Stefano Facchini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9426207/publications.pdf

Version: 2024-02-01

82 papers 4,049 citations

38 h-index 59 g-index

84 all docs

84 docs citations

times ranked

84

1913 citing authors

#	Article	IF	CITATIONS
1	Probing inner and outer disk misalignments in transition disks. Astronomy and Astrophysics, 2022, 658, A183.	5.1	42
2	Tracing pebble drift and trapping using radial carbon depletion profiles in protoplanetary disks. Astronomy and Astrophysics, 2022, 660, A126.	5.1	16
3	The ODYSSEUS Survey. Motivation and First Results: Accretion, Ejection, and Disk Irradiation of CVSO 109. Astronomical Journal, 2022, 163, 114.	4.7	15
4	Observational constraints on gas disc sizes in the protoplanetary discs of multiple systems in the Taurus region. Astronomy and Astrophysics, 2022, 662, A121.	5.1	13
5	A New Planet Candidate Detected in a Dust Gap of the Disk around HD 163296 through Localized Kinematic Signatures: An Observational Validation of the discminer. Astrophysical Journal, 2022, 928, 2.	4.5	30
6	An APEX search for carbon emission from NGC 1977 proplyds. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2594-2603.	4.4	5
7	Gas temperature structure across transition disk cavities. Astronomy and Astrophysics, 2022, 663, A23.	5.1	18
8	Gas and Dust Shadows in the TW Hydrae Disk. Astrophysical Journal, 2022, 930, 144.	4.5	3
9	Disk Evolution Study through Imaging of Nearby Young Stars (DESTINYS): A Panchromatic View of DO Tau's Complex Kilo-astronomical-unit Environment. Astrophysical Journal, 2022, 930, 171.	4.5	7
10	Constraining the Nature of the PDS 70 Protoplanets with VLTI/GRAVITY <code>^{a^}</code> . Astronomical Journal, 2021, 161, 148.	4.7	59
11	Disk Evolution Study Through Imaging of Nearby Young Stars (DESTINYS): Late Infall Causing Disk Misalignment and Dynamic Structures in SU Aur*. Astrophysical Journal Letters, 2021, 908, L25.	8.3	42
12	Exploring HNC and HCN line emission as probes of the protoplanetary disk temperature. Astronomy and Astrophysics, 2021, 647, A118.	5.1	10
13	A highly non-Keplerian protoplanetary disc. Astronomy and Astrophysics, 2021, 648, A19.	5.1	23
14	Measuring the ratio of the gas and dust emission radii of protoplanetary disks in the Lupus star-forming region. Astronomy and Astrophysics, 2021, 649, A19.	5.1	35
15	The Disc Miner. Astronomy and Astrophysics, 2021, 650, A179.	5.1	19
16	Multiwavelength continuum sizes of protoplanetary discs: scaling relations and implications for grain growth and radial drift. Monthly Notices of the Royal Astronomical Society, 2021, 506, 2804-2823.	4.4	35
17	PENELLOPE: The ESO data legacy program to complement the <i>Hubble</i> UV Legacy Library of Young Stars (ULLYSES). Astronomy and Astrophysics, 2021, 650, A196.	5.1	32
18	A Circumplanetary Disk around PDS70c. Astrophysical Journal Letters, 2021, 916, L2.	8.3	114

#	Article	IF	CITATIONS
19	The first ALMA survey of protoplanetary discs at 3 mm: demographics of grain growth in the Lupus region. Monthly Notices of the Royal Astronomical Society, 2021, 506, 5117-5128.	4.4	21
20	The Chemical Inventory of the Planet-hosting Disk PDS 70. Astronomical Journal, 2021, 162, 99.	4.7	32
21	Demographics of disks around young very low-mass stars and brown dwarfs in Lupus (Corrigendum). Astronomy and Astrophysics, 2020, 638, C4.	5.1	1
22	Shadowing and multiple rings in the protoplanetary disk of HD 139614. Astronomy and Astrophysics, 2020, 635, A121.	5.1	34
23	Demographics of disks around young very low-mass stars and brown dwarfs in Lupus. Astronomy and Astrophysics, 2020, 633, A114.	5.1	29
24	Constraining the radial drift of millimeter-sized grains in the protoplanetary disks in Lupus. Astronomy and Astrophysics, 2020, 638, A38.	5.1	20
25	ALMA chemical survey of disk-outflow sources in Taurus (ALMA-DOT). Astronomy and Astrophysics, 2020, 636, A65.	5.1	19
26	Annular substructures in the transition disks around LkCa 15 and J1610. Astronomy and Astrophysics, 2020, 639, A121.	5.1	36
27	Disk Evolution Study Through Imaging of Nearby Young Stars (DESTINYS): A close low-mass companion to ET Cha. Astronomy and Astrophysics, 2020, 642, A119.	5.1	10
28	An ALMA Survey of λ Orionis Disks: From Supernovae to Planet Formation. Astronomical Journal, 2020, 160, 248.	4.7	23
29	Detection of Continuum Submillimeter Emission Associated with Candidate Protoplanets. Astrophysical Journal Letters, 2019, 879, L25.	8.3	115
30	Bright C ₂ H emission in protoplanetary discs in Lupus: high volatile C/O > 1 ratios. Astronomy and Astrophysics, 2019, 631, A69.	5.1	59
31	ALMA survey of Class II protoplanetary disks in Corona Australis: a young region with low disk masses. Astronomy and Astrophysics, 2019, 626, A11.	5.1	61
32	A dust and gas cavity in the disc around CQ Tau revealed by ALMA. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4638-4654.	4.4	33
33	Gas versus dust sizes of protoplanetary discs: effects of dust evolution. Astronomy and Astrophysics, 2019, 629, A79.	5.1	71
34	The ALMA Lupus protoplanetary disk survey: evidence for compact gas disks and molecular rings from CN. Astronomy and Astrophysics, 2019, 623, A150.	5.1	31
35	Stringent limits on the magnetic field strength in the disc of TW Hya. Astronomy and Astrophysics, 2019, 624, L7.	5.1	41
36	Highly structured disk around the planet host PDS 70 revealed by high-angular resolution observations with ALMA. Astronomy and Astrophysics, 2019, 625, A118.	5.1	90

3

#	Article	IF	CITATIONS
37	Exploring the dimming event of RW Aurigae A through multi-epoch VLT/X-shooter spectroscopy. Astronomy and Astrophysics, 2019, 625, A49.	5.1	21
38	High gas-to-dust size ratio indicating efficient radial drift in the mm-faint CX Tauri disk. Astronomy and Astrophysics, 2019, 626, L2.	5.1	43
39	A circumbinary protoplanetary disk in a polar configuration. Nature Astronomy, 2019, 3, 230-235.	10.1	59
40	An Ideal Testbed for Planet–Disk Interaction: Two Giant Protoplanets in Resonance Shaping the PDS 70 Protoplanetary Disk. Astrophysical Journal Letters, 2019, 884, L41.	8.3	57
41	Where can a Trappist-1 planetary system be produced?. Monthly Notices of the Royal Astronomical Society, 2018, 475, 5460-5473.	4.4	41
42	The FRIED grid of mass-loss rates for externally irradiated protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2018, 481, 452-466.	4.4	75
43	V1094 Scorpii: A rare giant multi-ringed disk around a T Tauri star. Astronomy and Astrophysics, 2018, 616, A88.	5.1	45
44	Probing the protoplanetary disk gas surface density distribution with ¹³ CO emission. Astronomy and Astrophysics, 2018, 619, A113.	5.1	14
45	Evidence for a massive dust-trapping vortex connected to spirals. Astronomy and Astrophysics, 2018, 619, A161.	5.1	69
46	Multi-epoch monitoring of the AA Tauri-like star V 354 Mon. Astronomy and Astrophysics, 2018, 614, A108.	5.1	17
47	Multiple Stellar Flybys Sculpting the Circumstellar Architecture in RW Aurigae. Astrophysical Journal, 2018, 859, 150.	4.5	57
48	High-resolution Millimeter Imaging of the CI Tau Protoplanetary Disk: A Massive Ensemble of Protoplanets from 0.1 to 100 au. Astrophysical Journal Letters, 2018, 866, L6.	8.3	69
49	<i>Gaia</i> DR2 view of the Lupus V–VI clouds: The candidate diskless young stellar objects are mainly background contaminants. Astronomy and Astrophysics, 2018, 615, L1.	5.1	20
50	Signatures of broken protoplanetary discs in scattered light and in sub-millimetre observations. Monthly Notices of the Royal Astronomical Society, 2018, 473, 4459-4475.	4.4	80
51	Nitrogen isotope fractionation in protoplanetary disks. Astronomy and Astrophysics, 2018, 615, A75.	5.1	51
52	Protoplanetary disc truncation mechanisms in stellar clusters: comparing external photoevaporation and tidal encounters. Monthly Notices of the Royal Astronomical Society, 2018, 478, 2700-2722.	4.4	121
53	Inferring giant planets from ALMA millimeter continuum and line observations in (transition) disks. Astronomy and Astrophysics, 2018, 612, A104.	5.1	49
54	The extremely truncated circumstellar disc of V410 X-ray 1: a precursor to TRAPPIST-1?. Monthly Notices of the Royal Astronomical Society, 2018, 477, 325-334.	4.4	2

#	Article	IF	CITATIONS
55	CN rings in full protoplanetary disks around young stars as probes of disk structure. Astronomy and Astrophysics, 2018, 609, A93.	5.1	49
56	ALMA Survey of Lupus Protoplanetary Disks. II. Gas Disk Radii. Astrophysical Journal, 2018, 859, 21.	4.5	268
57	Shadows and asymmetries in the T Tauri disk HD 143006: evidence for a misaligned inner disk. Astronomy and Astrophysics, 2018, 619, A171.	5.1	71
58	Shadows and spirals in the protoplanetary disk HD 100453. Astronomy and Astrophysics, 2017, 597, A42.	5.1	147
59	The origin of the eccentricity of the hot Jupiter in CI Tau. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 464, L114-L118.	3.3	40
60	VLA Observations of the Disk around the Young Brown Dwarf 2MASS J044427+2512. Astrophysical Journal, 2017, 846, 19.	4.5	29
61	The Circumstellar Disk HD 169142: Gas, Dust, and Planets Acting in Concert?*. Astrophysical Journal, 2017, 850, 52.	4.5	82
62	An ALMA Survey of Protoplanetary Disks in the Ïf Orionis Cluster. Astronomical Journal, 2017, 153, 240.	4.7	243
63	First evidence of external disc photoevaporation in a low mass star forming region: the case of IM Lup. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 468, L108-L112.	3.3	71
64	Different dust and gas radial extents in protoplanetary disks: consistent models of grain growth and CO emission. Astronomy and Astrophysics, 2017, 605, A16.	5.1	107
65	Robustness of N ₂ H ⁺ as tracer of the CO snowline. Astronomy and Astrophysics, 2017, 599, A101.	5.1	70
66	Gas vs dust radial extent in disks: the importance of their thermal interplay. Proceedings of the International Astronomical Union, 2017, 13, 129-136.	0.0	1
67	CO emission tracing a warp or radial flow within ≲100 au in the HD 100546 protoplanetary disk. Astronomy and Astrophysics, 2017, 607, A114.	5.1	46
68	PROPLYDS AROUND A B1 STAR: 42 ORIONIS IN NGC 1977. Astrophysical Journal Letters, 2016, 826, L15.	8.3	57
69	Violent environment of the inner disk of RW Aurigae A probed by the 2010 and 2015 dimming events. Astronomy and Astrophysics, 2016, 596, A38.	5.1	34
70	Grand Challenges in Protoplanetary Disc Modelling. Publications of the Astronomical Society of Australia, 2016, 33, .	3.4	61
71	Photochemical–dynamical models of externally FUV irradiated protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2016, 463, 3616-3629.	4.4	28
72	External photoevaporation of protoplanetary discs in sparse stellar groups: the impact of dust growth. Monthly Notices of the Royal Astronomical Society, 2016, 457, 3593-3610.	4.4	116

#	Article	IF	CITATION
73	Lense–Thirring precession around supermassive black holes during tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2016, 455, 1946-1956.	4.4	41
74	The theory of globulettes: candidate precursors of brown dwarfs and free-floating planets in H ii regions. Monthly Notices of the Royal Astronomical Society, 2015, 446, 1098-1106.	4.4	33
75	A tidal encounter caught in the act: modelling a star–disc fly-by in the young RW Aurigae system. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1996-2009.	4.4	62
76	The nature of the 2014–2015 dim state of RW Aurigae revealed by X-ray, optical, and near-IR observations. Astronomy and Astrophysics, 2015, 584, L9.	5.1	18
77	Probing the presence of planets in transition discs' cavities via warps: the case of TW Hya. Monthly Notices of the Royal Astronomical Society, 2014, 442, 3700-3710.	4.4	18
78	Wave-like warp propagation in circumbinary discs $\hat{a}\in$ 1. Analytic theory and numerical simulations. Monthly Notices of the Royal Astronomical Society, 2013, 433, 2142-2156.	4.4	113
79	Wave-like warp propagation in circumbinary discs – II. Application to KHÂ15D. Monthly Notices of the Royal Astronomical Society, 2013, 433, 2157-2164.	4.4	44
80	Constraining proto-planetary disc evolution using accretion rate and disc mass measurements: the usefulness of the dimensionless accretion parameter. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	39
81	Observational signatures of linear warps in circumbinary discs. Monthly Notices of the Royal Astronomical Society, 0, , stw3389.	4.4	10
82	High resolution observations of molecular emission lines toward the CI Tau proto-planetary disc: planet-carved gaps or shadowing?. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	10