Alexander Karamanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9424463/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sintering and phase formation of ceramics based on pre-treated municipal incinerator bottom ash. Open Ceramics, 2021, 5, 100044.	2.0	4
2	Sintered Glass-Ceramics, Self-Glazed Materials and Foams from Metallurgical Waste Slag. Materials, 2021, 14, 2263.	2.9	6
3	Sintered glass-ceramics and foams by metallurgical slag with addition of CaF2. Ceramics International, 2020, 46, 6507-6516.	4.8	17
4	Sintered Iron-Rich Glass-Ceramics and Foams Obtained in Air and Argon. , 2020, , .		0
5	Sintering, crystallization and foaming of La2O3•SrO•5B2O3 glass powders: effect of the holding time. Journal of Non-Crystalline Solids, 2020, 544, 120168.	3.1	5
6	Toxicological analysis of ceramic building materials – Tiles and glasses – Obtained from post-treated bottom ashes. Waste Management, 2019, 98, 50-57.	7.4	23
7	The Sariçiçek howardite fall in Turkey: Source crater of <scp>HED</scp> meteorites on Vesta and impact risk of Vestoids. Meteoritics and Planetary Science, 2019, 54, 953-1008.	1.6	30
8	Structure of glass-ceramic from Fe-Ni wastes. Materials Letters, 2018, 223, 86-89.	2.6	12
9	Sintering, crystallization and foaming of La2O3·SrO·5B2O3 glass powders - effect of the holding temperature and the heating rate. Journal of Non-Crystalline Solids, 2018, 481, 375-382.	3.1	10
10	Vitrification of hazardous Fe-Ni wastes into glass-ceramic with fine crystalline structure and elevated exploitation characteristics. Journal of Environmental Chemical Engineering, 2017, 5, 432-441.	6.7	29
11	New fired bricks based on municipal solid waste incinerator bottom ash. Waste Management and Research, 2017, 35, 1055-1063.	3.9	23
12	New ceramic materials from MSWI bottom ash obtained by an innovative microwave-assisted sintering process. Journal of the European Ceramic Society, 2017, 37, 323-331.	5.7	37
13	Optimal thermal cycle for production of glass–ceramic based on wastes from ferronickel manufacture. Ceramics International, 2015, 41, 11379-11386.	4.8	32
14	Variations in non-isothermal surface crystallization kinetics due to minor composition changes. Journal of Non-Crystalline Solids, 2015, 428, 49-53.	3.1	1
15	8. Stress-induced Pore Formation and Phase Selection in a Crystallizing Stretched Glass. , 2014, , 441-480.		3
16	Sinter-crystallization in air and inert atmospheres of a glass from pre-treated municipal solid waste bottom ashes. Journal of Non-Crystalline Solids, 2014, 389, 50-59.	3.1	23
17	Glass transition temperature and activation energy of sintering by optical dilatometry. Thermochimica Acta, 2013, 553, 1-7.	2.7	25
18	Variation of Avrami parameter during non-isothermal surface crystallization of glass powders with different sizes. Journal of Non-Crystalline Solids, 2012, 358, 1486-1490.	3.1	34

Alexander Karamanov

#	Article	IF	CITATIONS
19	Post-treated incinerator bottom ash as alternative raw material for ceramic manufacturing. Journal of the European Ceramic Society, 2012, 32, 2843-2852.	5.7	56
20	Integrated approach to establish the sinter-crystallization ability of glasses from secondary raw material. Journal of Non-Crystalline Solids, 2011, 357, 10-17.	3.1	28
21	Ceramics from blast furnace slag, kaolin and quartz. Journal of the European Ceramic Society, 2011, 31, 989-998.	5.7	71
22	Pore formation in glass–ceramics: Influence of the stress energy distribution. Journal of Non-Crystalline Solids, 2010, 356, 117-119.	3.1	9
23	Glass-ceramic frits from fly ash in terracotta production. Waste Management and Research, 2009, 27, 87-92.	3.9	9
24	Sintered material from alkaline basaltic tuffs. Journal of the European Ceramic Society, 2009, 29, 595-601.	5.7	16
25	Characterization of basaltic tuffs and their applications for the production of ceramic and glass–ceramic materials. Ceramics International, 2009, 35, 2789-2795.	4.8	17
26	Induced crystallization porosity and properties of sintereds diopside and wollastonite glass-ceramics. Journal of the European Ceramic Society, 2008, 28, 555-562.	5.7	100
27	Sinter-crystallization of a glass obtained from basaltic tuffs. Journal of Non-Crystalline Solids, 2008, 354, 290-295.	3.1	29
28	Structure, chemical durability and crystallization behavior of incinerator-based glassy systems. Journal of Non-Crystalline Solids, 2008, 354, 521-528.	3.1	29
29	Vitrification of copper flotation waste. Journal of Hazardous Materials, 2007, 140, 333-339.	12.4	52
30	The effect of fired scrap addition on the sintering behaviour of hard porcelain. Ceramics International, 2006, 32, 727-732.	4.8	32
31	Sinter-crystallisation in the diopside–albite system. Journal of the European Ceramic Society, 2006, 26, 2511-2517.	5.7	39
32	Sinter-crystallization in the diopside–albite system. Journal of the European Ceramic Society, 2006, 26, 2519-2526.	5.7	29
33	Sintered glass ceramic composites from vitrified municipal solid waste bottom ashes. Journal of Hazardous Materials, 2006, 137, 138-143.	12.4	36
34	Sintering behaviour of a glass obtained from MSWI ash. Journal of the European Ceramic Society, 2005, 25, 1531-1540.	5.7	42
35	Sintering in Nitrogen Atmosphere of Iron-Rich Glass-Ceramics. Journal of the American Ceramic Society, 2004, 87, 1354-1357.	3.8	21
36	Sintering Behavior and Properties of Ironâ€Rich Glassâ€Ceramics. Journal of the American Ceramic Society, 2004, 87, 1571-1574.	3.8	19

#	Article	IF	CITATIONS
37	Properties of sintered glass-ceramics in the diopside–albite system. Ceramics International, 2004, 30, 2129-2135.	4.8	53
38	Sintered glass-ceramics from Municipal Solid Waste-incinerator fly ashes—part I: the influence of the heating rate on the sinter-crystallisation. Journal of the European Ceramic Society, 2003, 23, 827-832.	5.7	92
39	Sintered glass-ceramics from incinerator fly ashes. Part II. The influence of the particle size and heat-treatment on the properties. Journal of the European Ceramic Society, 2003, 23, 1609-1615.	5.7	52
40	Vitrification of electric arc furnace dusts. Waste Management, 2002, 22, 945-949.	7.4	105
41	Crystallization phenomena in iron-rich glasses. Journal of Non-Crystalline Solids, 2001, 281, 139-151.	3.1	114
42	Influence of the nucleation time-lag on the activation energy in non-isothermal crystallization. Journal of Non-Crystalline Solids, 2001, 290, 173-179.	3.1	19
43	Chemical durability of glasses obtained by vitrification of industrial wastes. Waste Management, 2001, 21, 1-9.	7.4	125
44	Reply to "Comment on â€~Influence of Fe ³⁺ /Fe ²⁺ Ratio on the Crystallization of Ironâ€Rich Glasses Made with Industrial Wastes'― Journal of the American Ceramic Society, 2001, 84, 2742-2743.	3.8	4
45	The crystallisation kinetics of iron rich glass in different atmospheres. Journal of the European Ceramic Society, 2000, 20, 2233-2237.	5.7	49
46	Influence of Fe ³⁺ /Fe ²⁺ Ratio on the Crystallization of Ironâ€Rich Glasses Made with Industrial Wastes. Journal of the American Ceramic Society, 2000, 83, 3153-3157.	3.8	97
47	Evaluation of the degree of crystallisation in glass-ceramics by density measurements. Journal of the European Ceramic Society, 1999, 19, 649-654.	5.7	80
48	Kinetics of phase formation in jarosite glass-ceramic. Journal of the European Ceramic Society, 1999, 19, 527-533.	5.7	38
49	The effect of Cr2O3 as a nucleating agent in iron-rich glass-ceramics. Journal of the European Ceramic Society, 1999, 19, 2641-2645.	5.7	62
50	Ironâ€Rich Sintered Glass eramics from Industrial Wastes. Journal of the American Ceramic Society, 1999, 82, 3012-3016.	3.8	66
51	Vitrification and Sinter-Crystallization of Iron-Rich Industrial Wastes. Advances in Science and Technology, 0, , .	0.2	7