
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9424465/publications.pdf Version: 2024-02-01

FELLY H SCHACHER

#	Article	IF	CITATIONS
1	Functional Block Copolymers: Nanostructured Materials with Emerging Applications. Angewandte Chemie - International Edition, 2012, 51, 7898-7921.	13.8	627
2	Guided hierarchical co-assembly of soft patchy nanoparticles. Nature, 2013, 503, 247-251.	27.8	573
3	Precise hierarchical self-assembly of multicompartment micelles. Nature Communications, 2012, 3, 710.	12.8	504
4	Selfâ€Healing Polymer Coatings Based on Crosslinked Metallosupramolecular Copolymers. Advanced Materials, 2013, 25, 1634-1638.	21.0	319
5	Nacre-mimetics with synthetic nanoclays up to ultrahigh aspect ratios. Nature Communications, 2015, 6, 5967.	12.8	252
6	Micellar interpolyelectrolyte complexes. Chemical Society Reviews, 2012, 41, 6888.	38.1	221
7	Selfâ€Supporting, Double Stimuliâ€Responsive Porous Membranes From Polystyreneâ€ <i>block</i> â€poly(<i>N</i> , <i>N</i> â€dimethylaminoethyl methacrylate) Diblock Copolymers. Advanced Functional Materials, 2009, 19, 1040-1045.	14.9	162
8	Mechanical Performance of Macrofibers of Cellulose and Chitin Nanofibrils Aligned by Wet-Stretching: A Critical Comparison. Biomacromolecules, 2014, 15, 2709-2717.	5.4	154
9	Synthesis, Characterization, and Applications of Magnetic Nanoparticles Featuring Polyzwitterionic Coatings. Polymers, 2018, 10, 91.	4.5	147
10	Water-Resistant, Transparent Hybrid Nanopaper by Physical Cross-Linking with Chitosan. Biomacromolecules, 2015, 16, 1062-1071.	5.4	130
11	Self-healing metallopolymers based on cadmium bis(terpyridine) complex containing polymer networks. Polymer Chemistry, 2013, 4, 4966.	3.9	119
12	Intentional formation of a protein corona on nanoparticles: Serum concentration affects protein corona mass, surface charge, and nanoparticle–cell interaction. International Journal of Biochemistry and Cell Biology, 2016, 75, 196-202.	2.8	118
13	Selfâ€Healing Materials via Reversible Crosslinking of Poly(ethylene oxide)â€∢i>Blockâ€Poly(furfuryl) Tj ETQq2 4921-4932.	1 1 0.7843 14.9	314 rgBT /O 107
14	Multicompartment Core Micelles of Triblock Terpolymers in Organic Media. Macromolecules, 2009, 42, 3540-3548.	4.8	99
15	Interpolyelectrolyte Complexes of Dynamic Multicompartment Micelles. ACS Nano, 2009, 3, 2095-2102.	14.6	99
16	Double Stimuli-Responsive Ultrafiltration Membranes from Polystyrene- <i>block</i> -poly(<i>N</i> , <i>N</i> -dimethylaminoethyl methacrylate) Diblock Copolymers. ACS Applied Materials & Interfaces, 2009, 1, 1492-1503.	8.0	95
17	Counterion-Mediated Hierarchical Self-Assembly of an ABC Miktoarm Star Terpolymer. ACS Nano, 2013, 7, 4030-4041.	14.6	82
18	Polymer/zinc hybrid-flow battery using block copolymer micelles featuring a TEMPO corona as catholyte. Polymer Chemistry, 2016, 7, 1711-1718.	3.9	81

#	Article	IF	CITATIONS
19	Correlation between scratch healing and rheological behavior for terpyridine complex based metallopolymers. Journal of Materials Chemistry A, 2015, 3, 22145-22153.	10.3	79
20	Colloidal Ionic Assembly between Anionic Native Cellulose Nanofibrils and Cationic Block Copolymer Micelles into Biomimetic Nanocomposites. Biomacromolecules, 2011, 12, 2074-2081.	5.4	78
21	Multicompartment Micelles with Adjustable Poly(ethylene glycol) Shell for Efficient <i>in Vivo</i> Photodynamic Therapy. ACS Nano, 2014, 8, 1161-1172.	14.6	78
22	Dynamic Multicompartment-Core Micelles in Aqueous Media. Langmuir, 2009, 25, 10962-10969.	3.5	76
23	Dual stimuli-responsive multicompartment micelles from triblock terpolymers with tunable hydrophilicity. Soft Matter, 2011, 7, 8880.	2.7	75
24	Supramolecular three-armed star polymers via cyclodextrin host–guest self-assembly. Polymer Chemistry, 2012, 3, 3139.	3.9	74
25	Cylindrical crystalline-core micelles: pushing the limits of solution self-assembly. Soft Matter, 2013, 9, 2101-2107.	2.7	66
26	Self-healing response in supramolecular polymers based on reversible zinc–histidine interactions. Polymer, 2015, 69, 274-282.	3.8	66
27	Stimuli-Responsive Organosilica Hybrid Nanowires Decorated with Metal Nanoparticles. Chemistry of Materials, 2010, 22, 2626-2634.	6.7	63
28	Probing the Scope of Crystallization-Driven Living Self-Assembly: Studies of Diblock Copolymer Micelles with a Polyisoprene Corona and a Crystalline Poly(ferrocenyldiethylsilane) Core-Forming Metalloblock. Macromolecules, 2011, 44, 3777-3786.	4.8	63
29	A Paradigm Change: Efficient Transfection of Human Leukemia Cells by Stimuli-Responsive Multicompartment Micelles. ACS Nano, 2013, 7, 9621-9631.	14.6	63
30	Synthesis, characterization, and bulk crosslinking of polybutadiene-block-poly(2-vinyl) Tj ETQq0 0 0 rgBT /Overlo	ck	0 302 Td (pyr
31	Hidden Structural Features of Multicompartment Micelles Revealed by Cryogenic Transmission Electron Tomography. ACS Nano, 2014, 8, 11330-11340.	14.6	56
32	Block Copolymer Selfâ€Assembly in Solution—Quo Vadis?. Chemistry - an Asian Journal, 2018, 13, 230-239.	3.3	55
33	Template-Directed Synthesis of Hybrid Titania Nanowires within Coreâ^'Shell Bishydrophilic Cylindrical Polymer Brushes. Chemistry of Materials, 2009, 21, 4146-4154.	6.7	53
34	Formation of Lenticular Platelet Micelles via the Interplay of Crystallization and Chain Stretching: Solution Self-Assembly of Poly(ferrocenyldimethylsilane)- <i>block</i> -poly(2-vinylpyridine) with a Crystallizable Core-Forming Metalloblock. Macromolecules, 2012, 45, 3883-3891.	4.8	52
35	Poly(ethylene oxide) (PEO)-based ABC triblock terpolymers – synthetic complexity <i>vs.</i> application benefits. Polymer Chemistry, 2014, 5, 2647-2662.	3.9	52
	Alignment of Tollurium Nanoroda (i) via (i) a Magnetization ô' Alignment ô' Demognetization (ôf MADôf)		

36Alignment of Tellurium Nanorods <i>via</i> a Magnetizationâ[^]Alignmentâ[^] Demagnetization ("MADâ€)
Process Assisted by an External Magnetic Field. ACS Nano, 2009, 3, 1441-1450.14.648

#	Article	IF	CITATIONS
37	Towards Nanoporous Membranes based on ABC Triblock Terpolymers. Small, 2007, 3, 1056-1063.	10.0	47
38	New Block Copolymers with Poly(<i>N,N</i> â€dimethylaminoethyl methacrylate) as a Double Stimuliâ€Responsive Block. Macromolecular Chemistry and Physics, 2009, 210, 256-262.	2.2	46
39	Homo†and diblock copolymers of poly(furfuryl glycidyl ether) by living anionic polymerization: Toward reversibly coreâ€crosslinked micelles. Journal of Polymer Science Part A, 2012, 50, 4958-4965.	2.3	44
40	Evolution of Microphase Separation with Variations of Segments of Sequence-Controlled Multiblock Copolymers. Macromolecules, 2017, 50, 7380-7387.	4.8	44
41	Bis-Hydrophilic Block Terpolymers via RAFT Polymerization: Toward Dynamic Micelles with Tunable Corona Properties. Macromolecules, 2008, 41, 8608-8619.	4.8	42
42	Controlling Aqueous Selfâ€Assembly Mechanisms by Hydrophobic Interactions. Chemistry - A European Journal, 2014, 20, 13871-13875.	3.3	42
43	Lightâ€Induced Water Splitting Causes Highâ€Amplitude Oscillation of pHâ€Sensitive Layerâ€byâ€Layer Assembli on TiO ₂ . Angewandte Chemie - International Edition, 2016, 55, 13001-13004.	ies 13.8	42
44	Core-crosslinked compartmentalized cylinders. Nanoscale, 2011, 3, 288-297.	5.6	41
45	Hybrid Fe3O4@amino cellulose nanoparticles in organic media – Heterogeneous ligands for atom transfer radical polymerizations. Journal of Colloid and Interface Science, 2013, 390, 25-33.	9.4	41
46	Star-Shaped Drug Carriers for Doxorubicin with POEGMA and POEtOxMA Brush-like Shells: A Structural, Physical, and Biological Comparison. Biomacromolecules, 2013, 14, 2536-2548.	5.4	40
47	Easy Access to Amphiphilic Heterografted Poly(2-oxazoline) Comb Copolymers. Macromolecules, 2013, 46, 5107-5116.	4.8	40
48	The Selfâ€Healing Potential of Triazoleâ€Pyridineâ€Based Metallopolymers. Macromolecular Rapid Communications, 2015, 36, 604-609.	3.9	37
49	A Metal Salt Dependent Self-Healing Response in Supramolecular Block Copolymers. Macromolecules, 2016, 49, 8418-8429.	4.8	37
50	Rod-Like Nanoparticles with Striped and Helical Topography. ACS Macro Letters, 2016, 5, 1185-1190.	4.8	35
51	Photocatalytic Hydrogen Evolution Driven by [FeFe] Hydrogenase Models Tethered to Fluorene and Silafluorene Sensitizers. Chemistry - A European Journal, 2017, 23, 334-345.	3.3	34
52	Reversible Electrostatic Adsorption of Polyelectrolytes and Bovine Serum Albumin onto Polyzwitterion-Coated Magnetic Multicore Nanoparticles: Implications for Sensing and Drug Delivery. ACS Applied Nano Materials, 2018, 1, 232-244.	5.0	34
53	Calcium Phosphate Mineralization beneath a Polycationic Monolayer at the Air–Water Interface. Macromolecular Bioscience, 2010, 10, 1084-1092.	4.1	33
54	Amphiphilic block copolymers featuring a reversible hetero Diels-Alder linkage. Polymer Chemistry, 2014, 5, 5330-5338.	3.9	33

#	Article	IF	CITATIONS
55	Poly(thiolactone) homo- and copolymers from maleimide thiolactone: synthesis and functionalization. Polymer Chemistry, 2015, 6, 4240-4251.	3.9	33
56	Contributions of hard and soft blocks in the self-healing of metal-ligand-containing block copolymers. European Polymer Journal, 2017, 93, 417-427.	5.4	33
57	Amphiphilic star-shaped block copolymers as unimolecular drug delivery systems: investigations using a novel fungicide. Soft Matter, 2013, 9, 715-726.	2.7	32
58	Synthesis and crystallization-driven solution self-assembly of polyferrocenylsilane diblock copolymers with polymethacrylate corona-forming blocks. Polymer Chemistry, 2014, 5, 1923-1929.	3.9	32
59	Dye-sensitized PS- <i>b</i> -P2VP-templated nickel oxide films for photoelectrochemical applications. Interface Focus, 2015, 5, 20140083.	3.0	32
60	Switching the Stiffness of Polyelectrolyte Assembly by Light to Control Behavior of Supported Cells. Macromolecular Bioscience, 2016, 16, 1422-1431.	4.1	32
61	Long-term stable poly(ionic liquid)/MWCNTs inks enable enhanced surface modification for electrooxidative detection and quantification of dsDNA. Polymer, 2019, 168, 95-103.	3.8	32
62	Preparation of Core-Shell Hybrid Materials by Producing a Protein Corona Around Magnetic Nanoparticles. Nanoscale Research Letters, 2015, 10, 992.	5.7	31
63	Controlling Electronic Transitions in Fullerene van der Waals Aggregates via Supramolecular Assembly. ACS Applied Materials & Interfaces, 2016, 8, 21512-21521.	8.0	31
64	Double-layered micellar interpolyelectrolyte complexes—how many shells to a core?. Soft Matter, 2011, 7, 1714-1725.	2.7	30
65	Sequential pHâ€Dependent Adsorption of Ionic Amphiphilic Diblock Copolymer Micelles and Choline Oxidase Onto Conductive Substrates: Toward the Design of Biosensors. Macromolecular Bioscience, 2014, 14, 1039-1051.	4.1	30
66	Artificial Microbial Arenas: Materials for Observing and Manipulating Microbial Consortia. Advanced Materials, 2019, 31, 1900284.	21.0	30
67	Polyelectrolytes with Tunable Charge Based on Polydehydroalanine: Synthesis and Solution Properties. Macromolecular Chemistry and Physics, 2013, 214, 2202-2212.	2.2	29
68	SPION@polydehydroalanine hybrid particles. RSC Advances, 2015, 5, 31920-31929.	3.6	29
69	Toward Anisotropic Hybrid Materials: Directional Crystallization of Amphiphilic Polyoxazoline-Based Triblock Terpolymers. ACS Nano, 2015, 9, 10085-10098.	14.6	29
70	All-electrochemical nanocomposite two-electrode setup for quantification of drugs and study of their electrocatalytical conversion by cytochromes P450. Electrochimica Acta, 2020, 336, 135579.	5.2	29
71	Responsive Vesicles from the Selfâ€Assembly of Crystallineâ€Coil Polyferrocenylsilaneâ€ <i>block</i> â€Poly(ethylene Oxide) Starâ€Block Copolymers. Chemistry - A European Journal, 2012, 18, 517-525.	3.3	28
72	Understanding and tuning the self-assembly of polyether-based triblock terpolymers in aqueous solution. Soft Matter, 2013, 9, 3509.	2.7	28

#	Article	IF	CITATIONS
73	Self-Assembly of Amphiphilic Triblock Terpolymers Mediated by Multifunctional Organic Acids: Vesicles, Toroids, and (Undulated) Ribbons. Macromolecules, 2014, 47, 1672-1683.	4.8	28
74	Cargo–carrier interactions significantly contribute to micellar conformation and biodistribution. NPG Asia Materials, 2017, 9, e444-e444.	7.9	28
75	Facilitated biosensing via direct electron transfer of myoglobin integrated into diblock copolymer/multi-walled carbon nanotube nanocomposites. Journal of Materials Chemistry B, 2015, 3, 5467-5477.	5.8	27
76	Synthesis and Solution Properties of Double Hydrophilic Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622	Td (oxide) 4.5)-block-poly(26
77	POMbranes: polyoxometalate-functionalized block copolymer membranes for oxidation catalysis. Journal of Materials Chemistry A, 2017, 5, 15789-15796.	10.3	26
78	Small but Powerful: Co-Assembly of Polyether-Based Triblock Terpolymers into Sub-30 nm Micelles and Synergistic Effects on Cellular Interactions. Biomacromolecules, 2014, 15, 2426-2439.	5.4	25
79	Schizophrenic thermoresponsive block copolymer micelles based on LCST and UCST behavior in ethanol–water mixtures. European Polymer Journal, 2015, 69, 460-471.	5.4	25
80	Selective crosslinking or addressing of individual domains within block copolymer nanostructures. European Polymer Journal, 2016, 80, 317-331.	5.4	25
81	Polymer Interfaces: Synthetic Strategies Enabling Functionality, Adaptivity, and Spatial Control. Macromolecules, 2016, 49, 5001-5016.	4.8	25
82	Micellization of Photo-Responsive Block Copolymers. Polymers, 2017, 9, 396.	4.5	25
83	Synthesis and Solution Self-Assembly of Poly(1,3-dioxolane). Macromolecules, 2019, 52, 3359-3366.	4.8	25
84	Block Copolymer Micellar Nanoreactors for the Directed Synthesis of ZnO Nanoparticles. Macromolecular Rapid Communications, 2010, 31, 729-734.	3.9	24
85	ATRP of <i>tert</i> -Butoxycarbonylaminomethyl acrylate (<i>t</i> BAMA): Well-Defined Precursors for Polyelectrolytes of Tunable Charge. Macromolecules, 2016, 49, 3696-3705.	4.8	24
86	Reversible Adsorption of Methylene Blue as Cationic Model Cargo onto Polyzwitterionic Magnetic Nanoparticles. Macromolecular Rapid Communications, 2018, 39, e1800017.	3.9	23
87	Phase Inversion Membranes from Amphiphilic Diblock Terpolymers. Advanced Materials Interfaces, 2015, 2, 1500042.	3.7	22
88	Amphiphilic and double hydrophilic block copolymers containing a polydehydroalanine block. Polymer Chemistry, 2017, 8, 936-945.	3.9	22
89	3-Miktoarm Star Terpolymers via Janus Polymerization: One-Step Synthesis and Self-Assembly. Macromolecules, 2018, 51, 4938-4944.	4.8	22
90	Protein corona formation and its constitutional changes on magnetic nanoparticles in serum featuring a polydehydroalanine coating: effects of charge and incubation conditions. Nanotechnology, 2019, 30, 265707.	2.6	22

#	Article	IF	CITATIONS
91	Embedding molecular photosensitizers and catalysts in nanoporous block copolymer membranes for visible-light driven hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 6238-6244.	10.3	22
92	Micellar Interpolyelectrolyte Complexes with a Compartmentalized Shell. Macromolecules, 2013, 46, 6466-6474.	4.8	21
93	Dual Stimuli-Responsive P(NIPAAm-co-SPA) Copolymers: Synthesis and Response in Solution and in Films. Polymers, 2018, 10, 645.	4.5	21
94	Crystallization vs Metal Chelation: Solution Self-Assembly of Dual Responsive Block Copolymers. Macromolecules, 2020, 53, 5056-5067.	4.8	21
95	Hierarchical self-assembly of miktoarm star polymers containing aÂpolycationic segment: A general concept. Polymer, 2013, 54, 4528-4537.	3.8	20
96	Solution self-assembly of poly(ethylene oxide)-block-poly(furfuryl glycidyl ether)-block-poly(allyl) Tj ETQq0 0 0 rgB 5, 6943-6956.	Г /Overloc 3.9	k 10 Tf 50 5 20
97	Facile photo-flow synthesis of branched poly(butyl acrylate)s. Reaction Chemistry and Engineering, 2017, 2, 479-486.	3.7	20
98	Double hydrophilic copolymers – synthetic approaches, architectural variety, and current application fields. Chemical Society Reviews, 2022, 51, 995-1044.	38.1	20
99	Calcium phosphate growth beneath a polycationic monolayer at the air–water interface: effects of oscillating surface pressure on mineralization. Nanoscale, 2010, 2, 2440.	5.6	19
100	A strong cationic BrÃ,nsted acid, [H(OEt2)2][Al{OC(CF3)3}4], as an efficient initiator for the cationic ring-opening polymerization of 2-alkyl-2-oxazolines. Polymer Chemistry, 2013, 4, 495-505.	3.9	19
101	Electron Microscopy and Theoretical Modeling of Cochleates. Langmuir, 2014, 30, 13143-13151.	3.5	19
102	Photo-reversible bonding and cleavage of block copolymers. Polymer Chemistry, 2017, 8, 4038-4042.	3.9	19
103	Tetragonally Perforated Lamellae of Polybutadiene- <i>block</i> -poly(2-vinylpyridine)- <i>block</i> -poly(<i>tert-</i> butyl methacrylate) (BVT) Triblock Terpolymers in the Bulk: Preparation, Cross-Linking, and Dissolution. Macromolecules, 2012. 45. 7956-7963.	4.8	18
104	Crystal structure and chemical composition of biomimetic calcium phosphate nanofibers. RSC Advances, 2013, 3, 11301.	3.6	18
105	Nanoporous Sheets and Cylinders via Bulk Templating of Triblock Terpolymer/Homopolymer Blends. Macromolecules, 2014, 47, 6289-6301.	4.8	18
106	Controlling Intermolecular Interactions at Interfaces: Case of Supramolecular Tuning of Fullerene's Electronic Structure. Advanced Energy Materials, 2018, 8, 1801737.	19.5	18
107	Poly(2-acrylamidoglycolic acid) (PAGA): Controlled Polymerization Using RAFT and Chelation of Metal Cations. Macromolecules, 2018, 51, 7284-7294.	4.8	18
108	Polyampholytic graft copolymers based on polydehydroalanine (PDha) – synthesis, solution behavior and application as dispersants for carbon nanotubes. Polymer Chemistry, 2019, 10, 3006-3019.	3.9	18

#	Article	IF	CITATIONS
109	Synthesis and solution behaviour of dual light- and temperature-responsive poly(triethylene) Tj ETQq1 1 0.78431	4 rgBT /O\	verlgck 10 Tf
110	Synthesis and Complexation of Well-Defined Labeled Poly(N,N-dimethylaminoethyl methacrylate)s (PDMAEMA). Polymers, 2015, 7, 2478-2493.	4.5	17
111	Weak Polyampholytes at the Interface of Magnetic Nanocarriers: A Facile Catch-and-Release Platform for Dyes. Langmuir, 2020, 36, 6095-6105.	3.5	17
112	Block Polypeptoids: Synthesis, Characterization, and Response Toward Irradiation with UV Light and Temperature. Macromolecules, 2020, 53, 5218-5226.	4.8	17
113	1,7,9,10â€Tetrasubstituted PMIs Accessible through Decarboxylative Bromination: Synthesis, Characterization, Photophysical Studies, and Hydrogen Evolution Catalysis. Chemistry - A European Journal, 2021, 27, 4081-4088.	3.3	16
114	Going beyond the Surface: Revealing Complex Block Copolymer Morphologies with 3D Scanning Force Microscopy. ACS Nano, 2010, 4, 5609-5616.	14.6	15
115	Stimuli-responsive micellar interpolyelectrolyte complexes – control of micelle dynamics via core crosslinking. Soft Matter, 2012, 8, 10167.	2.7	15
116	Bisâ€hydrophilic and functional triblock terpolymers based on polyethers: Synthesis and selfâ€assembly in solution. Journal of Polymer Science Part A, 2012, 50, 2914-2923.	2.3	15
117	Light-responsive terpolymers based on polymerizable photoacids. Polymer Chemistry, 2017, 8, 2959-2971.	3.9	15
118	Amphiphilic polyether-based block copolymers as crosslinkable ligands for Au-nanoparticles. Polymer Chemistry, 2015, 6, 5633-5642.	3.9	14
119	Polyampholytic Poly(dehydroalanine) Graft Copolymers as Smart Templates for pH-Controlled Formation of Alloy Nanoparticles. Macromolecules, 2020, 53, 4511-4523.	4.8	14
120	Effect of poly(acrylic acid) architecture on setting and mechanical properties of glass ionomer cements. Dental Materials, 2020, 36, 377-386.	3.5	14
121	Electrochemical studies of the interaction of rifampicin and nanosome/rifampicin with dsDNA. Bioelectrochemistry, 2021, 140, 107736.	4.6	14
122	Solvent-Free Heck-Jeffery Reactions under Ball-Milling Conditions Applied to the Synthesis of Unnatural Amino Acids Precursors and Indoles. Synthesis, 2006, 2006, 1183-1189.	2.3	13
123	Porous NiOx nanostructures templated by polystyrene-block-poly(2-vinylpyridine) diblock copolymer micelles. Journal of Materials Chemistry A, 2014, 2, 6158.	10.3	13
124	Micro-spherical cochleate composites: method development for monodispersed cochleate system. Journal of Liposome Research, 2017, 27, 32-40.	3.3	13
125	Dual Photo- and pH-Responsive Spirooxazine-Functionalized Dextran Nanoparticles. Biomacromolecules, 2020, 21, 3620-3630.	5.4	13
126	Core-Crosslinked Fluorescent Worm-Like Micelles for Glucose-Mediated Drug Delivery. Biomacromolecules, 2021, 22, 1458-1471.	5.4	13

#	Article	IF	CITATIONS
127	Star-shaped poly(2-ethyl-2-oxazoline) featuring a porphyrin core: synthesis and metal complexation. E-Polymers, 2015, 15, 227-235.	3.0	12
128	Well-Defined SiO ₂ @P(EtOx- <i>stat</i> -El) Core-Shell Hybrid Nanoparticles via Sol-Gel Processes. Macromolecular Rapid Communications, 2016, 37, 337-342.	3.9	12
129	Splitting of Surface-Immobilized Multicompartment Micelles into Clusters upon Charge Inversion. ACS Nano, 2016, 10, 5180-5188.	14.6	12
130	α,ï‰-Reactive Building Blocks Based on a Dual Functional RAFT Agent for Thermal and Light-Induced Ligation. ACS Macro Letters, 2016, 5, 597-601.	4.8	12
131	Synthesis of Polypeptoidâ€Polycaprolactoneâ€Polytetrahydrofuran Heterograft Molecular Polymer Brushes via a Combination of Janus Polymerization and ROMP. Macromolecular Rapid Communications, 2019, 40, e1800905.	3.9	12
132	Double Hydrophilic Poly(ethylene oxide)â€ <i>block</i> â€Poly(dehydroalanine) Block Copolymers: Comparison of Two Different Synthetic Routes. Macromolecular Chemistry and Physics, 2020, 221, 1900383.	2.2	12
133	Tripleâ€Responsive Polyampholytic Graft Copolymers as Smart Sensors with Varying Output. Macromolecular Rapid Communications, 2021, 42, e2000671.	3.9	12
134	Stabilization of 3D Network Morphologies in Thin Films via Chemical Modification of ABC Triblock Terpolymers. Macromolecules, 2010, 43, 10213-10215.	4.8	11
135	Poly(2â€vinyl pyridine)â€ <i>blockâ€</i> Poly(ethylene oxide) Featuring a Furan Group at the Block Junction—Synthesis and Functionalization. Macromolecular Rapid Communications, 2014, 35, 916-921.	3.9	11
136	Facile synthesis of highly thermally stable nanoporous Î ³ -aluminas from aluminum alkoxide precursors. RSC Advances, 2015, 5, 49493-49499.	3.6	11
137	Synthesis and self-assembly of poly(ferrocenyldimethylsilane)-block-poly(2-alkyl-2-oxazoline) block copolymers. Polymer Chemistry, 2015, 6, 1604-1612.	3.9	11
138	Core-crosslinked diblock terpolymer micelles – taking a closer look on crosslinking efficiency. Polymer Chemistry, 2018, 9, 2247-2257.	3.9	11
139	A translation of the structure of mussel byssal threads into synthetic materials by the utilization of histidine-rich block copolymers. Polymer Chemistry, 2018, 9, 3543-3551.	3.9	11
140	Self-Assembly of Copolyesters into Stereocomplex Crystallites Tunes the Properties of Polyester Nanoparticles. Macromolecules, 2020, 53, 8340-8351.	4.8	11
141	Rational Design of Amphiphilic Diblock Copolymer/MWCNT Surface Modifiers and Their Application for Direct Electrochemical Sensing of DNA. Polymers, 2020, 12, 1514.	4.5	11
142	Hierarchical self-assembly of star-shaped organometallic crystalline-coil block copolymers in solution. Soft Matter, 2012, 8, 6968.	2.7	10
143	Synthesis and solution self-assembly of block copolymers with a gradient, crystallizable polyferrocenylsilane core-forming metalloblock. Soft Matter, 2013, 9, 8569.	2.7	10
144	Incorporation of core–shell particles into methacrylate based composites for improvement of the mechanical properties. Polymer Chemistry, 2015, 6, 5273-5280.	3.9	10

#	Article	IF	CITATIONS
145	Sulfo-and carboxybetaine-containing polyampholytes based on poly(2-vinyl pyridine)s: Synthesis and solution behavior. Polymer, 2016, 104, 40-48.	3.8	10
146	Maleimide-functionalized poly(2-ethyl-2-oxazoline): synthesis and reactivity. Polymer Chemistry, 2016, 7, 2419-2426.	3.9	10
147	Polymeric Photoacids Based on Naphthols—Design Criteria, Photostability, and Lightâ€Mediated Release. Chemistry - A European Journal, 2020, 26, 2365-2379.	3.3	10
148	Copolymerization of Caprolactone Isomers to Obtain Nanoparticles with Constant Hydrophobicity and Tunable Crystallinity. Macromolecules, 2020, 53, 5208-5217.	4.8	10
149	Diblock copolymer membranes investigated by single-particle tracking. Physical Chemistry Chemical Physics, 2011, 13, 2278-2284.	2.8	9
150	Precise synthesis of undecenyl poly(ethylene oxide) macromonomers as heterofunctional building blocks for the synthesis of linear diblocks or of branched materials. European Polymer Journal, 2014, 57, 221-236.	5.4	9
151	Zwitterionic Iron Oxide (γâ€Fe ₂ O ₃) Nanoparticles Based on P(2VPâ€∢i>gradâ€AA) Copolymers. Macromolecular Rapid Communications, 2017, 38, 1600637.	3.9	9
152	Synthesis and degradation of branched, photo-labile poly(acrylic acid) and polystyrene. Polymer Chemistry, 2019, 10, 593-602.	3.9	9
153	Photocatalytically active block copolymer hybrid micelles from double hydrophilic block copolymers. European Polymer Journal, 2020, 140, 110037.	5.4	9
154	Multimodal Characterization of Resin Embedded and Sliced Polymer Nanoparticles by Means of Tipâ€Enhanced Raman Spectroscopy and Force–Distance Curve Based Atomic Force Microscopy. Small, 2020, 16, 1907418.	10.0	9
155	Electrochemical fingerprint of cytochrome c on a polymer/MWCNT nanocomposite electrode. Mendeleev Communications, 2020, 30, 299-301.	1.6	9
156	Thermal Transport in Ampholytic Polymers: The Role of Hydrogen Bonding and Water Uptake. Macromolecules, 2020, 53, 5528-5537.	4.8	9
157	Polyampholytic Graft Copolymers as Matrix for TiO ₂ /Eosin Y/[Mo ₃ S ₁₃] ^{2â^} Hybrid Materials and Lightâ€Driven Catalysis. Chemistry - A European Journal, 2021, 27, 16924-16929.	3.3	9
158	Mechanisms and kinetics of the crystal thickening of poly(butadiene)-block-poly(ethylene oxide) during annealing within the melting range. European Polymer Journal, 2015, 68, 10-20.	5.4	8
159	Synthesis and modification of poly(ethyl 2-(imidazol-1-yl)acrylate) (PEImA). Polymer, 2017, 127, 182-191.	3.8	8
160	Different Routes to Ampholytic Polydehydroalanine: Orthogonal versus Simultaneous Deprotection. Macromolecular Rapid Communications, 2019, 40, e1800857.	3.9	8
161	Synthesis and self-assembly of photoacid-containing block copolymers based on 1-naphthol. Polymer Chemistry, 2019, 10, 5602-5616.	3.9	8
162	Quinoline Photobasicity: Investigation within Waterâ€Soluble Lightâ€Responsive Copolymers. Chemistry - A European Journal, 2021, 27, 1072-1079.	3.3	8

#	Article	IF	CITATIONS
163	UV-induced crosslinking of the polybutadiene domains in lamellar polystyrene-block-polybutadiene block copolymer films – An in-depth study. Polymer, 2012, 53, 5641-5648.	3.8	7
164	Hierarchical Selfâ€Assembly of Doubleâ€Crystalline Poly(ferrocenyldimethylsilane)â€ <i>block</i> â€poly(2â€ <i>iso</i> â€propylâ€2â€oxazoline) (PFDMSâ€ <i>b</i> â€P <i>i</i> PrOx) Block Copolymers. Macromolecular Rapid Communications, 2015, 36, 1651-1657.	3.9	7
165	Spherical and Wormâ€Like Micelles from Fructoseâ€Functionalized Polyether Block Copolymers. Macromolecular Bioscience, 2018, 18, e1700396.	4.1	7
166	Tackling the Limitations of Copolymeric Small Interfering RNA Delivery Agents by a Combined Experimental–Computational Approach. Biomacromolecules, 2019, 20, 4389-4406.	5.4	7
167	Core-crosslinked worm-like micelles from polyether-based diblock terpolymers. Polymer Chemistry, 2019, 10, 5425-5439.	3.9	7
168	pHâ€Responsive Side Chains as a Tool to Control Aqueous Selfâ€Assembly Mechanisms. Chemistry - A European Journal, 2020, 26, 606-610.	3.3	7
169	Electrochemical Stimulation of Water–Oil Interfaces by Nonionic–Cationic Block Copolymer Systems. Langmuir, 2021, 37, 1073-1081.	3.5	7
170	Core–Shell–Corona Micelles from a Polyether-Based Triblock Terpolymer: Investigation of the pH-Dependent Micellar Structure. Langmuir, 2018, 34, 7813-7820.	3.5	6
171	Synthesis, characterization, thermodynamics and thermal degradation kinetics of imine-linked polymers. Journal of Polymer Research, 2020, 27, 1.	2.4	6
172	Catalytic Activity of Various <i>β</i> â€Diketiminate Zinc Complexes toward the Ringâ€Opening Polymerization of Caprolactone and Derivatives. Macromolecular Chemistry and Physics, 2021, 222, 2100187.	2.2	6
173	A Molecular Photosensitizer in a Porous Block Copolymer Matrixâ€Implications for the Design of Photocatalytically Active Membranes. Chemistry - A European Journal, 2021, 27, 17049-17058.	3.3	6
174	Biocompatible Multishell Architecture for Iron Oxide Nanoparticles. Macromolecular Bioscience, 2013, 13, 93-105.	4.1	5
175	Block Copolymers Featuring Highly Photostable Photoacids Based on Vinylnaphthol: Synthesis and Selfâ€Assembly. Macromolecular Rapid Communications, 2020, 41, 1900607.	3.9	5
176	Lightâ€Induced Water Splitting Causes Highâ€Amplitude Oscillation of pHâ€Sensitive Layerâ€byâ€Layer Assembl on TiO ₂ . Angewandte Chemie, 2016, 128, 13195-13198.	ies 2.0	4
177	Polymersome formation induced by encapsulation of water-insoluble molecules within ABC triblock terpolymers. Polymer Chemistry, 2020, 11, 3446-3452.	3.9	4
178	Hybrid nanomaterials of biomolecule corona coated magnetic nanoparticles and their interaction with biological systems. ChemistrySelect, 2022, 7, 1311-1344.	1.5	4
179	The Polymerization of Homogentisic Acid In Vitro as a Model for Pyomelanin Formation. Macromolecular Chemistry and Physics, 2022, 223, .	2.2	4
180	Surface Functionalization of Magnetic Nanoparticles Using a Thiol-Based Grafting-Through Approach. Surfaces, 2020, 3, 116-131.	2.3	3

#	Article	IF	CITATIONS
181	Controlling Growth of Poly (Triethylene Glycol Acrylate-Co-Spiropyran Acrylate) Copolymer Liquid Films on a Hydrophilic Surface by Light and Temperature. Polymers, 2021, 13, 1633.	4.5	3
182	Polyetherâ€Based Diblock Terpolymer Micelles with Pendant Anthracene Units—Lightâ€Induced Crosslinking and Limitations Regarding Reversibility. Macromolecular Rapid Communications, 2021, 42, 2100485.	3.9	3
183	Double hydrophilic poly(ethylene glycol)- <i>block</i> -poly(dehydroalanine) four-arm star block copolymers: synthesis and solution behavior. Polymer Chemistry, 2022, 13, 4298-4308.	3.9	3
184	Toward nanoporous composite membranes with tailored block copolymers as selective layer. Desalination, 2006, 200, 29-31.	8.2	2
185	Non-invasive study of the three-dimensional structure of nanoporous triblock terpolymer membranes. Soft Matter, 2018, 14, 9750-9754.	2.7	2
186	pH-Dependent Structure of Block Copolymer Micelles Featuring a Polyampholyte Corona: A Combined Experimental and Theoretical Approach. Macromolecules, 2021, 54, 1976-1991.	4.8	2
187	Polyelectrolyte Functionalisation of Track Etched Membranes: Towards Charge-Tuneable Adsorber Materials. Membranes, 2021, 11, 509.	3.0	2
188	Electrochemical characterization of mutant forms of rubredoxin B from Mycobacterium tuberculosis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2022, 1870, 140734.	2.3	2
189	Amine-containing diblock terpolymers via AROP: a versatile method for the generation of multifunctional micelles. Polymer Chemistry, 2021, 12, 3900-3916.	3.9	1
190	Synthesis of block copolymers containing 3-chloro-2-hydroxypropyl methacrylate by NMP – a versatile platform for functionalization. Polymer Chemistry, 2022, 13, 4421-4435.	3.9	1
191	Frontispiece: Polymeric Photoacids Based on Naphthols—Design Criteria, Photostability, and Lightâ€Mediated Release. Chemistry - A European Journal, 2020, 26, .	3.3	0