydrothermal solutions. International Journal of Coal Geology, 2015, 137, 92-110.	5.0	137
140	Geochemistry and nano-mineralogy of feed coals, mine overburden, and coal-derived fly ashes from Assam (North-east India): a multi-faceted analytical approach. International Journal of Coal Geology, 2015, 137, 19-37.	5.0	90
141	Enrichment of U–Se–Mo–Re–V in coals preserved within marine carbonate successions: geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. Mineralium Deposita, 2015, 50, 159-186.	4.1	287
142	The native production of the sesquiterpene isopterocarpolone by <i>Streptomyces</i> sp. RM-14-6. Natural Product Research, 2014, 28, 337-339.	1.8	17
143	Notes on the relationship between microlithotype composition and Hardgrove grindability index for rank suites of Eastern Kentucky (Central Appalachian) coals. International Journal of Coal Geology, 2014, 131, 109-112.	5.0	22
144	Venturicidin C, a new 20-membered macrolide produced by Streptomyces sp. TS-2-2. Journal of Antibiotics, 2014, 67, 223-230.	2.0	33

#	Article	IF	CITATIONS
145	Obituary for Dr. William Spackman (1919–2014). International Journal of Coal Geology, 2014, 128-129, 165-167.	5.0	Ο
146	The occurrence of gold in fly ash derived from high-Ge coal. Mineralium Deposita, 2014, 49, 1-6.	4.1	34
147	Determination of As and Se in coal and coal combustion products using closed vessel microwave digestion and collision/reaction cell technology (CCT) of inductively coupled plasma mass spectrometry (ICP-MS). International Journal of Coal Geology, 2014, 124, 1-4.	5.0	132
148	Geochemistry and nano-mineralogy of two medium-sulfur northeast Indian coals. International Journal of Coal Geology, 2014, 121, 26-34.	5.0	91
149	Ruthmycin, a New Tetracyclic Polyketide from Streptomyces sp. RM-4-15. Organic Letters, 2014, 16, 456-459.	4.6	23
150	Mullinamides A and B, new cyclopeptides produced by the Ruth Mullins coal mine fire isolate Streptomyces sp. RM-27-46. Journal of Antibiotics, 2014, 67, 571-575.	2.0	31
151	Mineralogy and geochemistry of coal wastes from the Starzykowiec coal-waste dump (Upper Silesia,) Tj ETQq1 1	0.784314 5.0	l rgBT /Overl
152	Revisiting the late Permian coal from the Huayingshan, Sichuan, southwestern China: Enrichment and occurrence modes of minerals and trace elements. International Journal of Coal Geology, 2014, 122, 110-128.	5.0	160
153	Composition and modes of occurrence of minerals and elements in coal combustion products derived from high-Ge coals. International Journal of Coal Geology, 2014, 121, 79-97.	5.0	172
154	Nanominerals and ultrafine particles from coal fires from Santa Catarina, South Brazil. International Journal of Coal Geology, 2014, 122, 50-60.	5.0	95
155	Notes on the origin of the resinite-rich "pine needle―lithotype of the Cretaceous Cambria coal, Weston County, Wyoming. International Journal of Coal Geology, 2014, 130, 66-69.	5.0	2
156	A mineralogical and geochemical study of three Brazilian coal cleaning rejects: Demonstration of electron beam applications. International Journal of Coal Geology, 2014, 130, 33-52.	5.0	108
157	Origin of minerals and elements in the Late Permian coals, tonsteins, and host rocks of the Xinde Mine, Xuanwei, eastern Yunnan, China. International Journal of Coal Geology, 2014, 121, 53-78.	5.0	203
158	Trends in Coal Utilization and Coal Combustion Product Production in Kentucky: Results of the 2012 Survey of Power Plants. Coal Combustion and Gasification Products, 2014, 6, 35-41.	1.0	6
159	Frenolicins C–C, Pyranonaphthoquinones from <i>Streptomyces</i> sp. RM-4-15. Journal of Natural Products, 2013, 76, 1441-1447.	3.0	62
160	Macrinite and funginite forms in Cretaceous Menefee Formation anthracite, Cerrillos coalfield, New Mexico. International Journal of Coal Geology, 2013, 114, 54-59.	5.0	23
161	Vanadium and Nickel Speciation in Pulverized Coal and Petroleum Coke Co-combustion. Energy & Fuels, 2013, 27, 1194-1203.	5.1	39
162	Herbimycins D–F, Ansamycin Analogues from <i>Streptomyce</i> s sp. RM-7-15. Journal of Natural Products, 2013, 76, 1619-1626.	3.0	37

#	Article	IF	CITATIONS
163	Mineralogical and geochemical anomalies of late Permian coals from the Fusui Coalfield, Guangxi Province, southern China: Influences of terrigenous materials and hydrothermal fluids. International Journal of Coal Geology, 2013, 105, 60-84.	5.0	200
164	Macrinite forms in Pennsylvanian coals. International Journal of Coal Geology, 2013, 116-117, 172-181.	5.0	33
165	Gaseous emissions and sublimates from the Truman Shepherd coal fire, Floyd County, Kentucky: A re-investigation following attempted mitigation of the fire. International Journal of Coal Geology, 2013, 116-117, 63-74.	5.0	115
166	An investigation of Wulantuga coal (Cretaceous, Inner Mongolia) macerals: Paleopathology of faunal and fungal invasions into wood and the recognizable clues for their activity. International Journal of Coal Geology, 2013, 114, 44-53.	5.0	57
167	Notes on the origin of altered macerals in the Ragged Edge of the Pennsylvanian (Asturian) Herrin coalbed, Western Kentucky. International Journal of Coal Geology, 2013, 115, 24-40.	5.0	7
168	Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Applied Geochemistry, 2013, 31, 1-11.	3.0	261
169	The further adventures of Tin Man: Vertical temperature gradients at the Lotts Creek coal mine fire, Perry County, Kentucky. International Journal of Coal Geology, 2012, 101, 16-20.	5.0	10
170	Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. International Journal of Coal Geology, 2012, 94, 3-21.	5.0	863
171	Geochemistry of carbon nanotube assemblages in coal fire soot, Ruth Mullins fire, Perry County, Kentucky. International Journal of Coal Geology, 2012, 94, 206-213.	5.0	59
172	Mineralogical and geochemical compositions of the Pennsylvanian coal in the Adaohai Mine, Daqingshan Coalfield, Inner Mongolia, China: Modes of occurrence and origin of diaspore, gorceixite, and ammonian illite. International Journal of Coal Geology, 2012, 94, 250-270.	5.0	221
173	Illite crystallinity and coal metamorphism for selected central Appalachian coals and shales. International Journal of Coal Geology, 2012, 94, 167-172.	5.0	12
174	Mineralogy and leaching characteristics of beneficiated coal products from Santa Catarina, Brazil. International Journal of Coal Geology, 2012, 94, 314-325.	5.0	124
175	Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications. International Journal of Coal Geology, 2012, 90-91, 72-99.	5.0	238
176	Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology, 2012, 94, 67-93.	5.0	639
177	Petrographic examination of coal-combustion fly ash. International Journal of Coal Geology, 2012, 92, 90-97.	5.0	84
178	Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield. International Journal of Coal Geology, 2012, 98, 10-40.	5.0	252
179	The occurrence of hazardous volatile elements and nanoparticles in Bulgarian coal fly ashes and the effect on human health exposure. Science of the Total Environment, 2012, 416, 513-526.	8.0	89
180	Applied investigation on the interaction of hazardous elements binding on ultrafine and nanoparticles in Chinese anthracite-derived fly ash. Science of the Total Environment, 2012, 419, 250-264.	8.0	62

#	Article	IF	CITATIONS
181	Modes of Formation of Carbon Oxides [CO _{<i>x</i>} (<i>x</i> = 1 or 2)] from Coals during Atmospheric Storage. Part 2: Effect of Coal Rank on the Kinetics. Energy & Fuels, 2011, 25, 5626-5631.	5.1	13
182	Estimation of Some Coal Parameters Depending on Petrographic and Inorganic Analyses by Using Genetic Algorithm and Adaptive Neuro-Fuzzy Inference Systems. Energy Exploration and Exploitation, 2011, 29, 479-494.	2.3	18
183	Petrographic, geochemical, and mycological aspects of Miocene coals from the Nováky and Handlová mining districts, Slovakia. International Journal of Coal Geology, 2011, 87, 268-281.	5.0	42
184	Notes on the origin of inertinite macerals in coal: Evidence for fungal and arthropod transformations of degraded macerals. International Journal of Coal Geology, 2011, 86, 231-240.	5.0	99
185	Old Smokey coal fire, Floyd County, Kentucky: Estimates of gaseous emission rates. International Journal of Coal Geology, 2011, 87, 150-156.	5.0	45
186	Revisiting Coos Bay, Oregon: A re-examination of funginite–huminite relationships in Eocene subbituminous coals. International Journal of Coal Geology, 2011, 85, 34-42.	5.0	41
187	Studies of relationships between Free Swelling Index (FSI) and coal quality by regression and Adaptive Neuro Fuzzy Inference System. International Journal of Coal Geology, 2011, 85, 65-71.	5.0	36
188	Notes on the origin of inertinite macerals in coals: Funginite associations with cutinite and suberinite. International Journal of Coal Geology, 2011, 85, 186-190.	5.0	42
189	Nanominerals and ultrafine particles in sublimates from the Ruth Mullins coal fire, Perry County, Eastern Kentucky, USA. International Journal of Coal Geology, 2011, 85, 237-245.	5.0	96
190	Splint coals of the Central Appalachians: Petrographic and geochemical facies of the Peach Orchard No. 3 split coal bed, southern Magoffin County, Kentucky. International Journal of Coal Geology, 2011, 85, 268-275.	5.0	24
191	Estimation of free-swelling index based on coal analysis using multivariable regression and artificial neural network. Fuel Processing Technology, 2011, 92, 349-355.	7.2	35
192	Study Relationship between Inorganic and Organic Coal Analysis with Gross Calorific Value by Multiple Regression and ANFIS. International Journal of Coal Preparation and Utilization, 2011, 31, 9-19.	2.1	33
193	Mercury capture by native fly ash carbons in coal-fired power plants. Progress in Energy and Combustion Science, 2010, 36, 510-529.	31.2	232
194	Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia, China. International Journal of Coal Geology, 2010, 81, 320-332.	5.0	292
195	Geologic controls on thermal maturity patterns in Pennsylvanian coal-bearing rocks in the Appalachian basin. International Journal of Coal Geology, 2010, 81, 169-181.	5.0	73
196	Petrography and geochemistry of Oligocene bituminous coal from the Jiu Valley, PetroÅŸani basin (southern Carpathian Mountains), Romania. International Journal of Coal Geology, 2010, 82, 68-80.	5.0	42
197	A new type of Nb (Ta)–Zr(Hf)–REE–Ga polymetallic deposit in the late Permian coal-bearing strata, eastern Yunnan, southwestern China: Possible economic significance and genetic implications. International Journal of Coal Geology, 2010, 83, 55-63.	5.0	118
198	Funginite–resinite associations in coal. International Journal of Coal Geology, 2010, 83, 64-72.	5.0	39

#	Article	IF	CITATIONS
199	Mineralogy and Leaching Characteristics of Coal Ash from a Major Brazilian Power Plant. Coal Combustion and Gasification Products, 2010, 2, 51-65.	1.0	33
200	Notes on the origin of inertinite macerals in coals: Observations on the importance of fungi in the origin of macrinite. International Journal of Coal Geology, 2009, 80, 135-143.	5.0	79
201	Prediction of Coal Grindability Based on Petrography, Proximate and Ultimate Analysis Using Neural Networks and Particle Swarm Optimization Technique. Energy Exploration and Exploitation, 2009, 27, 201-212.	2.3	6
202	Chemistry of coal and coal combustion products from Kentucky power plants: Results from the 2007 sampling, with emphasis on selenium. Coal Combustion and Gasification Products, 2009, 1, 50-62.	1.0	15
203	Studies of the relationship between petrography and grindability for Kentucky coals using artificial neural network. International Journal of Coal Geology, 2008, 73, 130-138.	5.0	40
204	Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China. International Journal of Coal Geology, 2008, 74, 185-202.	5.0	362
205	Scanning proton microprobe analysis of mercury and other trace elements in Fe-sulfides from a Kentucky coal. International Journal of Coal Geology, 2008, 75, 88-92.	5.0	91
206	Coal combustion by-product quality at two stoker boilers: Coal source vs. fly ash collection system design. International Journal of Coal Geology, 2008, 75, 248-254.	5.0	38
207	Studies of relationship between petrography and elemental analysis with grindability for Kentucky coals. Fuel, 2008, 87, 707-713.	6.4	44
208	Prediction of coal grindability based on petrography, proximate and ultimate analysis using multiple regression and artificial neural network models. Fuel Processing Technology, 2008, 89, 13-20.	7.2	96
209	Nanoquartz in Late Permian C1 coal and the high incidence of female lung cancer in the Pearl River Origin area: a retrospective cohort study. BMC Public Health, 2008, 8, 398.	2.9	66
210	Mineralogy and geochemistry of a superhigh-organic-sulfur coal, Yanshan Coalfield, Yunnan, China: Evidence for a volcanic ash component and influence by submarine exhalation. Chemical Geology, 2008, 255, 182-194.	3.3	215
211	Association of the Sites of Heavy Metals with Nanoscale Carbon in a Kentucky Electrostatic Precipitator Fly Ash. Environmental Science & Technology, 2008, 42, 8471-8477.	10.0	71
212	Discussion on "Characteristics of Fly Ashes from Full-Scale Coal-Fired Power Plants and Their Relationship to Mercury Adsorption―by Lu et al Energy & Fuels, 2008, 22, 1055-1058.	5.1	5
213	The investigation of chemical structure of coal macerals via transmitted-light FT-IR microscopy by X. Sun. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 67, 1433-1437.	3.9	30
214	Major and Minor Element Distribution in Fly Ash from a Coal-Fired Utility Boiler in Kentucky. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2006, 28, 79-95.	2.3	24
215	Mineralogy and geochemistry of the No. 6 Coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. International Journal of Coal Geology, 2006, 66, 253-270.	5.0	322
216	Enrichment of arsenic, antimony, mercury, and thallium in a Late Permian anthracite from Xingren, Guizhou, Southwest China. International Journal of Coal Geology, 2006, 66, 217-226.	5.0	172

#	Article	IF	CITATIONS
217	Discussion: Li et al., Prediction of grindability with multivariable regression and neural network in Chinese coal. Fuel, 2006, 85, 1307-1308.	6.4	21
218	Discovery of the superlarge gallium ore deposit in Jungar, Inner Mongolia, North China. Science Bulletin, 2006, 51, 2243-2252.	1.7	66
219	Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. International Journal of Coal Geology, 2005, 61, 119-137.	5.0	264
220	Mercury content of the Springfield coal, Indiana and Kentucky. International Journal of Coal Geology, 2005, 63, 205-227.	5.0	26
221	Arsenic-bearing pyrite and marcasite in the Fire Clay coal bed, Middle Pennsylvanian Breathitt Formation, eastern Kentucky. International Journal of Coal Geology, 2005, 63, 27-35.	5.0	63
222	An Approach Toward a Combined Scheme for the Petrographic Classification of Fly Ash:  Revision and Clarification. Energy & Fuels, 2005, 19, 653-655.	5.1	42
223	Tracking mercury from the mine to the power plant: geochemistry of the Manchester coal bed, Clay County, Kentucky. International Journal of Coal Geology, 2004, 57, 127-141.	5.0	74
224	The cause of endemic fluorosis in western Guizhou Province, Southwest China. Fuel, 2004, 83, 2095-2098.	6.4	117
225	Impact of coal properties on coal combustion by-product quality: examples from a Kentucky power plant. International Journal of Coal Geology, 2004, 59, 153-169.	5.0	227
226	Geochemistry of the late Permian No. 30 coal seam, Zhijin Coalfield of Southwest China: influence of a siliceous low-temperature hydrothermal fluid. Applied Geochemistry, 2004, 19, 1315-1330.	3.0	146
227	The beneficiation of coal combustion ash. Geological Society Special Publication, 2004, 236, 247-262.	1.3	6
228	Clausthalite in coal. International Journal of Coal Geology, 2003, 53, 219-225.	5.0	94
229	Petrology and geochemistry of the high-sulphur coals from the Upper Permian carbonate coal measures in the Heshan Coalfield, southern China. International Journal of Coal Geology, 2003, 55, 1-26.	5.0	130
230	Studies of the relationship between coal petrology and grinding properties. International Journal of Coal Geology, 2003, 54, 253-260.	5.0	59
231	Geochemical and mineralogical anomalies of the late Permian coal in the Zhijin coalfield of southwest China and their volcanic origin. International Journal of Coal Geology, 2003, 55, 117-138.	5.0	119
232	Arsenic and Mercury Partitioning in Fly Ash at a Kentucky Power Plant. Energy & Fuels, 2003, 17, 1028-1033.	5.1	48
233	The Upper Hance coal bed in southeastern Kentucky: palynologic, geochemical, and petrographic evidence for environmental succession. International Journal of Coal Geology, 2002, 49, 177-194.	5.0	10
234	Distribution, isotopic variation and origin of sulfur in coals in the Wuda coalfield, Inner Mongolia, China. International Journal of Coal Geology, 2002, 51, 237-250.	5.0	186

#	Article	IF	CITATIONS
235	Controls on boron and germanium distribution in the low-sulfur Amos coal bed, Western Kentucky coalfield, USA. International Journal of Coal Geology, 2002, 53, 27-42.	5.0	62
236	Further examination of the ragged edge of the Herrin Coal Bed, Webster County, Western Kentucky Coal Field. International Journal of Coal Geology, 2001, 46, 145-155.	5.0	16
237	Brecciated and mineralized coals in Union County, Western Kentucky coal field. International Journal of Coal Geology, 2001, 47, 223-234.	5.0	36
238	Temporal and spatial variations in fly ash quality. Fuel Processing Technology, 2001, 73, 37-58.	7.2	26
239	Discussion on origin of vanadium in coals: parts of the Western Kentucky (USA) No. 9 coal rich in vanadium. Journal of the Geological Society, 2000, 157, 1257-1259.	2.1	19
240	Mercury Capture by Fly Ash:  Study of the Combustion of a High-Mercury Coal at a Utility Boiler. Energy & Fuels, 2000, 14, 727-733.	5.1	81
241	Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky. International Journal of Coal Geology, 1999, 39, 141-153.	5.0	273
242	Changes in the quality of coal delivered to Kentucky power plants, 1978 to 1997: responses to Clean Air Act directives. International Journal of Coal Geology, 1999, 41, 125-155.	5.0	18
243	Petrology, mineralogy, and chemistry of magnetically-separated sized fly ash. Fuel, 1999, 78, 197-203.	6.4	85
244	Petrographic observations of Gieseler semi-cokes from high volatile bituminous coals. Fuel, 1999, 78, 445-451.	6.4	13
245	Changes in the quality of coal combustion by-products produced by Kentucky power plants, 1978 to 1997: consequences of Clean Air Act directives. Fuel, 1999, 78, 701-712.	6.4	43
246	Novel Separation of the Differing Forms of Unburned Carbon Present in Fly Ash Using Density Gradient Centrifugation. Energy & Fuels, 1999, 13, 947-953.	5.1	64
247	Magnitude of Minor Element Reduction through Beneficiation of Central Appalachian Coals. Coal Preparation, 1998, 19, 213-229.	0.5	10
248	The Role of Semifusinite in Plasticity Development for a Coking Coal. Energy & Fuels, 1998, 12, 1040-1046.	5.1	21
249	Characterization of fly ash from Kentucky power plants. Fuel, 1996, 75, 403-411.	6.4	82
250	Coal resources, production, and quality in the Eastern kentucky coal field: Perspectives on the future of steam coal production. Nonrenewable Resources, 1994, 3, 216-236.	0.1	10
251	Lithologic and geochemical investigations of the Fire Clay coal bed, southeastern Kentucky, in the vicinity of sandstone washouts. International Journal of Coal Geology, 1994, 26, 95-115.	5.0	24
252	Paleoecology of the Fire Clay coal bed in a portion of the Eastern Kentucky Coal Field. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 106, 287-305.	2.3	71

#	Article	IF	CITATIONS
253	Petrographic and Geochemical Anatomy of Lithotypes from the Blue Gem Coal Bed, Southeastern Kentucky. Energy & Fuels, 1994, 8, 719-728.	5.1	39
254	Appalachian anthracites. Organic Geochemistry, 1993, 20, 619-642.	1.8	32
255	Lithologic succession in the Path Fork coal bed (Breathitt Formation, Middle Pennsylvanian), southeastern Kentucky. Organic Geochemistry, 1992, 18, 301-311.	1.8	11
256	Coal rank trends in the Central Appalachian coalfield: Virginia, West Virginia, and Kentucky. Organic Geochemistry, 1991, 17, 161-173.	1.8	29
257	Geochemistry of the blue gem coal bed, Knox county, Kentucky. International Journal of Coal Geology, 1991, 18, 211-231.	5.0	33
258	Estimates of fluid properties of high volatile bituminous coals. Fuel, 1990, 69, 1257-1270.	6.4	16
259	Geochemistry of the Pond Creek coal bed, Eastern Kentucky coalfield. International Journal of Coal Geology, 1989, 11, 205-226.	5.0	84
260	Petrology of the River Gem coal bed, Whitley County, Kentucky. International Journal of Coal Geology, 1989, 11, 227-245.	5.0	28
261	Ragged edge of the Herrin (No. 11) coal, Western Kentucky. International Journal of Coal Geology, 1987, 7, 1-20.	5.0	31
262	Influence of microlithotype composition on hardgrove grindability for selected eastern Kentucky coals. International Journal of Coal Geology, 1987, 7, 227-244.	5.0	49
263	Maceral Partitioning through Beneficiation of Illinois Basin Coals. Coal Preparation, 1986, 2, 149-164.	0.5	8
264	Soils and spoils: mineralogy and geochemistry of mining and processing wastes from lead and zinc mining at the Gratz Mine, Owen County, Kentucky. Journal of Soils and Sediments, 0, , 1.	3.0	2