
Michael G Dwyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9423883/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protection Against Cerebral Embolism During Transcatheter Aortic Valve Replacement. Journal of the American College of Cardiology, 2017, 69, 367-377.	2.8	405
2	Effect of a Cerebral Protection Device on Brain Lesions Following Transcatheter Aortic Valve Implantation in Patients With Severe Aortic Stenosis. JAMA - Journal of the American Medical Association, 2016, 316, 592.	7.4	284
3	Neocortical Atrophy, Third Ventricular Width, and Cognitive Dysfunction in Multiple Sclerosis. Archives of Neurology, 2006, 63, 1301.	4.5	282
4	Basal ganglia, thalamus and neocortical atrophy predicting slowed cognitive processing in multiple sclerosis. Journal of Neurology, 2012, 259, 139-146.	3.6	274
5	Abnormal subcortical deep-gray matter susceptibility-weighted imaging filtered phase measurements in patients with multiple sclerosis. NeuroImage, 2012, 59, 331-339.	4.2	176
6	Thalamic Atrophy Is Associated with Development of Clinically Definite Multiple Sclerosis. Radiology, 2013, 268, 831-841.	7.3	145
7	Extent of cerebellum, subcortical and cortical atrophy in patients with MS. Journal of the Neurological Sciences, 2009, 282, 47-54.	0.6	133
8	Clinical relevance of brain atrophy assessment in multiple sclerosis. Implications for its use in a clinical routine. Expert Review of Neurotherapeutics, 2016, 16, 777-793.	2.8	126
9	Relationship of optic nerve and brain conventional and non-conventional MRI measures and retinal nerve fiber layer thickness, as assessed by OCT and GDx: A pilot study. Journal of the Neurological Sciences, 2009, 282, 96-105.	0.6	110
10	Proposed Standardized Neurological Endpoints for Cardiovascular Clinical Trials. Journal of the American College of Cardiology, 2017, 69, 679-691.	2.8	110
11	Independent contributions of cortical gray matter atrophy and ventricle enlargement for predicting neuropsychological impairment in multiple sclerosis. NeuroImage, 2007, 36, 1294-1300.	4.2	109
12	Cardiovascular risk factors are associated with increased lesion burden and brain atrophy in multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, jnnp-2014-310051.	1.9	95
13	Diffusion-weighted imaging predicts cognitive impairment in multiple sclerosis. Multiple Sclerosis Journal, 2007, 13, 722-730.	3.0	91
14	Localized atrophy of the thalamus and slowed cognitive processing speed in MS patients. Multiple Sclerosis Journal, 2016, 22, 1327-1336.	3.0	88
15	Clinical significance of atrophy and white matter mean diffusivity within the thalamus of multiple sclerosis Journal, 2013, 19, 1478-1484.	3.0	85
16	Gray matter atrophy and disability progression in patients with early relapsing–remitting multiple sclerosis. Journal of the Neurological Sciences, 2009, 282, 112-119.	0.6	84
17	Use of MR Venography for Characterization of the Extracranial Venous System in Patients with Multiple Sclerosis and Healthy Control Subjects. Radiology, 2011, 258, 562-570.	7.3	81
18	Validity of the Wisconsin Card Sorting and Delis–Kaplan Executive Function System (DKEFS) Sorting Tests in multiple sclerosis. Journal of Clinical and Experimental Neuropsychology, 2007, 29, 215-223.	1.3	77

#	Article	IF	CITATIONS
19	Hypoperfusion of brain parenchyma is associated with the severity of chronic cerebrospinal venous insufficiency in patients with multiple sclerosis: a cross-sectional preliminary report. BMC Medicine, 2011, 9, 22.	5.5	77
20	Brain Iron at Quantitative MRI Is Associated with Disability in Multiple Sclerosis. Radiology, 2018, 289, 487-496.	7.3	75
21	A serial 10-year follow-up study of brain atrophy and disability progression in RRMS patients. Multiple Sclerosis Journal, 2016, 22, 1709-1718.	3.0	69
22	Environmental Factors Associated with Disease Progression after the First Demyelinating Event: Results from the Multi-Center SET Study. PLoS ONE, 2013, 8, e53996.	2.5	68
23	Jugular Venous Reflux and White Matter Abnormalities in Alzheimer's Disease: A Pilot Study. Journal of Alzheimer's Disease, 2014, 39, 601-609.	2.6	67
24	The place of conventional MRI and newly emerging MRI techniques in monitoring different aspects of treatment outcome. Journal of Neurology, 2008, 255, 61-74.	3.6	66
25	Serum neurofilament light chain levels associations with gray matter pathology: a 5â€year longitudinal study. Annals of Clinical and Translational Neurology, 2019, 6, 1757-1770.	3.7	66
26	White matter hyperintensities do not impact cognitive function in patients with newly diagnosed Parkinson's disease. NeuroImage, 2009, 47, 2083-2089.	4.2	65
27	Cerebral Microbleeds in Multiple Sclerosis Evaluated on Susceptibility-weighted Images and Quantitative Susceptibility Maps: A Case-Control Study. Radiology, 2016, 281, 884-895.	7.3	63
28	Gray matter correlations of cognition in incident Parkinson's disease. Movement Disorders, 2010, 25, 629-633.	3.9	61
29	Iron deposition in multiple sclerosis lesions measured by susceptibilityâ€weighted imaging filtered phase: A case control study. Journal of Magnetic Resonance Imaging, 2012, 36, 73-83.	3.4	60
30	Mapping of thalamic magnetic susceptibility in multiple sclerosis indicates decreasing iron with disease duration: A proposed mechanistic relationship between inflammation and oligodendrocyte vitality. NeuroImage, 2018, 167, 438-452.	4.2	60
31	Gray matter atrophy patterns in multiple sclerosis: A 10-year source-based morphometry study. NeuroImage: Clinical, 2018, 17, 444-451.	2.7	58
32	Neurofilament levels are associated with blood–brain barrier integrity, lymphocyte extravasation, and risk factors following the first demyelinating event in multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 220-231.	3.0	55
33	Cognitive reserve moderates the impact of subcortical gray matter atrophy on neuropsychological status in multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 36-42.	3.0	53
34	Randomized Evaluation of TriGuard 3 Cerebral Embolic Protection After Transcatheter Aortic Valve Replacement. JACC: Cardiovascular Interventions, 2021, 14, 515-527.	2.9	53
35	Brain atrophy and white matter hyperintensities in early Parkinson's disease. Movement Disorders, 2009, 24, 2233-2241.	3.9	50
36	Decreased brain venous vasculature visibility on susceptibility-weighted imaging venography in patients with multiple sclerosis is related to chronic cerebrospinal venous insufficiency. BMC Neurology, 2011, 11, 128.	1.8	50

#	Article	IF	CITATIONS
37	Atrophied Brain Lesion Volume: A New Imaging Biomarker in Multiple Sclerosis. Journal of Neuroimaging, 2018, 28, 490-495.	2.0	50
38	Improved longitudinal gray and white matter atrophy assessment via application of a 4-dimensional hidden Markov random field model. NeuroImage, 2014, 90, 207-217.	4.2	48
39	Neurological software tool for reliable atrophy measurement (NeuroSTREAM) of the lateral ventricles on clinical-quality T2-FLAIR MRI scans in multiple sclerosis. NeuroImage: Clinical, 2017, 15, 769-779.	2.7	48
40	Cine cerebrospinal fluid imaging in multiple sclerosis. Journal of Magnetic Resonance Imaging, 2012, 36, 825-834.	3.4	46
41	Evidence of progressive tissue loss in the core of chronic MS lesions: A longitudinal DTI study. NeuroImage: Clinical, 2018, 17, 1028-1035.	2.7	46
42	Quantitative diffusion weighted imaging measures in patients with multiple sclerosis. NeuroImage, 2007, 36, 746-754.	4.2	45
43	Cortical atrophy and personality in multiple sclerosis Neuropsychology, 2008, 22, 432-441.	1.3	44
44	Odor identification deficit in mild cognitive impairment and Alzheimer's disease is associated with hippocampal and deep gray matter atrophy. Psychiatry Research - Neuroimaging, 2016, 255, 87-93.	1.8	42
45	Short-term brain atrophy changes in relapsing–remitting multiple sclerosis. Journal of the Neurological Sciences, 2004, 223, 185-193.	0.6	41
46	A randomized evaluation of the TriGuardâ,,¢ HDH cerebral embolic protection device to Reduce the Impact of Cerebral Embolic LEsions after TransCatheter Aortic Valve ImplanTation: the REFLECT I trial. European Heart Journal, 2021, 42, 2670-2679.	2.2	39
47	White Matter Hyperintensities and Mild Cognitive Impairment in Parkinson's Disease. Journal of Neuroimaging, 2015, 25, 754-760.	2.0	38
48	Evaluation of Leptomeningeal Contrast Enhancement Using Pre-and Postcontrast Subtraction 3D-FLAIR Imaging in Multiple Sclerosis. American Journal of Neuroradiology, 2018, 39, 642-647.	2.4	38
49	Proposed Standardized Neurological Endpoints for Cardiovascular Clinical Trials. European Heart Journal, 2018, 39, 1687-1697.	2.2	38
50	Recovery of cognitive function after relapse in multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 71-78.	3.0	38
51	Preserved network functional connectivity underlies cognitive reserve in multiple sclerosis. Human Brain Mapping, 2019, 40, 5231-5241.	3.6	37
52	Infections, Vaccines and Autoimmunity: A Multiple Sclerosis Perspective. Vaccines, 2020, 8, 50.	4.4	37
53	Interdependence and contributions of sun exposure and vitamin D to MRI measures in multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 1075-1081.	1.9	36
54	An improved FSL-FIRST pipeline for subcortical gray matter segmentation to study abnormal brain anatomy using quantitative susceptibility mapping (QSM). Magnetic Resonance Imaging, 2017, 39, 110-122.	1.8	36

#	Article	IF	CITATIONS
55	Atrophied Brain T2 Lesion Volume at MRI Is Associated with Disability Progression and Conversion to Secondary Progressive Multiple Sclerosis. Radiology, 2019, 293, 424-433.	7.3	36
56	Dietary and lifestyle factors in multiple sclerosis progression: results from a 5-year longitudinal MRI study. Journal of Neurology, 2019, 266, 866-875.	3.6	36
57	Diffusion Tensor Imaging Alterations in Patients With Postconcussion Syndrome Undergoing Exercise Treatment. Journal of Head Trauma Rehabilitation, 2015, 30, E32-E42.	1.7	34
58	Altered nuclei-specific thalamic functional connectivity patterns in multiple sclerosis and their associations with fatigue and cognition. Multiple Sclerosis Journal, 2019, 25, 1243-1254.	3.0	33
59	Aging and Brain Atrophy in Multiple Sclerosis. Journal of Neuroimaging, 2019, 29, 527-535.	2.0	33
60	Changes of deep gray matter magnetic susceptibility over 2 years in multiple sclerosis and healthy control brain. NeuroImage: Clinical, 2018, 18, 1007-1016.	2.7	32
61	Iron-related gene variants and brain iron in multiple sclerosis and healthy individuals. NeuroImage: Clinical, 2018, 17, 530-540.	2.7	32
62	Pathological cut-offs of global and regional brain volume loss in multiple sclerosis. Multiple Sclerosis Journal, 2019, 25, 541-553.	3.0	32
63	Jugular venous reflux and brain parenchyma volumes in elderly patients with mild cognitive impairment and Alzheimer's disease. BMC Neurology, 2013, 13, 157.	1.8	31
64	Aqueductal cerebrospinal fluid pulsatility in healthy individuals is affected by impaired cerebral venous outflow. Journal of Magnetic Resonance Imaging, 2014, 40, 1215-1222.	3.4	31
65	Deep grey matter injury in multiple sclerosis: a NAIMS consensus statement. Brain, 2021, 144, 1974-1984.	7.6	31
66	Cumulative gadodiamide administration leads to brain gadolinium deposition in early MS. Neurology, 2019, 93, e611-e623.	1.1	30
67	A randomized, blinded, parallel-group, pilot trial of mycophenolate mofetil (CellCept) compared with interferon beta-1a (Avonex) in patients with relapsing-remitting multiple sclerosis. Therapeutic Advances in Neurological Disorders, 2010, 3, 15-28.	3.5	29
68	Iron content of the pulvinar nucleus of the thalamus is increased in adolescent multiple sclerosis. Multiple Sclerosis Journal, 2013, 19, 567-576.	3.0	28
69	Progressive inner nuclear layer dysfunction in non-optic neuritis eyes in MS. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e427.	6.0	28
70	Higher EBV response is associated with more severe gray matter and lesion pathology in relapsing multiple sclerosis patients: A case-controlled magnetization transfer ratio study. Multiple Sclerosis Journal, 2020, 26, 322-332.	3.0	28
71	Autoimmune Comorbidities Are Associated with Brain Injury in Multiple Sclerosis. American Journal of Neuroradiology, 2016, 37, 1010-1016.	2.4	27
72	Decreasing brain iron in multiple sclerosis: The difference between concentration and content in iron <scp>MRI</scp> . Human Brain Mapping, 2021, 42, 1463-1474.	3.6	27

#	Article	IF	CITATIONS
73	Reproducibility and Accuracy of Quantitative Magnetic Resonance Imaging Techniques of Whole-Brain Atrophy Measurement in Multiple Sclerosis. Journal of Neuroimaging, 2005, 15, 27-36.	2.0	26
74	Signal abnormalities on 1.5 and 3ÂTesla brain MRI in multiple sclerosis patients and healthy controls. A morphological and spatial quantitative comparison study. NeuroImage, 2009, 47, 1352-1362.	4.2	26
75	Establishing pathological cut-offs for lateral ventricular volume expansion rates. NeuroImage: Clinical, 2018, 18, 494-501.	2.7	26
76	Walking disability measures in multiple sclerosis patients: Correlations with MRI-derived global and microstructural damage. Journal of the Neurological Sciences, 2018, 393, 128-134.	0.6	26
77	Detection of Cortical Lesions is Dependent on Choice of Slice Thickness in Patients with Multiple Sclerosis. International Review of Neurobiology, 2007, 79, 475-489.	2.0	25
78	Multimodal Imaging of Retired Professional Contact Sport Athletes Does Not Provide Evidence of Structural and Functional Brain Damage. Journal of Head Trauma Rehabilitation, 2018, 33, E24-E32.	1.7	25
79	Brain Atrophy Is Associated with Disability Progression in Patients with MS followed in a Clinical Routine. American Journal of Neuroradiology, 2018, 39, 2237-2242.	2.4	25
80	Assessment of mesoscopic properties of deep gray matter iron through a model-based simultaneous analysis of magnetic susceptibility and R2* - A pilot study in patients with multiple sclerosis and normal controls. NeuroImage, 2019, 186, 308-320.	4.2	25
81	Effect of Met66 allele of the BDNF rs6265 SNP on regional gray matter volumes in patients with multiple sclerosis: A voxel-based morphometry study. Pathophysiology, 2011, 18, 53-60.	2.2	24
82	Influence of Personality on the Relationship Between Gray Matter Volume and Neuropsychiatric Symptoms in Multiple Sclerosis. Psychosomatic Medicine, 2013, 75, 253-261.	2.0	24
83	Gray matter SWI-filtered phase and atrophy are linked to disability in MS. Frontiers in Bioscience - Elite, 2013, E5, 525-532.	1.8	24
84	Longitudinal personality change associated with cognitive decline in multiple sclerosis. Multiple Sclerosis Journal, 2018, 24, 1909-1912.	3.0	24
85	Feasibility of Brain Atrophy Measurement in Clinical Routine without Prior Standardization of the MRI Protocol: Results from MS-MRIUS, a Longitudinal Observational, Multicenter Real-World Outcome Study in Patients with Relapsing-Remitting MS. American Journal of Neuroradiology, 2018, 39, 289-295.	2.4	24
86	Response heterogeneity to home-based restorative cognitive rehabilitation in multiple sclerosis: An exploratory study. Multiple Sclerosis and Related Disorders, 2019, 34, 103-111.	2.0	24
87	Monitoring of radiologic disease activity by serum neurofilaments in MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	6.0	24
88	Improved assessment of multiple sclerosis lesion segmentation agreement via detection and outline error estimates. BMC Medical Imaging, 2012, 12, 17.	2.7	23
89	White matter tract network disruption explains reduced conscientiousness in multiple sclerosis. Human Brain Mapping, 2018, 39, 3682-3690.	3.6	23
90	Interpreting change on the Symbol Digit Modalities Test in people with relapsing multiple sclerosis using the reliable change methodology. Multiple Sclerosis Journal, 2022, 28, 1101-1111.	3.0	23

#	Article	IF	CITATIONS
91	Use of perfusion- and diffusion-weighted imaging in differential diagnosis of acute and chronic ischemic stroke and multiple sclerosis. Neurological Research, 2008, 30, 816-826.	1.3	22
92	Serum neurofilament light chain and optical coherence tomography measures in MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	6.0	22
93	Humoral responses to herpesviruses are associated with neurodegeneration after a demyelinating event: Results from the Multi-Center SET study. Journal of Neuroimmunology, 2014, 273, 58-64.	2.3	21
94	Functional Connectivity and Structural Disruption in the Defaultâ€Mode Network Predicts Cognitive Rehabilitation Outcomes in Multiple Sclerosis. Journal of Neuroimaging, 2020, 30, 523-530.	2.0	21
95	Diffusion tensor MRI alterations of subcortical deep gray matter in clinically isolated syndrome. Journal of the Neurological Sciences, 2014, 338, 128-134.	0.6	20
96	A Novel Semiautomated Pipeline to Measure Brain Atrophy and Lesion Burden in Multiple Sclerosis: A Longâ€Term Comparative Study. Journal of Neuroimaging, 2017, 27, 620-629.	2.0	20
97	Neurocognition and Cerebral Lesion Burden in High-Risk Patients Before Undergoing Transcatheter Aortic Valve Replacement. JACC: Cardiovascular Interventions, 2018, 11, 384-392.	2.9	20
98	Effect of glatiramer acetate three-times weekly on the evolution of new, active multiple sclerosis lesions into T1-hypointense "black holes†a post hoc magnetic resonance imaging analysis. Journal of Neurology, 2015, 262, 648-653.	3.6	19
99	Thalamic white matter in multiple sclerosis: A combined diffusionâ€ŧensor imaging and quantitative susceptibility mapping study. Human Brain Mapping, 2018, 39, 4007-4017.	3.6	19
100	Thalamic Nuclei Volumes and Their Relationships to Neuroperformance in Multiple Sclerosis: A Cross‧ectional Structural <scp>MRI</scp> Study. Journal of Magnetic Resonance Imaging, 2021, 53, 731-739.	3.4	19
101	A sensitive, noise-resistant method for identifying focal demyelination and remyelination in patients with multiple sclerosis via voxel-wise changes in magnetization transfer ratio. Journal of the Neurological Sciences, 2009, 282, 86-95.	0.6	18
102	Synergistic Effects of Reserve and Adaptive Personality in Multiple Sclerosis. Journal of the International Neuropsychological Society, 2016, 22, 920-927.	1.8	18
103	Quantifying cognition and fatigue to enhance the sensitivity of the EDSS during relapses. Multiple Sclerosis Journal, 2021, 27, 1077-1087.	3.0	18
104	Visual deficits and cognitive assessment of multiple sclerosis: confounder, correlate, or both?. Journal of Neurology, 2021, 268, 2578-2588.	3.6	18
105	Effect of Teriflunomide and Dimethyl Fumarate on Cortical Atrophy and Leptomeningeal Inflammation in Multiple Sclerosis: A Retrospective, Observational, Case-Control Pilot Study. Journal of Clinical Medicine, 2019, 8, 344.	2.4	17
106	MRI biomarkers of disease progression and conversion to secondary-progressive multiple sclerosis. Expert Review of Neurotherapeutics, 2020, 20, 821-834.	2.8	17
107	Staging and stratifying cognitive dysfunction in multiple sclerosis. Multiple Sclerosis Journal, 2022, 28, 463-471.	3.0	17
108	Effect of Treatment with Interferon Beta-1a on Changes in Voxel-Wise Magnetization Transfer Ratio in Normal Appearing Brain Tissue and Lesions of Patients with Relapsing–Remitting Multiple Sclerosis: A 24-Week, Controlled Pilot Study. PLoS ONE, 2014, 9, e91098.	2.5	17

#	Article	IF	CITATIONS
109	Lower self-report fatigue in multiple sclerosis is associated with localized white matter tract disruption between amygdala, temporal pole, insula, and other connected structures. Multiple Sclerosis and Related Disorders, 2019, 27, 298-304.	2.0	16
110	Methods for the computation of templates from quantitative magnetic susceptibility maps (QSM): Toward improved atlas―and voxelâ€based analyses (VBA). Journal of Magnetic Resonance Imaging, 2017, 46, 1474-1484.	3.4	15
111	A Serial 10-Year Follow-Up Study of Atrophied Brain Lesion Volume and Disability Progression in Patients with Relapsing-Remitting MS. American Journal of Neuroradiology, 2019, 40, 446-452.	2.4	15
112	Evolution of Brain Volume Loss Rates in Early Stages of Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	15
113	Anti-phospholipid antibodies are associated with response to interferon-beta1a treatment in MS: results from a 3-year longitudinal study. Neurological Research, 2012, 34, 761-769.	1.3	14
114	Tract-based spatial statistics analysis of diffusion-tensor imaging data in pediatric- and adult-onset multiple sclerosis. Human Brain Mapping, 2014, 35, 53-60.	3.6	14
115	An Observational Study to Assess Brain MRI Change and Disease Progression in Multiple Sclerosis Clinical Practice—The MSâ€MRIUS Study. Journal of Neuroimaging, 2017, 27, 339-347.	2.0	14
116	Atrophied brain lesion volume, a magnetic resonance imaging biomarker for monitoring neurodegenerative changes in multiple sclerosis. Quantitative Imaging in Medicine and Surgery, 2018, 8, 979-983.	2.0	14
117	Comparative effectiveness of teriflunomide and dimethyl fumarate in patients with relapsing forms of MS in the retrospective real-world Teri-RADAR study. Journal of Comparative Effectiveness Research, 2019, 8, 305-316.	1.4	14
118	Long-standing multiple sclerosis neurodegeneration: volumetric magnetic resonance imaging comparison to Parkinson's disease, mild cognitive impairment, Alzheimer's disease, and elderly healthy controls. Neurobiology of Aging, 2020, 90, 84-92.	3.1	14
119	Regional Specificity of Magnetization Transfer Imaging in Multiple Sclerosis. Journal of Neuroimaging, 2008, 18, 130-136.	2.0	13
120	Application of hidden Markov random field approach for quantification of perfusion/diffusion mismatch in acute ischemic stroke. Neurological Research, 2008, 30, 827-834.	1.3	13
121	Immunologic and MRI markers of the therapeutic effect of IFN-β-1a in relapsing-remitting MS. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e176.	6.0	13
122	Effects of diet on brain iron levels among healthy individuals: an MRI pilot study. Neurobiology of Aging, 2015, 36, 1678-1685.	3.1	13
123	Impact of Focal White Matter Damage on Localized Subcortical Gray Matter Atrophy in Multiple Sclerosis: A 5-Year Study. American Journal of Neuroradiology, 2018, 39, 1480-1486.	2.4	13
124	Late onset multiple sclerosis is associated with more severe ventricle expansion. Multiple Sclerosis and Related Disorders, 2020, 46, 102588.	2.0	13
125	Leptomeningeal, dura mater and meningeal vessel wall enhancements in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2021, 47, 102653.	2.0	13
126	Development of gray matter atrophy in relapsing–remitting multiple sclerosis is not gender dependent: Results of a 5-year follow-up study. Clinical Neurology and Neurosurgery, 2013, 115, S42-S48.	1.4	12

#	Article	IF	CITATIONS
127	Immunological and short-term brain volume changes in relapsing forms of multiple sclerosis treated with interferon beta-1a subcutaneously three times weekly: an open-label two-arm trial. BMC Neurology, 2015, 15, 232.	1.8	12
128	Brain atrophy measurements should be used to guide therapy monitoring in MS – YES. Multiple Sclerosis Journal, 2016, 22, 1522-1524.	3.0	12
129	Olfactory identification deficit predicts white matter tract impairment in Alzheimer's disease. Psychiatry Research - Neuroimaging, 2017, 266, 90-95.	1.8	12
130	Effect of teriflunomide on cortex-basal ganglia-thalamus (CxBGTh) circuit glutamatergic dysregulation in the Theiler's Murine Encephalomyelitis Virus mouse model of multiple sclerosis. PLoS ONE, 2017, 12, e0182729.	2.5	12
131	Fingolimod's Impact on MRI Brain Volume Measures in Multiple Sclerosis: Results from MSâ€MRIUS. Journal of Neuroimaging, 2018, 28, 399-405.	2.0	12
132	Trait Conscientiousness predicts rate of longitudinal SDMT decline in multiple sclerosis. Multiple Sclerosis Journal, 2020, 26, 245-252.	3.0	12
133	Cortical and Deep Gray Matter Perfusion Associations With Physical and Cognitive Performance in Multiple Sclerosis Patients. Frontiers in Neurology, 2020, 11, 700.	2.4	12
134	Sex‧pecific Differences in Life Span Brain Volumes in Multiple Sclerosis. Journal of Neuroimaging, 2020, 30, 342-350.	2.0	12
135	Clatiramer acetate recovers microscopic tissue damage in patients with multiple sclerosis. A case–control diffusion imaging study. Pathophysiology, 2011, 18, 61-68.	2.2	11
136	Regionally Distinct White Matter Lesions Do Not Contribute to Regional Gray Matter Atrophy in Patients with Multiple Sclerosis. , 2011, 21, 210-218.		11
137	MRI segmentation analysis in temporal lobe and idiopathic generalized epilepsy. BMC Neurology, 2014, 14, 131.	1.8	11
138	A multimodal approach to assess the validity of atrophied T2-lesion volume as an MRI marker of disease progression in multiple sclerosis. Journal of Neurology, 2020, 267, 802-811.	3.6	11
139	Conscientiousness and deterioration in employment status in multiple sclerosis over 3 years. Multiple Sclerosis Journal, 2021, 27, 1125-1135.	3.0	11
140	MRI characteristics of familial and sporadic multiple sclerosis patients. Multiple Sclerosis Journal, 2013, 19, 1145-1152.	3.0	10
141	Targeting Iron Dyshomeostasis for Treatment of Neurodegenerative Disorders. CNS Drugs, 2019, 33, 1073-1086.	5.9	10
142	A preliminary investigation of cognitive intolerance and neuroimaging among adolescents returning to school after concussion. Brain Injury, 2020, 34, 820-829.	1.2	10
143	Diagnosis of depression in multiple sclerosis is predicted by frontal–parietal white matter tract disruption. Journal of Neurology, 2021, 268, 169-177.	3.6	10
144	DeepGRAI (Deep Gray Rating via Artificial Intelligence): Fast, feasible, and clinically relevant thalamic atrophy measurement on clinical quality T2-FLAIR MRI in multiple sclerosis. NeuroImage: Clinical, 2021, 30, 102652.	2.7	10

#	Article	IF	CITATIONS
145	Bimonthly Evolution of Cortical Atrophy in Early Relapsing-Remitting Multiple Sclerosis over 2 Years: A Longitudinal Study. Multiple Sclerosis International, 2013, 2013, 1-8.	0.8	9
146	Reserve-building activities in multiple sclerosis patients and healthy controls: a descriptive study. BMC Neurology, 2015, 15, 135.	1.8	9
147	Transcatheter aortic valve replacement: perioperative stroke and beyond. Expert Review of Neurotherapeutics, 2017, 17, 327-334.	2.8	9
148	Measurement of neurofilaments improves stratification of future disease activity in early multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 2001-2013.	3.0	9
149	Functional network dynamics and decreased conscientiousness in multiple sclerosis. Journal of Neurology, 2022, 269, 2696-2706.	3.6	9
150	Effect of MRI coregistration on serial short-term brain volume changes in multiple sclerosis. Neurological Research, 2006, 28, 275-279.	1.3	8
151	Sensitivity and specificity of SWI venography for detection of cerebral venous alterations in multiple sclerosis. Neurological Research, 2012, 34, 793-801.	1.3	8
152	Salient Central Lesion Volume: A Standardized Novel Fully Automated Proxy for Brain FLAIR Lesion Volume in Multiple Sclerosis. Journal of Neuroimaging, 2019, 29, 615-623.	2.0	8
153	Trait Conscientiousness predicts rate of brain atrophy in multiple sclerosis. Multiple Sclerosis Journal, 2020, 26, 1433-1436.	3.0	8
154	Detection of Monocyte/Macrophage and Microglia Activation in the TMEV Model of Chronic Demyelination Using USPIOâ€Enhanced Ultrahighâ€Field Imaging. Journal of Neuroimaging, 2020, 30, 769-778.	2.0	8
155	Subcutaneous anti-CD20 antibody treatment delays gray matter atrophy in human myelin oligodendrocyte glycoprotein-induced EAE mice. Experimental Neurology, 2021, 335, 113488.	4.1	8
156	Slowing of brain atrophy with teriflunomide and delayed conversion to clinically definite MS. Therapeutic Advances in Neurological Disorders, 2020, 13, 175628642097075.	3.5	7
157	Longitudinal analysis of cerebral aqueduct flow measures: multiple sclerosis flow changes driven by brain atrophy. Fluids and Barriers of the CNS, 2020, 17, 9.	5.0	7
158	The Effect of Three Times a Week Glatiramer Acetate on Cerebral T1 Hypointense Lesions in Relapsingâ€Remitting Multiple Sclerosis. Journal of Neuroimaging, 2015, 25, 989-995.	2.0	6
159	Reserve-related activities and MRI metrics in multiple sclerosis patients and healthy controls: an observational study. BMC Neurology, 2016, 16, 108.	1.8	6
160	Impact of fingolimod on clinical and magnetic resonance imaging outcomes in routine clinical practice: A retrospective analysis of the multiple sclerosis, clinical and MRI outcomes in the USA (MS-MRIUS) study. Multiple Sclerosis and Related Disorders, 2019, 27, 65-73.	2.0	6
161	Interpretation of Brain Volume Increase in Multiple Sclerosis. Journal of Neuroimaging, 2021, 31, 401-407.	2.0	6
162	Magnetization transfer imaging of acute black holes in patients on glatiramer acetate. Frontiers in Bioscience - Elite, 2012, E4, 1496.	1.8	5

#	Article	IF	CITATIONS
163	White Matter Hyperintensities on 1.5 and 3 Tesla Brain MRI in Healthy Individuals. Journal of Biomedical Graphics and Computing, 2013, 3, .	0.2	5
164	A pilot, longitudinal, 24-week study to evaluate the effect of interferon beta-1a subcutaneous on changes in susceptibility-weighted imaging-filtered phase assessment of lesions and subcortical deep-gray matter in relapsing–remitting multiple sclerosis. Therapeutic Advances in Neurological Disorders, 2015, 8, 59-70.	3.5	5
165	High density lipoprotein cholesterol and apolipoprotein A-I are associated with greater cerebral perfusion in multiple sclerosis. Journal of the Neurological Sciences, 2020, 418, 117120.	0.6	5
166	Brain atrophy and lesion burden are associated with disability progression in a multiple sclerosis real-world dataset using only T2-FLAIR: The NeuroSTREAM MSBase study. NeuroImage: Clinical, 2021, 32, 102802.	2.7	5
167	Benchmarks of meaningful improvement on neurocognitive tests in multiple sclerosis. Multiple Sclerosis Journal, 2022, 28, 487-491.	3.0	5
168	Improved operator agreement and efficiency using the minimum area contour change method for delineation of hyperintense multiple sclerosis lesions on FLAIR MRI. BMC Medical Imaging, 2013, 13, 29.	2.7	4
169	The Role of Highâ€Frequency MRI Monitoring in the Detection of Brain Atrophy in Multiple Sclerosis. Journal of Neuroimaging, 2018, 28, 328-337.	2.0	4
170	Disability Improvement Is Associated with Less Brain Atrophy Development in Multiple Sclerosis. American Journal of Neuroradiology, 2020, 41, 1577-1583.	2.4	4
171	Serum Neurofilament Light Chain Levels are Associated with Lower Thalamic Perfusion in Multiple Sclerosis. Diagnostics, 2020, 10, 685.	2.6	4
172	Disease biomarkers in multiple sclerosis: current serum neurofilament light chain perspectives. Neurodegenerative Disease Management, 2021, 11, 329-340.	2.2	4
173	Thalamic atrophy moderates associations among aerobic fitness, cognitive processing speed, and walking endurance in persons with multiple sclerosis. Journal of Neurology, 0, , .	3.6	4
174	Comment on "no evidence of chronic cerebrospinal venous insufficiency at multiple sclerosis onset― Annals of Neurology, 2011, 69, 1062-1063.	5.3	3
175	Impact of tissue atrophy on high-pass filtered MRI signal phase-based assessment in large-scale group-comparison studies: a simulation study. Frontiers in Physics, 2013, 1, .	2.1	3
176	No Regional Gray Matter Atrophy Differences between Pediatric―and Adultâ€Onset Relapsingâ€Remitting Multiple Sclerosis. Journal of Neuroimaging, 2014, 24, 63-67.	2.0	3
177	Associations between changes in ferritin levels and susceptibility-weighted imaging filtered phase in patients with relapsing–remitting multiple sclerosis over 24 weeks of therapy with subcutaneous interferon beta-1a three times weekly. Journal of Neuroimmunology, 2015, 281, 44-50.	2.3	3
178	Clinical feasibility of longitudinal lateral ventricular volume measurements on T2-FLAIR across MRI scanner changes. Neurolmage: Clinical, 2021, 29, 102554.	2.7	3
179	Quantifying disease pathology and predicting disease progression in multiple sclerosis with only clinical routine T2-FLAIR MRI. Neurolmage: Clinical, 2021, 31, 102705.	2.7	3
180	Nucleus basalis of Meynert damage and cognition in patients with multiple sclerosis. Journal of Neurology, 2021, 268, 4796-4808.	3.6	3

#	Article	IF	CITATIONS
181	Diffusion tensor imaging reveals greater microstructure damage in lesional tissue that shrinks into cerebrospinal fluid in multiple sclerosis. Journal of Neuroimaging, 2021, 31, 995-1002.	2.0	3
182	Patient-Reported Outcome Severity and Emotional Salience Network Disruption in Multiple Sclerosis. Brain Imaging and Behavior, 2022, 16, 1252-1259.	2.1	3
183	Time course of lesion-induced atrophy in multiple sclerosis. Journal of Neurology, 2022, 269, 4478-4487.	3.6	3
184	Multisite MRI reproducibility of lateral ventricular volume using the NAIMS cooperative pilot dataset. Journal of Neuroimaging, 2022, 32, 910-919.	2.0	2
185	Comparison of Standard 1.5 T vs. 3 T Optimized Protocols in Patients Treated with Glatiramer Acetate. A Serial MRI Pilot Study. International Journal of Molecular Sciences, 2012, 13, 5659-5673.	4.1	1
186	Network Dynamics and Cognitive Impairment in Multiple Sclerosis: Functional MRI–based Decoupling of Complex Relationships. Radiology, 2019, 292, 458-459.	7.3	1
187	Measuring Aqueduct of Sylvius Cerebrospinal Fluid Flow in Multiple Sclerosis Using Different Software. Diagnostics, 2021, 11, 325.	2.6	1
188	MRIâ€based thalamic volumetry in multiple sclerosis using FSLâ€FIRST: Systematic assessment of common error modes. Journal of Neuroimaging, 2022, 32, 245-252.	2.0	1
189	Cerebral blood flow dependency on systemic arterial circulation in progressive multiple sclerosis. European Radiology, 2022, , 1.	4.5	1
190	Lower cerebral arterial blood flow is associated with greater serum neurofilament light chain levels in multiple sclerosis patients. European Journal of Neurology, 2022, , .	3.3	1
191	Title is missing!. Journal of the Neurological Sciences, 2005, 231, 103-104.	0.6	0
192	Reply. JACC: Cardiovascular Interventions, 2018, 11, 1420.	2.9	0