Louis Ã**%ic** Trudeau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9423735/publications.pdf

Version: 2024-02-01

66343 69250 6,653 105 42 77 citations h-index g-index papers 121 121 121 8431 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Implication of synaptotagmins 4 and 7 in activity-dependent somatodendritic dopamine release in the ventral midbrain. Open Biology, 2022, 12, 210339.	3.6	8
2	On cell loss in Parkinson's disease, and the citations that followed. Npj Parkinson's Disease, 2022, 8, 38.	5.3	0
3	A mitochondrial contribution to anti-inflammatory shear stress signaling in vascular endothelial cells. Journal of Cell Biology, 2022, 221, .	5.2	23
4	Amphetamine maintenance therapy during intermittent cocaine self-administration in rats attenuates psychomotor and dopamine sensitization and reduces addiction-like behavior. Neuropsychopharmacology, 2021, 46, 305-315.	5.4	14
5	The challenging diversity of neurons in the ventral tegmental area: A commentary of Mirandaâ€Barrientos, J. et al., ⟨i⟩Eur J Neurosci⟨/i⟩ 2021. European Journal of Neuroscience, 2021, 54, 4085-4087.	2.6	0
6	Dopaminergic neurons establish a distinctive axonal arbor with a majority of nonâ€synaptic terminals. FASEB Journal, 2021, 35, e21791.	0.5	14
7	Neonatal 6â€OHDA lesion of the SNc induces striatal compensatory sprouting from surviving SNc dopaminergic neurons without VTA contribution. European Journal of Neuroscience, 2021, 54, 6618-6632.	2.6	6
8	Engineering immunoproteasome-expressing mesenchymal stromal cells: A potent cellular vaccine for lymphoma and melanoma in mice. Cell Reports Medicine, 2021, 2, 100455.	6.5	12
9	Characterization of the intestinal microbiota during <i>Citrobacter rodentium</i> infection in a mouse model of infection-triggered Parkinson's disease. Gut Microbes, 2020, 12, 1830694.	9.8	14
10	A blueprint for performing SERS measurements in tissue with plasmonic nanofibers. Journal of Chemical Physics, 2020, 153, 124702.	3.0	4
11	VGluT2 Expression in Dopamine Neurons Contributes to Postlesional Striatal Reinnervation. Journal of Neuroscience, 2020, 40, 8262-8275.	3.6	26
12	MCL-1Matrix maintains neuronal survival by enhancing mitochondrial integrity and bioenergetic capacity under stress conditions. Cell Death and Disease, 2020, 11, 321.	6.3	68
13	Segregation of dopamine and glutamate release sites in dopamine neuron axons: regulation by striatal target cells. FASEB Journal, 2019, 33, 400-417.	0.5	32
14	Intestinal infection triggers Parkinson's disease-like symptoms in Pink1â^'/â^' mice. Nature, 2019, 571, 565-569.	27.8	347
15	Neuronal vulnerability in Parkinson disease: Should the focus be on axons and synaptic terminals?. Movement Disorders, 2019, 34, 1406-1422.	3.9	62
16	Increased vulnerability of nigral dopamine neurons after expansion of their axonal arborization size through D2 dopamine receptor conditional knockout. PLoS Genetics, 2019, 15, e1008352.	3.5	62
17	Editorial: Neuronal Co-transmission. Frontiers in Neural Circuits, 2019, 13, 19.	2.8	8
18	Block Copolymer Brush Layer-Templated Gold Nanoparticles on Nanofibers for Surface-Enhanced Raman Scattering Optophysiology. ACS Applied Materials & Samp; Interfaces, 2019, 11, 4373-4384.	8.0	39

#	Article	IF	CITATIONS
19	Histamine H 3 Receptors Decrease Dopamine Release in the Ventral Striatum by Reducing the Activity of Striatal Cholinergic Interneurons. Neuroscience, 2018, 376, 188-203.	2.3	17
20	Comparative analysis of Parkinson's disease–associated genes in mice reveals altered survival and bioenergetics of Parkin-deficient dopamine neurons. Journal of Biological Chemistry, 2018, 293, 9580-9593.	3.4	30
21	Oleic Acid in the Ventral Tegmental Area Inhibits Feeding, Food Reward, and Dopamine Tone. Neuropsychopharmacology, 2018, 43, 607-616.	5.4	21
22	Glutamate Cotransmission in Cholinergic, GABAergic and Monoamine Systems: Contrasts and Commonalities. Frontiers in Neural Circuits, 2018, 12, 113.	2.8	56
23	On Cell Loss and Selective Vulnerability of Neuronal Populations in Parkinson's Disease. Frontiers in Neurology, 2018, 9, 455.	2.4	272
24	Dynamic SERS nanosensor for neurotransmitter sensing near neurons. Faraday Discussions, 2017, 205, 387-407.	3.2	42
25	Characterization of a Human Point Mutation of VGLUT3 (p.A211V) in the Rodent Brain Suggests a Nonuniform Distribution of the Transporter in Synaptic Vesicles. Journal of Neuroscience, 2017, 37, 4181-4199.	3.6	15
26	Sirtuin 3 rescues neurons through the stabilisation of mitochondrial biogenetics in the virally-expressing mutant \hat{l}_{\pm} -synuclein rat model of parkinsonism. Neurobiology of Disease, 2017, 106, 133-146.	4.4	48
27	Human mesenchymal stromal cell-secreted lactate induces M2-macrophage differentiation by metabolic reprogramming. Oncotarget, 2016, 7, 30193-30210.	1.8	116
28	Axonal Segregation and Role of the Vesicular Glutamate Transporter VGLUT3 in Serotonin Neurons. Frontiers in Neuroanatomy, 2016, 10, 39.	1.7	25
29	Lmx1a and Lmx1b regulate mitochondrial functions and survival of adult midbrain dopaminergic neurons. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4387-96.	7.1	75
30	Parkinson's Disease-Related Proteins PINK1 and Parkin Repress Mitochondrial Antigen Presentation. Cell, 2016, 166, 314-327.	28.9	429
31	Neuronal calcium sensor-1 deletion in the mouse decreases motivation and dopamine release in the nucleus accumbens. Behavioural Brain Research, 2016, 301, 213-225.	2.2	31
32	Effects of Serine 129 Phosphorylation on \hat{l}_{\pm} -Synuclein Aggregation, Membrane Association, and Internalization. Journal of Biological Chemistry, 2016, 291, 4374-4385.	3.4	136
33	Homeostatic regulation of excitatory synapses on striatal medium spiny neurons expressing the D2 dopamine receptor. Brain Structure and Function, 2016, 221, 2093-2107.	2.3	5
34	A novel dopamine transporter transgenic mouse line for identification and purification of midbrain dopaminergic neurons reveals midbrain heterogeneity. European Journal of Neuroscience, 2015, 42, 2438-2454.	2.6	13
35	Elevated Mitochondrial Bioenergetics and Axonal Arborization Size Are Key Contributors to the Vulnerability of Dopamine Neurons. Current Biology, 2015, 25, 2349-2360.	3.9	351
36	Ligand- and cell-dependent determinants of internalization and cAMP modulation by delta opioid receptor (DOR) agonists. Cellular and Molecular Life Sciences, 2014, 71, 1529-1546.	5.4	37

#	Article	IF	Citations
37	The multilingual nature of dopamine neurons. Progress in Brain Research, 2014, 211, 141-164.	1.4	121
38	Unaltered Striatal Dopamine Release Levels in Young Parkin Knockout, Pink1 Knockout, DJ-1 Knockout and LRRK2 R1441G Transgenic Mice. PLoS ONE, 2014, 9, e94826.	2.5	26
39	Dopamine facilitates dendritic spine formation by cultured striatal medium spiny neurons through both D1 and D2 dopamine receptors. Neuropharmacology, 2013, 67, 432-443.	4.1	55
40	Evaluation of D1 and D2 Dopamine Receptor Segregation in the Developing Striatum Using BAC Transgenic Mice. PLoS ONE, 2013, 8, e67219.	2.5	53
41	Metabolomics and In-Silico Analysis Reveal Critical Energy Deregulations in Animal Models of Parkinson's Disease. PLoS ONE, 2013, 8, e69146.	2.5	26
42	Glutamate Corelease Promotes Growth and Survival of Midbrain Dopamine Neurons. Journal of Neuroscience, 2012, 32, 17477-17491.	3.6	75
43	NTS-Polyplex: a potential nanocarrier for neurotrophic therapy of Parkinson's disease. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1052-1069.	3.3	49
44	Ultrastructural characterization of the mesostriatal dopamine innervations in mice, including two mouse lines of conditional VGLUT2 knockout in dopamine neurons. European Journal of Neuroscience, 2012, 36, 2567-2570.	2.6	0
45	Neurotensin inhibits glutamate-mediated synaptic inputs onto ventral tegmental area dopamine neurons through the release of the endocannabinoid 2-AG. Neuropharmacology, 2012, 63, 983-991.	4.1	24
46	Ultrastructural characterization of the mesostriatal dopamine innervation in mice, including two mouse lines of conditional VGLUT2 knockout in dopamine neurons. European Journal of Neuroscience, 2012, 35, 527-538.	2.6	34
47	Optimizing NTS-Polyplex as a Tool for Gene Transfer to Cultured Dopamine Neurons. PLoS ONE, 2012, 7, e51341.	2.5	15
48	The endocannabinoid 2-arachidonoylglycerol inhibits long-term potentiation of glutamatergic synapses onto ventral tegmental area dopamine neurons in mice. European Journal of Neuroscience, 2011, 33, 1751-1760.	2.6	44
49	From glutamate co-release to vesicular synergy: vesicular glutamate transporters. Nature Reviews Neuroscience, 2011, 12, 204-216.	10.2	321
50	Neuroinflammation is associated with changes in glial mGluR5 expression and the development of neonatal excitotoxic lesions. Glia, 2011, 59, 188-199.	4.9	60
51	Somatodendritic Dopamine Release Requires Synaptotagmin 4 and 7 and the Participation of Voltage-gated Calcium Channels. Journal of Biological Chemistry, 2011, 286, 23928-23937.	3.4	62
52	Neurotensin Triggers Dopamine D2 Receptor Desensitization through a Protein Kinase C and \hat{l}^2 -Arrestin1-dependent Mechanism. Journal of Biological Chemistry, 2011, 286, 9174-9184.	3.4	50
53	Contribution of Kv1.2 Voltage-gated Potassium Channel to D2 Autoreceptor Regulation of Axonal Dopamine Overflow. Journal of Biological Chemistry, 2011, 286, 9360-9372.	3.4	44
54	Enhanced Sucrose and Cocaine Self-Administration and Cue-Induced Drug Seeking after Loss of VGLUT2 in Midbrain Dopamine Neurons in Mice. Journal of Neuroscience, 2011, 31, 12593-12603.	3.6	92

#	Article	IF	CITATIONS
55	Role of Kv1 Potassium Channels in Regulating Dopamine Release and Presynaptic D2 Receptor Function. PLoS ONE, 2011, 6, e20402.	2.5	67
56	Chronic activation of the D2 autoreceptor inhibits both glutamate and dopamine synapse formation and alters the intrinsic properties of mesencephalic dopamine neurons <i>in vitro</i> . European Journal of Neuroscience, 2010, 32, 1433-1441.	2.6	16
57	VGLUT2 in dopamine neurons is required for psychostimulant-induced behavioral activation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 389-394.	7.1	123
58	Critical Roles for the Netrin Receptor Deleted in Colorectal Cancer in Dopaminergic Neuronal Precursor Migration, Axon Guidance, and Axon Arborization. Neuroscience, 2010, 169, 932-949.	2.3	63
59	Presynaptic action of neurotensin on dopamine release through inhibition of D2 receptor function. BMC Neuroscience, 2009, 10, 96.	1.9	41
60	The dual dopamineâ€glutamate phenotype of growing mesencephalic neurons regresses in mature rat brain. Journal of Comparative Neurology, 2009, 517, 873-891.	1.6	90
61	Glutamate Co-Release by Monoamine Neurons. , 2009, , 1-18.		0
62	Chondroitin Sulfate Inhibits the Nuclear Translocation of Nuclear Factorâ€₽B in Interleukinâ€1βâ€Stimulated Chondrocytes. Basic and Clinical Pharmacology and Toxicology, 2008, 102, 59-65.	2.5	89
63	Chronic activation of the D2 dopamine autoreceptor inhibits synaptogenesis in mesencephalic dopaminergic neurons <i>in vitro</i> i>. European Journal of Neuroscience, 2008, 28, 1480-1490.	2.6	28
64	Glutamate in dopamine neurons: Synaptic versus diffuse transmission. Brain Research Reviews, 2008, 58, 290-302.	9.0	104
65	Culture of Postnatal Mesencephalic Dopamine Neurons on an Astrocyte Monolayer. Current Protocols in Neuroscience, 2008, 44, Unit 3.21.	2.6	46
66	Enhanced glutamatergic phenotype of mesencephalic dopamine neurons after neonatal 6-hydroxydopamine lesion. Neuroscience, 2008, 156, 59-70.	2.3	74
67	Developmental and Target-Dependent Regulation of Vesicular Glutamate Transporter Expression by Dopamine Neurons. Journal of Neuroscience, 2008, 28, 6309-6318.	3.6	100
68	Chronic Exposure to Nerve Growth Factor Increases Acetylcholine and Glutamate Release from Cholinergic Neurons of the Rat Medial Septum and Diagonal Band of Broca via Mechanisms Mediated by p75 ^{NTR} . Journal of Neuroscience, 2008, 28, 1404-1409.	3.6	54
69	Postnatally Derived Ventral Midbrain Dopamine Neuron Cultures as a Model System for Studying Neurotoxicity and Parkinson's Disease. , 2008, , 491-504.		2
70	On Cotransmission & Deurotransmitter Phenotype Plasticity. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2007, 7, 138-146.	3.4	40
71	Expression of D2 receptor isoforms in cultured neurons reveals equipotent autoreceptor function. Neuropharmacology, 2006, 50, 595-605.	4.1	28
72	Impact of basic FGF expression in astrocytes on dopamine neuron synaptic function and development. European Journal of Neuroscience, 2006, 23, 608-616.	2.6	18

#	Article	IF	CITATIONS
73	Bidirectional regulation of dopamine D2 and neurotensin NTS1 receptors in dopamine neurons. European Journal of Neuroscience, 2006, 24, 2789-2800.	2.6	43
74	Basal somatodendritic dopamine release requires snare proteins. Journal of Neurochemistry, 2006, 96, 1740-1749.	3.9	47
75	Coordinated action of NSF and PKC regulates GABAB receptor signaling efficacy. EMBO Journal, 2006, 25, 2698-2709.	7.8	43
76	The 21-aminosteroid U74389G prevents the down-regulation and decrease in activity of CYP1A1, 1A2 and 3A6 induced by an inflammatory reaction. Biochemical Pharmacology, 2006, 71, 366-376.	4.4	7
77	Neurotensin polyplex as an efficient carrier for delivering the human GDNF gene into nigral dopamine neurons of hemiparkinsonian rats. Molecular Therapy, 2006, 14, 857-865.	8.2	68
78	The role of neurotensin in central nervous system pathophysiology: what is the evidence? Journal of Psychiatry and Neuroscience, 2006, 31, 229-45.	2.4	112
79	Use of TH-EGFP transgenic mice as a source of identified dopaminergic neurons for physiological studies in postnatal cell culture. Journal of Neuroscience Methods, 2005, 146, 1-12.	2.5	33
80	Nestin-expressing neural stem cells identified in the scar following myocardial infarction. Journal of Cellular Physiology, 2005, 204, 51-62.	4.1	40
81	Normal Biogenesis and Cycling of Empty Synaptic Vesicles in Dopamine Neurons of Vesicular Monoamine Transporter 2 Knockout Mice. Molecular Biology of the Cell, 2005, 16, 306-315.	2.1	36
82	Glycine and D-serine improve the negative symptoms of schizophrenia. Evidence-Based Mental Health, 2005, 8, 82-82.	4.5	7
83	M3-like muscarinic receptors mediate Ca2+ influx in rat mesencephalic GABAergic neurones through a protein kinase C-dependent mechanism. Neuropharmacology, 2005, 48, 796-809.	4.1	22
84	Role of Calcium in Neurotensin-Evoked Enhancement in Firing in Mesencephalic Dopamine Neurons. Journal of Neuroscience, 2004, 24, 2566-2574.	3.6	61
85	Regulation of rat mesencephalic GABAergic neurones through muscarinic receptors. Journal of Physiology, 2004, 556, 429-445.	2.9	17
86	Dopamine neurons in culture express VGLUT2 explaining their capacity to release glutamate at synapses in addition to dopamine. Journal of Neurochemistry, 2004, 88, 1398-1405.	3.9	143
87	Postsynaptic injection of calcium-independent phospholipase A2 inhibitors selectively increases AMPA receptor-mediated synaptic transmission. Hippocampus, 2004, 14, 319-325.	1.9	36
88	Glutamate co-transmission as an emerging concept in monoamine neuron function. Journal of Psychiatry and Neuroscience, 2004, 29, 296-310.	2.4	78
89	Calcium-dependent, D2 receptor-independent induction of c-fos by haloperidol in dopamine neurons. Naunyn-Schmiedeberg's Archives of Pharmacology, 2003, 367, 480-489.	3.0	6
90	D2 Receptors Inhibit the Secretory Process Downstream From Calcium Influx in Dopaminergic Neurons: Implication of K ⁺ Channels. Journal of Neurophysiology, 2002, 87, 1046-1056.	1.8	74

#	Article	IF	CITATIONS
91	Presynaptic \hat{l} /4-opioid receptors regulate a late step of the secretory process in rat ventral tegmental area GABAergic neurons. Neuropharmacology, 2002, 42, 1065-1078.	4.1	75
92	Presynaptic action of neurotensin on cultured ventral tegmental area dopaminergic neurones. Neuroscience, 2002, 111, 177-187.	2.3	36
93	Perturbation of synaptic vesicle delivery during neurotransmitter release triggered independently of calcium influx. Journal of Physiology, 2002, 542, 779-793.	2.9	6
94	l̂²-Lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein–protein interactions. Nature Biotechnology, 2002, 20, 619-622.	17.5	397
95	GDNF enhances the synaptic efficacy of dopaminergic neurons in culture. European Journal of Neuroscience, 2000, 12, 3172-3180.	2.6	148
96	Neurotensin regulates intracellular calcium in ventral tegmental area astrocytes: evidence for the involvement of multiple receptors. Neuroscience, 2000, 97, 293-302.	2.3	45
97	Clozapine inhibits synaptic transmission at GABAergic synapses established by ventral tegmental area neurones in culture. Neuropharmacology, 2000, 39, 1536-1543.	4.1	50
98	Activation of Neurotransmitter Release in Hippocampal Nerve Terminals During Recovery From Intracellular Acidification. Journal of Neurophysiology, 1999, 81, 2627-2635.	1.8	50
99	Regulatory Roles for GTP-Binding Proteins in Nerve Terminals. Seminars in Neuroscience, 1998, 9, 220-231.	2.2	5
100	Contact-dependent regulation of N-type calcium channel subunits during synaptogenesis., 1998, 35, 198-208.		24
101	Modulation of an early step in the secretory machinery in hippocampal nerve terminals. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7163-7168.	7.1	78
102	Direct Modulation of the Secretory Machinery Underlies PKA-Dependent Synaptic Facilitation in Hippocampal Neurons. Neuron, 1996, 17, 789-797.	8.1	213
103	Xanthine derivatives IBMX and S-9977-2 potentiate transmission at an Aplysia central cholinergic synapse. Brain Research, 1992, 586, 78-85.	2.2	6
104	Pre- and postsynaptic actions of nifedipine at an identified cholinergic central synapse of Aplysia. Pflugers Archiv European Journal of Physiology, 1992, 422, 193-197.	2.8	7
105	Antipsychotiques, dopamine et glutamate, une relation à établir. Sante Mentale Au Quebec, 0, 32, 191-199.	0.1	0