Demetri Psaltis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9424083/publications.pdf

Version: 2024-02-01

255 papers 13,670 citations

28274 55 h-index 22832 112 g-index

257 all docs

257 docs citations

times ranked

257

10879 citing authors

#	Article	IF	CITATIONS
1	Learning to image and compute with multimode optical fibers. Nanophotonics, 2022, 11, 1071-1082.	6.0	15
2	Photonic waveguide bundles using 3D laser writing and deep neural network image reconstruction. Optics Express, 2022, 30, 2564.	3.4	7
3	Optical Diffraction Tomography Using Nearly In-Line Holography with a Broadband LED Source. Applied Sciences (Switzerland), 2022, 12, 951.	2.5	5
4	Fluorescence-Based and Fluorescent Label-Free Characterization of Polymer Nanoparticle Decorated T Cells. Biomacromolecules, 2021, 22, 190-200.	5.4	20
5	3D reconstruction of weakly scattering objects from 2D intensity-only measurements using the Wolf transform. Optics Express, 2021, 29, 3976.	3.4	4
6	A membrane-less electrolyzer with porous walls for high throughput and pure hydrogen production. Sustainable Energy and Fuels, 2021, 5, 2419-2432.	4.9	23
7	Polarization-sensitive optical diffraction tomography. Optica, 2021, 8, 402.	9.3	43
8	Competitive photonic neural networks. Nature Photonics, 2021, 15, 323-324.	31.4	10
9	Reusability report: Predicting spatiotemporal nonlinear dynamics in multimode fibre optics with a recurrent neural network. Nature Machine Intelligence, 2021, 3, 387-391.	16.0	20
10	Full characterization of partially measured systems with neural networks., 2021,,.		0
11	Spatial self-beam cleaning in spatiotemporally mode-locked fiber lasers. , 2021, , .		O
12	Optical computing with spatiotemporal fiber nonlinearities. , 2021, , .		0
13	High-resolution microfabrication through a graded-index multimode optical fiber. , 2021, , .		0
14	Predicting optical transmission through complex scattering media from reflection patterns with deep neural networks. Optics Communications, 2021, 492, 126968.	2.1	13
15	Multiphoton-induced polymerization in the fabrication of optical waveguides in polydimethylsiloxane. , 2021, , .		0
16	Scalable optical learning operator. Nature Computational Science, 2021, 1, 542-549.	8.0	67
17	High speed, complex wavefront shaping using the digital micro-mirror device. Scientific Reports, 2021, 11, 18837.	3.3	21
18	Learning to See and Compute through Multimode Fibers. , 2021, , .		О

#	Article	IF	CITATIONS
19	A method for assessing the fidelity of optical diffraction tomography reconstruction methods using structured illumination. Optics Communications, 2020, 454, 124486.	2.1	8
20	Actor neural networks for the robust control of partially measured nonlinear systems showcased for image propagation through diffuse media. Nature Machine Intelligence, 2020, 2, 403-410.	16.0	46
21	Inference in artificial intelligence with deep optics and photonics. Nature, 2020, 588, 39-47.	27.8	418
22	Spectral and Spatial Shaping of Spatiotemporal Nonlinearities in Multimode Fibers. , 2020, , .		0
23	Adaptive Regularization for Three-Dimensional Optical Diffraction Tomography. , 2020, , .		6
24	Fabrication of Sub-Micron Polymer Waveguides through Two-Photon Polymerization in Polydimethylsiloxane. Polymers, 2020, 12, 2485.	4.5	24
25	Deep Learning-Based Image Classification through a Multimode Fiber in the Presence of Wavelength Drift. Applied Sciences (Switzerland), 2020, 10, 3816.	2.5	16
26	Additive micro-manufacturing of crack-free PDCs by two-photon polymerization of a single, low-shrinkage preceramic resin. Additive Manufacturing, 2020, 35, 101343.	3.0	24
27	In Vitro Cytocompatibility Assessment of Ti-Modified, Silicon-oxycarbide-Based, Polymer-Derived, Ceramic-Implantable Electrodes under Pacing Conditions. ACS Applied Materials & Samp; Interfaces, 2020, 12, 17244-17253.	8.0	13
28	Three-Dimensional Optical Diffraction Tomography With Lippmann-Schwinger Model. IEEE Transactions on Computational Imaging, 2020, 6, 727-738.	4.4	35
29	Computational optical imaging goes viral. APL Photonics, 2020, 5, 030401.	5.7	0
30	Three-dimensional tomography of red blood cells using deep learning. Advanced Photonics, 2020, 2, 1.	11.8	29
31	The Impact of Surfactants on the Inertial Separation of Bubbles in Microfluidic Electrolyzers. Journal of the Electrochemical Society, 2020, 167, 134504.	2.9	6
32	Computer generated optical volume elements by additive manufacturing. Nanophotonics, 2020, 9, 4173-4181.	6.0	19
33	Multimode fiber projection with machine learning. , 2020, , .		0
34	Optical Diffraction Tomography (ODT) for Label-Free Imaging of Large 3D Biological Samples. , 2020, , .		0
35	Imaging through multimode fibers using deep learning: The effects of intensity versus holographic recording of the speckle pattern. Optical Fiber Technology, 2019, 52, 101985.	2.7	47
36	Editors' Choiceâ€"Solar-Electrochemical Platforms for Sodium Hypochlorite Generation in Developing Countries. Journal of the Electrochemical Society, 2019, 166, E336-E346.	2.9	6

3

#	Article	IF	CITATIONS
37	Learning from droplet flows in microfluidic channels using deep neural networks. Scientific Reports, 2019, 9, 8114.	3.3	44
38	Learning Spatiotemporal Nonlinearities in Graded-Index Multimode Fibers with Deep Neural Networks. , 2019, , .		0
39	High-fidelity optical diffraction tomography of multiple scattering samples. Light: Science and Applications, 2019, 8, 82.	16.6	77
40	A versatile and membrane-less electrochemical reactor for the electrolysis of water and brine. Energy and Environmental Science, 2019, 12, 1592-1604.	30.8	80
41	Wavelength Independent Image Classification through a Multimode Fiber using Deep Neural Networks. , 2019, , .		1
42	Selective femtosecond laser ablation via two-photon fluorescence imaging through a multimode fiber. Biomedical Optics Express, 2019, 10, 423.	2.9	35
43	Digital staining through the application of deep neural networks to multi-modal multi-photon microscopy. Biomedical Optics Express, 2019, 10, 1339.	2.9	41
44	Imaging hair cells through laser-ablated cochlear bone. Biomedical Optics Express, 2019, 10, 5974.	2.9	3
45	Efficient Image Classification through a Multimode Fiber using Deep Neural Networks in presence of Wavelength Drifting. , 2019, , .		2
46	Raman imaging through multimode sapphire fiber. Optics Express, 2019, 27, 1090.	3.4	14
47	Photoinitiator-free multi-photon fabrication of compact optical waveguides in polydimethylsiloxane. Optical Materials Express, 2019, 9, 128.	3.0	22
48	Optical Diffraction Tomography Based on a Spatial Light Modulator for Biological Imaging. , 2019, , .		0
49	Learning tomography plus for highly scattering samples. , 2019, , .		0
50	Deep learning assisted image transmission in multimode fibers. , 2019, , .		0
51	Two-photon imaging and selective laser ablation of cochlea hair cells through a multimode fiber probe. , 2019, , .		0
52	Deep neural networks for seeing through multimode fibers. , 2019, , .		1
53	Inertial manipulation of bubbles in rectangular microfluidic channels. Lab on A Chip, 2018, 18, 1035-1046.	6.0	30
54	Learning Tomography Assessed Using Mie Theory. Physical Review Applied, 2018, 9, .	3.8	20

#	Article	IF	Citations
55	Integrated Platform for Multi-resolution Additive Manufacturing. , 2018, , 145-151.		1
56	Efficient Solar-Vapor Generation in Hollow-Mesoporous Plasmonic Nanoshells. , 2018, , .		0
57	Multimode optical fiber transmission with a deep learning network. Light: Science and Applications, 2018, 7, 69.	16.6	221
58	Transmission in Multimode Fiber with Deep Learning. , 2018, , .		0
59	Multi-Photon Fabrication of Ultra-Compact Optical Waveguides in Polydimethylsiloxane. , 2018, , .		0
60	Phaseless diffraction tomography with regularized beam propagation. , 2018, , .		0
61	Single-photon three-dimensional microfabrication through a multimode optical fiber. Optics Express, 2018, 26, 1766.	3.4	29
62	Versatile reconstruction framework for diffraction tomography with intensity measurements and multiple scattering. Optics Express, 2018, 26, 2749.	3.4	35
63	Image Transmission Through Multimode Fibers. , 2018, , .		0
64	Polymer derived silicon oxycarbide ceramic monoliths: Microstructure development and associated materials properties. Ceramics International, 2018, 44, 20961-20967.	4.8	26
65	Learning to see through multimode fibers. Optica, 2018, 5, 960.	9.3	274
66	$\hbox{Multi-Photon Fabrication of Ultra-compact Optical Waveguides in Polydimethylsiloxane.}\ , 2018, , .$		0
67	Imaging of cochlear cells through scattering bone. , 2018, , .		0
68	Multi-photon Fabrication of Compact Low-loss Optical Waveguides in Polydimethylsiloxane. , 2018, , .		0
69	Seeing through Multimode Fibers with Deep Learning. , 2018, , .		1
70	Wavefront shaping for ultrashort pulse delivery through optical fibers for imaging and ablation. , 2018, , .		0
71	Imaging complex objects using learning tomography. , 2018, , .		0
72	Tomographic imaging with harmonic holography in tissues of known refractive index distribution. , 2018, , .		0

#	Article	IF	Citations
73	Photoinitiator-free laser fabrication of ultra-compact, low-loss waveguides in polydimethylsiloxane. , 2018, , .		O
74	Multiple speckle illumination for optical-resolution photoacoustic imaging. Proceedings of SPIE, 2017, , .	0.8	2
75	A 25.1% Efficient Standâ€Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator. Global Challenges, 2017, 1, 1700095.	3.6	6
76	Ultrashort pulse laser ablation through a multi-core fiber. , 2017, , .		0
77	Optical Tomography based on a nonlinear model that handles multiple scattering. , 2017, , .		1
78	Imaging and pattern projection through multicore fibers using the memory effect., 2017,,.		0
79	Three-dimensional microfabrication through a multimode optical fiber. Optics Express, 2017, 25, 7031.	3.4	28
80	High power, ultrashort pulse control through a multi-core fiber for ablation. Optics Express, 2017, 25, 11491.	3.4	21
81	Bend translation in multimode fiber imaging. Optics Express, 2017, 25, 6263.	3.4	47
82	Assessment of the advantages of learning tomography over conventional linear optical tomography. , 2017, , .		0
83	Solar-vapor generation with 69% energy conversion efficiency in hollow-mesoporous plasmonic nanoshells. , 2017, , .		O
84	Comparative study of learning tomography and conventional diffraction tomography., 2017,,.		0
85	Coherence-domain imaging with harmonic holography. , 2017, , .		O
86	Femtosecond pulse delivery through multi-core fibers for imaging and ablation. , 2017, , .		0
87	Calibration-free imaging through a multicore fiber using speckle scanning microscopy. Optics Letters, 2016, 41, 3078.	3.3	41
88	Two-photon fluorescence imaging through multicore fiber with digital phase conjugation. Proceedings of SPIE, $2016, , .$	0.8	0
89	Second-harmonic radiating imaging probes and harmonic holography. Proceedings of SPIE, 2016, , .	0.8	0
90	Optofluidics of plants. APL Photonics, 2016, 1, .	5.7	2

#	Article	IF	Citations
91	Laser-assisted inkjet printing of highly viscous fluids with sub-nozzle resolution. Proceedings of SPIE, 2016, , .	0.8	2
92	Imaging with Multimode Fibers. Optics and Photonics News, 2016, 27, 24.	0.5	31
93	Two-photon excitation endoscopy through a multimode optical fiber. Proceedings of SPIE, 2016, , .	0.8	0
94	Human audiometric thresholds do not predict specific cellular damage in the inner ear. Hearing Research, 2016, 335, 83-93.	2.0	40
95	STED imaging of green fluorescent nanodiamonds containing nitrogen-vacancy-nitrogen centers. Biomedical Optics Express, 2016, 7, 34.	2.9	36
96	Inkjet Printing of Viscous Monodisperse Microdroplets by Laser-Induced Flow Focusing. Physical Review Applied, 2016, 6, .	3.8	55
97	Solar-to-Hydrogen Production at 14.2% Efficiency with Silicon Photovoltaics and Earth-Abundant Electrocatalysts. Journal of the Electrochemical Society, 2016, 163, F1177-F1181.	2.9	85
98	Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation. Journal of Biomedical Optics, 2016, 21, 045002.	2.6	28
99	Surgical Anatomy of the Human Round Window Region. Otology and Neurotology, 2016, 37, 1189-1194.	1.3	16
100	Optical Computing: Past and Future. Optics and Photonics News, 2016, 27, 32.	0.5	64
101	Confocal microscopy via multimode fibers: fluorescence bandwidth. Proceedings of SPIE, 2016, , .	0.8	1
102	Complex light in 3D printing. , 2016, , .		1
103	Fluorescence and optical-resolution photoacoustic imaging through capillary waveguides. , 2016, , .		0
104	Optical Tomographic Image Reconstruction Based on Beam Propagation and Sparse Regularization. IEEE Transactions on Computational Imaging, 2016, 2, 59-70.	4.4	140
105	Hollow Mesoporous Plasmonic Nanoshells for Enhanced Solar Vapor Generation. Nano Letters, 2016, 16, 2159-2167.	9.1	223
106	The memory effect in multicore fibers. , 2016, , .		0
107	Focusing and scanning of femtosecond pulses through a multimode fiber: applications in two-photon imaging and polymerization. , 2016, , .		1
108	Two-photon imaging through a multimode fiber. Optics Express, 2015, 23, 32158.	3.4	97

#	Article	IF	Citations
109	Enhanced resolution in a multimode fiber imaging system. Optics Express, 2015, 23, 27484.	3.4	16
110	Light control in a multicore fiber using the memory effect. Optics Express, 2015, 23, 30532.	3.4	38
111	Towards new applications using capillary waveguides. Biomedical Optics Express, 2015, 6, 4619.	2.9	20
112	A Learning Approach to Optical Tomography., 2015,,.		1
113	Delivery of an ultrashort spatially focused pulse to the other end of a multimode fiber using digital phase conjugation. , 2015, , .		0
114	Optical-resolution photoacoustic imaging through thick tissue with a thin capillary as a dual optical-in acoustic-out waveguide. Applied Physics Letters, 2015, 106, .	3.3	20
115	Time-gated digital phase conjugation for two-photon excitation microscopy through multimode optical fibers. , 2015, , .		0
116	Confocal microscopy through a multimode fiber using optical correlation. Optics Letters, 2015, 40, 5754.	3.3	31
117	Delivery of ultrashort spatially focused pulses through a multimode fiber. , 2015, , .		0
118	Delivery of ultrashort spatially focused pulses through a multimode fiber for two photon endoscopic imaging. Proceedings of SPIE, 2015 , , .	0.8	0
119	Complex pattern projection through a multimode fiber. Proceedings of SPIE, 2015, , .	0.8	3
120	A membrane-less electrolyzer for hydrogen production across the pH scale. Energy and Environmental Science, 2015, 8, 2003-2009.	30.8	91
121	Vapor-fed microfluidic hydrogen generator. Lab on A Chip, 2015, 15, 2287-2296.	6.0	37
122	Isotropic inverse-problem approach for two-dimensional phase unwrapping. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2015, 32, 1092.	1.5	14
123	Subsurface ablation of atherosclerotic plaque using ultrafast laser pulses. Biomedical Optics Express, 2015, 6, 2552.	2.9	9
124	Improving the quality of filament-impaired images in Kerr media by statistical averaging. Optics Express, 2015, 23, 431.	3.4	2
125	Delivery of focused short pulses through a multimode fiber. Optics Express, 2015, 23, 9109.	3.4	93
126	Learning approach to optical tomography. Optica, 2015, 2, 517.	9.3	332

#	Article	IF	CITATIONS
127	Digital confocal microscopy through a multimode fiber. Optics Express, 2015, 23, 23845.	3.4	132
128	Imaging with Multi-mode Fibers. , 2015, , .		1
129	Ultrafast laser ablation for targeted atherosclerotic plaque removal. , 2015, , .		1
130	Digital confocal microscopy through a multimode fiber., 2015,,.		0
131	Effect of Solar Thermal Energy on Photoreactions' Rate. , 2014, , .		0
132	Imaging of the Mouse Cochlea with Two-photon Microscopy and Multimode Fiber-based Microendoscopy. , 2014, , .		1
133	Resolution enhancement in nonlinear scanning microscopy through post-detection digital computation. Optica, 2014, 1, 455.	9.3	29
134	Imaging blood cells through scattering biological tissue using speckle scanning microscopy. Optics Express, 2014, 22, 3405.	3.4	96
135	A micropillar array for sample concentration via in-plane evaporation. Biomicrofluidics, 2014, 8, 044108.	2.4	14
136	Design principles of deployable solar-hydrogen generators. , 2014, , .		0
137	Design and cost considerations for practical solar-hydrogen generators. Energy and Environmental Science, 2014, 7, 3828-3835.	30.8	140
138	Solar thermal harvesting for enhanced photocatalytic reactions. Physical Chemistry Chemical Physics, 2014, 16, 5137.	2.8	15
139	Superhydrophobic bull's-eye for surface-enhanced Raman scattering. Lab on A Chip, 2014, 14, 3907-3911.	6.0	34
140	Focusing of an ultrashort pulse through a multimode fiber using Digital Phase Conjugation. , 2014, , .		0
141	Optical-resolution photoacoustic microscopy by use of a multimode fiber. Applied Physics Letters, 2013, 102, .	3.3	38
142	CARS holography., 2013,,.		0
143	Electrically tunable optofluidic light switch for reconfigurable solar lighting. Lab on A Chip, 2013, 13, 2708.	6.0	27
144	Digital holographic confocal microscope. , 2013, , .		5

#	Article	IF	CITATIONS
145	Increasing the imaging capabilities of multimode fibers by exploiting the properties of highly scattering media. Optics Letters, 2013, 38, 2776.	3.3	31
146	Seeing through turbidity with harmonic holography [Invited]. Applied Optics, 2013, 52, 567.	1.8	14
147	High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber. Biomedical Optics Express, 2013, 4, 260.	2.9	277
148	Multiple contrast metrics from the measurements of a digital confocal microscope. Biomedical Optics Express, 2013, 4, 1091.	2.9	14
149	Dynamic bending compensation while focusing through a multimode fiber. Optics Express, 2013, 21, 22504.	3.4	99
150	Imaging in focusing Kerr media using reverse propagation [Invited]. Photonics Research, 2013, 1, 96.	7.0	12
151	Focused light delivery and all optical scanning from a multimode optical fiber using digital phase conjugation. , 2013 , , .		3
152	In situ imaging of the mouse cochlea using two-photon microscopy. , 2013, , .		0
153	Microscopy with multimode fibers. Proceedings of SPIE, 2013, , .	0.8	O
154	Imaging using multimode fibers., 2013,,.		3
155	Multimode fiber based endoscope., 2013,,.		0
156	Holographic coherent anti-Stokes Raman scattering bio-imaging. Biomedical Optics Express, 2012, 3, 1744.	2.9	17
157	Three-dimensional scanning microscopy through thin turbid media. Optics Express, 2012, 20, 2500.	3.4	44
158	Digital confocal microscope. Optics Express, 2012, 20, 22720.	3.4	24
159	Two-photon microscopy of the mouse cochlea <i>in situ</i> for cellular diagnosis. Journal of Biomedical Optics, 2012, 18, 031104.	2.6	20
160	Three-Dimensional Mapping of Transparent Objects Using Kerr Nonlinearity Measurement. , 2012, , .		0
161	The fog clears. Nature, 2012, 491, 197-198.	27.8	14
162	COHERENT ANTI-STOKES RAMAN SCATTERING HOLOGRAPHY: THEORY AND EXPERIMENT. Journal of Nonlinear Optical Physics and Materials, 2012, 21, 1250028.	1.8	10

#	Article	IF	Citations
163	Precision Intracellular Delivery Based on Optofluidic Polymersome Rupture. ACS Nano, 2012, 6, 7850-7857.	14.6	101
164	Elastomer based tunable optofluidic devices. Lab on A Chip, 2012, 12, 3590.	6.0	37
165	Focusing and scanning light through a multimode optical fiber using digital phase conjugation. Optics Express, 2012, 20, 10583.	3.4	341
166	Optofluidic devices and applications. , 2012, , .		0
167	Three-dimensional scanning microscopy through turbid media. , 2012, , .		0
168	Recent Advances in Imaging through Scattering Media., 2012,,.		0
169	Pneumatically tunable optofluidic 2 \tilde{A} — 2 switch for reconfigurable optical circuit. Lab on A Chip, 2011, 11, 2397.	6.0	218
170	Imaging with second-harmonic radiation probes in living tissue. Biomedical Optics Express, 2011, 2, 2532.	2.9	57
171	Silicon oxide deposition for enhanced optical switching in polydimethylsiloxane-liquid crystal hybrids. Optics Express, 2011, 19, 23532.	3.4	17
172	Superoscillatory diffraction-free beams. Optics Letters, 2011, 36, 4335.	3.3	58
173	Optofluidics for energy applications. Nature Photonics, 2011, 5, 583-590.	31.4	266
174	Huygens–Fresnel diffraction and evanescent waves. Optics Communications, 2011, 284, 1686-1689.	2.1	15
175	Optofluidic membrane interferometer: An imaging method for measuring microfluidic pressure and flow rate simultaneously on a chip. Biomicrofluidics, 2011, 5, 44110-4411011.	2.4	33
175	Optofluidic membrane interferometer: An imaging method for measuring microfluidic pressure and flow rate simultaneously on a chip. Biomicrofluidics, 2011, 5, 44110-4411011. Digital reverse propagation in focusing Kerr media. Physical Review A, 2011, 83, .	2.4	19
	flow rate simultaneously on a chip. Biomicrofluidics, 2011, 5, 44110-4411011.		
176	flow rate simultaneously on a chip. Biomicrofluidics, 2011, 5, 44110-4411011. Digital reverse propagation in focusing Kerr media. Physical Review A, 2011, 83, .		19
176 177	flow rate simultaneously on a chip. Biomicrofluidics, 2011, 5, 44110-4411011. Digital reverse propagation in focusing Kerr media. Physical Review A, 2011, 83, . Optofluidics. , 2011, , .		19

#	Article	lF	Citations
181	Second harmonic nanoparticles in imaging applications. Proceedings of SPIE, 2011, , .	0.8	2
182	Imaging Through Turbidity by Phase-Conjugate Scanning Microscope Using Second-Harmonic Beacon Nanoparticles. , 2011 , , .		0
183	Characterization of the cytotoxicity and imaging properties of second-harmonic nanoparticles. Proceedings of SPIE, 2010, , .	0.8	4
184	Tunable optofluidic dye laser with integrated air-gap etalon. , 2010, , .		0
185	Harmonic Holography. Advances in Imaging and Electron Physics, 2010, , 75-112.	0.2	2
186	Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes. Biomaterials, 2010, 31, 2272-2277.	11.4	94
187	Pressure mediated tunable elastomeric optofluidic devices. , 2010, , .		0
188	Coherent Anti-Stokes Raman Holography for Chemically Selective Single-Shot Nonscanning 3D Imaging. Physical Review Letters, 2010, 104, 093902.	7.8	40
189	All-optical switching in an optofluidic polydimethylsiloxane: Liquid crystal grating defined by cast-molding. Applied Physics Letters, 2010, 96, 131112.	3.3	40
190	Pneumatically tunable optofluidic dye laser. Applied Physics Letters, 2010, 96, .	3.3	44
191	Tuning parameters of metal ion implantation within a microfluidic channel. Proceedings of SPIE, 2010,	0.8	1
192	Optofluidic applications with lithium niobate nanowires. , 2010, , .		0
193	Nonlinear Optical Properties of Core-Shell Nanocavities for Enhanced Second-Harmonic Generation. Physical Review Letters, 2010, 104, 207402.	7.8	224
194	Inline holographic coherent anti-Stokes Raman microscopy. Optics Express, 2010, 18, 8213.	3.4	18
195	Second harmonic generation from nanocrystals under linearly and circularly polarized excitations. Optics Express, 2010, 18, 11917.	3.4	49
196	Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media. Optics Express, 2010, 18, 12283.	3.4	171
197	Imaging based optofluidic air flow meter with polymer interferometers defined by soft lithography. Optics Express, 2010, 18, 16561.	3.4	15
198	Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle. Optics Express, 2010, 18, 20723.	3.4	213

#	Article	IF	CITATIONS
199	Optofluidic pressure sensor based on interferometric imaging. Optics Letters, 2010, 35, 3604.	3.3	40
200	10.1063/1.3324885.1.,2010,,.		1
201	Novel tuning method for optofluidics. , 2009, , .		1
202	Optofluidic evanescent dye laser. , 2009, , .		0
203	Ultrasensitive second harmonic generation nanoprobes via plasmonic coreshell structures. , 2009, , .		0
204	Lithium niobate nanowires synthesis, optical properties, and manipulation. Applied Physics Letters, 2009, 95, 143105.	3.3	82
205	Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging. Optics Express, 2009, 17, 2880.	3.4	167
206	A multi-color fast-switching microfluidic droplet dye laser. Lab on A Chip, 2009, 9, 2767.	6.0	177
207	Low-order distributed feedback optofluidic dye laser with reduced threshold. Applied Physics Letters, 2009, 94, .	3.3	56
208	Optofluidic evanescent dye laser based on a distributed feedback circular grating. Applied Physics Letters, 2009, 94, 161110.	3.3	66
209	Heterogenous Catalysis Mediated by Plasmon Heating. Nano Letters, 2009, 9, 4417-4423.	9.1	423
210	Optofluidic dye lasers. Microfluidics and Nanofluidics, 2008, 4, 145-158.	2.2	143
211	Optical phase conjugation for turbidity suppression in biological samples. Nature Photonics, 2008, 2, 110-115.	31.4	629
212	Harmonic holography: a new holographic principle. Applied Optics, 2008, 47, A103.	2.1	79
213	Magnifying perfect lens and superlens design by coordinate transformation. Physical Review B, 2008, 77, .	3.2	132
214	Lensless high-resolution on-chip optofluidic microscopes for <i>Caenorhabditis elegans</i> and cell imaging. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10670-10675.	7.1	263
215	Nanoimprinted circular grating distributed feedback dye laser. Applied Physics Letters, 2007, 91, .	3.3	47
216	Optical parametric generation in periodically poled KTiOPO4 via extended phase matching. Applied Physics Letters, 2007, 91, 131120.	3.3	5

#	Article	IF	CITATIONS
217	Optofluidic Microring Dye Laser. LEOS Summer Topical Meeting, 2007, , .	0.0	7
218	Ultrafast Mirrorless Optical Parametric Oscillator in Periodically Poled KTiOPO <inf>4</inf> via Extended Phase Matching., 2007,,.		0
219	Modulational instability in nonlinearity-managed optical media. Physical Review A, 2007, 75, .	2.5	25
220	Nonlinearity management in optics. Proceedings in Applied Mathematics and Mechanics, 2007, 7, 2030029-2030030.	0.2	0
221	Digital holography of second harmonic signal. , 2006, , .		0
222	Optofluidic microscopy—a method for implementing a high resolution optical microscope on a chip. Lab on A Chip, 2006, 6, 1274-1276.	6.0	272
223	Holographic grating formation in silver nanoparticle suspensions. , 2006, , .		0
224	Nanofluidic tuning of photonic crystal circuits. Optics Letters, 2006, 31, 59.	3.3	235
225	Holographic grating formation in a colloidal suspension of silver nanoparticles. Optics Letters, 2006, 31, 447.	3.3	17
226	Single mode optofluidic distributed feedback dye laser. Optics Express, 2006, 14, 696.	3.4	335
227	Optical detection of asymmetric bacteria utilizing electro orientation. Optics Express, 2006, 14, 9780.	3.4	28
228	Mechanically tunable optofluidic distributed feedback dye laser. Optics Express, 2006, 14, 10494.	3.4	128
229	Developing optofluidic technology through the fusion of microfluidics and optics. Nature, 2006, 442, 381-386.	27.8	1,779
230	Optofluidic distributed feedback dye laser. , 2006, , .		0
231	Rapid broad spectrum bacterial detection using electromagnetic cellular polarization and optical scattering. , 2006, , .		0
232	Holographic capture of femtosecond pulse propagation. Journal of Applied Physics, 2006, 100, 063104.	2.5	34
233	Quantum temporal imaging. , 2006, , .		0
234	Nano-aperture array based optical imaging system on a microfluidic chip. , 2006, , .		0

#	Article	IF	Citations
235	Dynamics of filament formation in a Kerr medium. Physical Review A, 2005, 71, .	2.5	37
236	A microfluidic 2×2 optical switch. Applied Physics Letters, 2004, 85, 6119-6121.	3.3	76
237	Reverse propagation of femtosecond pulses in optical fibers. Optics Letters, 2003, 28, 1873.	3.3	61
238	Holographic recording of fast phenomena. Applied Physics Letters, 2002, 80, 731-733.	3.3	58
239	Coherent Optical Information Systems. Science, 2002, 298, 1359-1363.	12.6	91
240	Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals. Applied Physics Letters, 2001, 78, 4076-4078.	3.3	54
241	Liquid-crystal blazed-grating beam deflector. Applied Optics, 2000, 39, 6545.	2.1	106
242	Effect of annealing in two-center holographic recording. Applied Physics Letters, 1999, 74, 3767-3769.	3.3	55
243	Network Synthesis through Data-Driven Growth and Decay. Neural Networks, 1997, 10, 1133-1141.	5.9	5
244	Holography in artificial neural networks. , 1995, , 541-546.		2
245	Bias-free time-integrating optical correlator using a photorefractive crystal. , 1995, , 587-592.		0
246	Double grating formation in anisotropic photorefractive crystals. Journal of Applied Physics, 1992, 71, 1394-1400.	2.5	7
247	Phaseâ€locked sustainment of photorefractive holograms using phase conjugation. Journal of Applied Physics, 1991, 70, 4646-4648.	2.5	35
248	Mass storage for digital optical computers. , 1990, 10257, 158.		3
249	Holography in artificial neural networks. Nature, 1990, 343, 325-330.	27.8	221
250	Generalizing Smoothness Constraints from Discrete Samples. Neural Computation, 1990, 2, 188-197.	2.2	51
251	Volume holographic interconnections with maximal capacity and minimal cross talk. Journal of Applied Physics, 1989, 65, 2191-2194.	2.5	122
252	INFORMATION STORAGE IN FULLY CONNECTED NETWORKS. , 1989, , 51-89.		0

DEMETRI PSALTIS

#	Article	IF	CITATIONS
253	Adaptive optical networks using photorefractive crystals. Applied Optics, 1988, 27, 1752.	2.1	403
254	Real-time computer-generated hologram by means of liquid-crystal television spatial light modulator. Optics Letters, $1986,11,748.$	3.3	145
255	Image Normalization by Complex Moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985, PAMI-7, 46-55.	13.9	195