
Alberto Maria Martelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/94233/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	APR-246—The Mutant TP53 Reactivator—Increases the Effectiveness of Berberine and Modified Berberines to Inhibit the Proliferation of Pancreatic Cancer Cells. Biomolecules, 2022, 12, 276.	4.0	4
2	Effects of the Mutant TP53 Reactivator APR-246 on Therapeutic Sensitivity of Pancreatic Cancer Cells in the Presence and Absence of WT-TP53. Cells, 2022, 11, 794.	4.1	6
3	Lamin A and the LINC complex act as potential tumor suppressors in Ewing Sarcoma. Cell Death and Disease, 2022, 13, 346.	6.3	7
4	Wild type and gain of function mutant TP53 can regulate the sensitivity of pancreatic cancer cells to chemotherapeutic drugs, EGFR/Ras/Raf/MEK, and PI3K/mTORC1/GSK-3 pathway inhibitors, nutraceuticals and alter metabolic properties. Aging, 2022, 14, 3365-3386.	3.1	5
5	Cell Communication: Intracellular Pathways – The PI3K/Akt/mTOR Pathway. , 2022, , .		0
6	Pathobiology and Therapeutic Relevance of GSK-3 in Chronic Hematological Malignancies. Cells, 2022, 11, 1812.	4.1	5
7	Effects of TP53 Mutations and miRs on Immune Responses in the Tumor Microenvironment Important in Pancreatic Cancer Progression. Cells, 2022, 11, 2155.	4.1	13
8	Sensitivity of pancreatic cancer cells to chemotherapeutic drugs, signal transduction inhibitors and nutraceuticals can be regulated by WT-TP53. Advances in Biological Regulation, 2021, 79, 100780.	2.3	6
9	GSK-3β Can Regulate the Sensitivity of MIA-PaCa-2 Pancreatic and MCF-7 Breast Cancer Cells to Chemotherapeutic Drugs, Targeted Therapeutics and Nutraceuticals. Cells, 2021, 10, 816.	4.1	19
10	GSK-3: a multifaceted player in acute leukemias. Leukemia, 2021, 35, 1829-1842.	7.2	20
11	Regulation of p53 and NF-κB transactivation activities by DGKζ in catalytic activity-dependent and -independent manners. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118953.	4.1	4
12	Effects of the MDM2 inhibitor Nutlin-3a on sensitivity of pancreatic cancer cells to berberine and modified berberines in the presence and absence of WT-TP53. Advances in Biological Regulation, 2021, , 100840.	2.3	4
13	The Combination of AHCC and ETAS Decreases Migration of Colorectal Cancer Cells, and Reduces the Expression of LGR5 and Notch1 Genes in Cancer Stem Cells: A Novel Potential Approach for Integrative Medicine. Pharmaceuticals, 2021, 14, 1325.	3.8	2
14	Crosstalks of GSK3 signaling with the mTOR network and effects on targeted therapy of cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118635.	4.1	38
15	Abilities of β-Estradiol to interact with chemotherapeutic drugs, signal transduction inhibitors and nutraceuticals and alter the proliferation of pancreatic cancer cells. Advances in Biological Regulation, 2020, 75, 100672.	2.3	9
16	Targeting Wnt∫î²â€catenin and PI3K/Akt/mTOR pathways in Tâ€cell acute lymphoblastic leukemia. Journal of Cellular Physiology, 2020, 235, 5413-5428.	4.1	40
17	B-ALL Complexity: Is Targeted Therapy Still A Valuable Approach for Pediatric Patients?. Cancers, 2020, 12, 3498.	3.7	11
18	Inhibition of Methyltransferase DOT1L Sensitizes to Sorafenib Treatment AML Cells Irrespective of MLL-Rearrangements: A Novel Therapeutic Strategy for Pediatric AML. Cancers, 2020, 12, 1972.	3.7	19

#	Article	IF	CITATIONS
19	Cancer therapy and treatments during COVID-19 era. Advances in Biological Regulation, 2020, 77, 100739.	2.3	30
20	Targeting GSK3 and Associated Signaling Pathways Involved in Cancer. Cells, 2020, 9, 1110.	4.1	146
21	Lamin A and Prelamin A Counteract Migration of Osteosarcoma Cells. Cells, 2020, 9, 774.	4.1	14
22	The Unfolded Protein Response: A Novel Therapeutic Target in Acute Leukemias. Cancers, 2020, 12, 333.	3.7	29
23	The Role Played by Wnt/β-Catenin Signaling Pathway in Acute Lymphoblastic Leukemia. International Journal of Molecular Sciences, 2020, 21, 1098.	4.1	38
24	Deregulated PTEN/PI3K/AKT/mTOR signaling in prostate cancer: Still a potential druggable target?. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118731.	4.1	51
25	Influences of TP53 and the anti-aging DDR1 receptor in controlling Raf/MEK/ERK and PI3K/Akt expression and chemotherapeutic drug sensitivity in prostate cancer cell lines. Aging, 2020, 12, 10194-10210.	3.1	15
26	New advances in targeting aberrant signaling pathways in T-cell acute lymphoblastic leukemia. Advances in Biological Regulation, 2019, 74, 100649.	2.3	17
27	The Key Roles of PTEN in T-Cell Acute Lymphoblastic Leukemia Development, Progression, and Therapeutic Response. Cancers, 2019, 11, 629.	3.7	30
28	Abilities of berberine and chemically modified berberines to interact with metformin and inhibit proliferation of pancreatic cancer cells. Advances in Biological Regulation, 2019, 73, 100633.	2.3	25
29	Advances in understanding the mechanisms of evasive and innate resistance to mTOR inhibition in cancer cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 1322-1337.	4.1	20
30	Effects of the MDM-2 inhibitor Nutlin-3a on PDAC cells containing and lacking WT-TP53 on sensitivity to chemotherapy, signal transduction inhibitors and nutraceuticals. Advances in Biological Regulation, 2019, 72, 22-40.	2.3	10
31	Targeting mTOR in Acute Lymphoblastic Leukemia. Cells, 2019, 8, 190.	4.1	44
32	The Cutting Edge: The Role of mTOR Signaling in Laminopathies. International Journal of Molecular Sciences, 2019, 20, 847.	4.1	27
33	Abilities of berberine and chemically modified berberines to inhibit proliferation of pancreatic cancer cells. Advances in Biological Regulation, 2019, 71, 172-182.	2.3	34
34	Metformin influences drug sensitivity in pancreatic cancer cells. Advances in Biological Regulation, 2018, 68, 13-30.	2.3	45
35	Drug discovery targeting the mTOR pathway. Clinical Science, 2018, 132, 543-568.	4.3	65
36	Targeting the phosphatidylinositol 3â€kinase/Akt/mechanistic target of rapamycin signaling pathway in Bâ€kineage acute lymphoblastic leukemia: An update. Journal of Cellular Physiology, 2018, 233, 6440-6454.	4.1	35

#	Article	IF	CITATIONS
37	Dual inhibition of PI3K/mTOR signaling in chemoresistant AML primary cells. Advances in Biological Regulation, 2018, 68, 2-9.	2.3	16
38	Effects of berberine, curcumin, resveratrol alone and in combination with chemotherapeutic drugs and signal transduction inhibitors on cancer cells—Power of nutraceuticals. Advances in Biological Regulation, 2018, 67, 190-211.	2.3	23
39	Phosphatidylinositol 3â€kinase inhibition potentiates glucocorticoid response in Bâ€cell acute lymphoblastic leukemia. Journal of Cellular Physiology, 2018, 233, 1796-1811.	4.1	28
40	Introduction of WT-TP53 into pancreatic cancer cells alters sensitivity to chemotherapeutic drugs, targeted therapeutics and nutraceuticals. Advances in Biological Regulation, 2018, 69, 16-34.	2.3	27
41	Therapeutic Targeting of mTOR in T-Cell Acute Lymphoblastic Leukemia: An Update. International Journal of Molecular Sciences, 2018, 19, 1878.	4.1	34
42	Roles of p53, NF-κB and the androgen receptor in controlling NGAL expression in prostate cancer cell lines. Advances in Biological Regulation, 2018, 69, 43-62.	2.3	21
43	Regulation of GSK-3 activity by curcumin, berberine and resveratrol: Potential effects on multiple diseases. Advances in Biological Regulation, 2017, 65, 77-88.	2.3	39
44	Roles of TP53 in determining therapeutic sensitivity, growth, cellular senescence, invasion and metastasis. Advances in Biological Regulation, 2017, 63, 32-48.	2.3	36
45	Protective effect of different antioxidant agents in UVB-irradiated keratinocytes. European Journal of Histochemistry, 2017, 61, 2784.	1.5	25
46	Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging, 2017, 9, 1477-1536.	3.1	168
47	Roles of CSK-3 and microRNAs on epithelial mesenchymal transition and cancer stem cells. Oncotarget, 2017, 8, 14221-14250.	1.8	86
48	PI3K isoform inhibition associated with anti Bcr-Abl drugs shows in vitro increased anti-leukemic activity in Philadelphia chromosome-positive B-acute lymphoblastic leukemia cell lines. Oncotarget, 2017, 8, 23213-23227.	1.8	15
49	Targeting signaling and apoptotic pathways involved in chemotherapeutic drug-resistance of hematopoietic cells. Oncotarget, 2017, 8, 76525-76557.	1.8	17
50	Drug-resistance in doxorubicin-resistant FL5.12 hematopoietic cells: elevated MDR1, drug efflux and side-population positive and decreased BCL2-family member expression. Oncotarget, 2017, 8, 113013-113033.	1.8	8
51	Effects of mutations in Wnt/β-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity—Diverse effects on cell growth, metabolism and cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2942-2976.	4.1	137
52	Improving nelarabine efficacy in T cell acute lymphoblastic leukemia by targeting aberrant PI3K/AKT/mTOR signaling pathway. Journal of Hematology and Oncology, 2016, 9, 114.	17.0	47
53	The therapeutic potential of mTOR inhibitors in breast cancer. British Journal of Clinical Pharmacology, 2016, 82, 1189-1212.	2.4	93
54	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701

#	Article	IF	CITATIONS
55	Novel roles of androgen receptor, epidermal growth factor receptor, TP53, regulatory RNAs, NF-kappa-B, chromosomal translocations, neutrophil associated gelatinase, and matrix metalloproteinase-9 in prostate cancer and prostate cancer stem cells. Advances in Biological Regulation, 2016, 60, 64-87.	2.3	35
56	Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 449-463.	4.1	104
57	Role of sphingosine 1-phosphate receptors, sphingosine kinases and sphingosine in cancer and inflammation. Advances in Biological Regulation, 2016, 60, 151-159.	2.3	119
58	Roles of NGAL and MMP-9 in the tumor microenvironment and sensitivity to targeted therapy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 438-448.	4.1	79
59	Healthy CD4+ T lymphocytes are not affected by targeted therapies against the PI3K/Akt/mTOR pathway in T-cell acute lymphoblastic leukemia. Oncotarget, 2016, 7, 55690-55703.	1.8	14
60	Synergistic effects of selective inhibitors targeting the PI3K/AKT/mTOR pathway or NUP214-ABL1 fusion protein in human Acute Lymphoblastic Leukemia. Oncotarget, 2016, 7, 79842-79853.	1.8	22
61	Synergistic cytotoxic effects of bortezomib and CK2 inhibitor CX-4945 in acute lymphoblastic leukemia: turning off the prosurvival ER chaperone BIP/Grp78 and turning on the pro-apoptotic NF-κB. Oncotarget, 2016, 7, 1323-1340.	1.8	39
62	Critical Roles of EGFR Family Members in Breast Cancer and Breast Cancer Stem Cells: Targets for Therapy. Current Pharmaceutical Design, 2016, 22, 2358-2388.	1.9	34
63	Modulation of TGFbeta 2 levels by lamin A in U2-OS osteoblast-like cells: understanding the osteolytic process triggered by altered lamins. Oncotarget, 2015, 6, 7424-7437.	1.8	25
64	Current treatment strategies for inhibiting mTOR in cancer. Trends in Pharmacological Sciences, 2015, 36, 124-135.	8.7	234
65	Roles of EGFR and KRAS and their downstream signaling pathways in pancreatic cancer and pancreatic cancer stem cells. Advances in Biological Regulation, 2015, 59, 65-81.	2.3	121
66	Tyrosol prevents apoptosis in irradiated keratinocytes. Journal of Dermatological Science, 2015, 80, 61-68.	1.9	36
67	Roles of signaling pathways in drug resistance, cancer initiating cells and cancer progression and metastasis. Advances in Biological Regulation, 2015, 57, 75-101.	2.3	100
68	Autophagy in acute leukemias: A double-edged sword with important therapeutic implications. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 14-26.	4.1	74
69	Triple Akt inhibition as a new therapeutic strategy in T-cell acute lymphoblastic leukemia. Oncotarget, 2015, 6, 6597-6610.	1.8	27
70	PI3K pan-inhibition impairs more efficiently proliferation and survival of T-cell acute lymphoblastic leukemia cell lines when compared to isoform-selective PI3K inhibitors. Oncotarget, 2015, 6, 10399-10414.	1.8	32
71	The novel dual PI3K/mTOR inhibitor NVP-BGT226 displays cytotoxic activity in both normoxic and hypoxic hepatocarcinoma cells. Oncotarget, 2015, 6, 17147-17160.	1.8	30
72	Co-targeting of Bcl-2 and mTOR pathway triggers synergistic apoptosis in BH3 mimetics resistant acute lymphoblastic leukemia. Oncotarget, 2015, 6, 32089-32103.	1.8	36

#	Article	IF	CITATIONS
73	Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: possibilities for therapeutic intervention. Oncotarget, 2014, 5, 4603-4650.	1.8	231
74	GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget, 2014, 5, 2881-2911.	1.8	407
75	Therapeutic targeting of Polo-like kinase-1 and Aurora kinases in T-cell acute lymphoblastic leukemia. Cell Cycle, 2014, 13, 2237-2247.	2.6	30
76	GSK-3β: A key regulator of breast cancer drug resistance. Cell Cycle, 2014, 13, 697-698.	2.6	8
77	DGKζ under stress conditions: "To be nuclear or cytoplasmic, that is the questionâ€: Advances in Biological Regulation, 2014, 54, 242-253.	2.3	34
78	Diverse roles of GSK-3: Tumor promoter–tumor suppressor, target in cancer therapy. Advances in Biological Regulation, 2014, 54, 176-196.	2.3	80
79	Antioxidants in the prevention of UVB-induced keratynocyte apoptosis. Journal of Photochemistry and Photobiology B: Biology, 2014, 141, 1-9.	3.8	35
80	Targeting Signaling Pathways in T-cell acute lymphoblastic leukemia initiating cells. Advances in Biological Regulation, 2014, 56, 6-21.	2.3	34
81	Targeting breast cancer initiating cells: Advances in breast cancer research and therapy. Advances in Biological Regulation, 2014, 56, 81-107.	2.3	32
82	Therapeutic potential of targeting mTOR in T-cell acute lymphoblastic leukemia (Review). International Journal of Oncology, 2014, 45, 909-918.	3.3	20
83	MYCN is a novel oncogenic target in pediatric T-cell Acute Lymphoblastic Leukemia. Oncotarget, 2014, 5, 120-130.	1.8	26
84	Assessment of the effect of sphingosine kinase inhibitors on apoptosis,unfolded protein response and autophagy of T-cell acute lymphoblastic leukemia cells; indications for novel therapeutics. Oncotarget, 2014, 5, 7886-7901.	1.8	36
85	Activity of the novel mTOR inhibitor Torin-2 in B-precursor acute lymphoblastic leukemia and its therapeutic potential to prevent Akt reactivation. Oncotarget, 2014, 5, 10034-10047.	1.8	60
86	New Agents and Approaches for Targeting the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR Cell Survival Pathways. , 2013, , 331-372.		1
87	Targeting phosphatidylinositol 3-kinase signaling in acute myelogenous leukemia. Expert Opinion on Therapeutic Targets, 2013, 17, 921-936.	3.4	15
88	Nuclear phospholipase C \hat{l}^21 signaling, epigenetics and treatments in MDS. Advances in Biological Regulation, 2013, 53, 2-7.	2.3	32
89	Enhancing the effectiveness of nucleoside analogs with mTORC1 blockers to treat acute myeloid leukemia patients. Cell Cycle, 2013, 12, 1815-1816.	2.6	4
90	Cytoplasmic localization of DGKζ exerts a protective effect against p53-mediated cytotoxicity. Journal of Cell Science, 2013, 126, 2785-97.	2.0	29

#	Article	IF	CITATIONS
91	Ectopic NGAL expression can alter sensitivity of breast cancer cells to EGFR, Bcl-2, CaM-K inhibitors and the plant natural product berberine. Cell Cycle, 2012, 11, 4447-4461.	2.6	22
92	Novel approaches to target cancer initiating cells–Eliminating the root of the cancer. Advances in Biological Regulation, 2012, 52, 249-264.	2.3	13
93	PI3K/AKT/mTORC1 and MEK/ERK signaling in T-cell acute lymphoblastic leukemia: New options for targeted therapy. Advances in Biological Regulation, 2012, 52, 214-227.	2.3	23
94	Targeting the liver kinase B1/AMP-activated protein kinase pathway as a therapeutic strategy for hematological malignancies. Expert Opinion on Therapeutic Targets, 2012, 16, 729-742.	3.4	37
95	The emerging multiple roles of nuclear Akt. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 2168-2178.	4.1	165
96	Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascade Inhibitors: How Mutations Can Result in Therapy Resistance and How to Overcome Resistance. Oncotarget, 2012, 3, 1068-1111.	1.8	279
97	Mutations and Deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascades Which Alter Therapy Response Oncotarget, 2012, 3, 954-987.	1.8	244
98	Temsirolimus, an mTOR inhibitor, in combination with lowerâ€dose clofarabine as salvage therapy for older patients with acute myeloid leukaemia: results of a phase II GIMEMA study (AMLâ€1107). British Journal of Haematology, 2012, 156, 205-212.	2.5	65
99	DGKζ is degraded through the cytoplasmic ubiquitin–proteasome system under excitotoxic conditions, which causes neuronal apoptosis because of aberrant cell cycle reentry. Cellular Signalling, 2012, 24, 1573-1582.	3.6	19
100	Nuclear Phosphoinositides: Location, Regulation and Function. Sub-Cellular Biochemistry, 2012, 59, 335-361.	2.4	34
101	Two hits are better than one: targeting both phosphatidylinositol 3-kinase and mammalian target of rapamycin as a therapeutic strategy for acute leukemia treatment. Oncotarget, 2012, 3, 371-394.	1.8	109
102	Harnessing the PI3K/Akt/mTOR pathway in T-cell acute lymphoblastic leukemia: Eliminating activity by targeting at different levels. Oncotarget, 2012, 3, 811-823.	1.8	58
103	Effects of Ectopic Expression of NGAL on Doxorubicin Sensitivity. Oncotarget, 2012, 3, 1236-1245.	1.8	13
104	A combination of temsirolimus, an allosteric mTOR inhibitor, with clofarabine as a new therapeutic option for patients with acute myeloid leukemia. Oncotarget, 2012, 3, 1615-1628.	1.8	54
105	Advances in Targeting Signal Transduction Pathways. Oncotarget, 2012, 3, 1505-1521.	1.8	41
106	Physiology and pathology of nuclear phospholipase C β1. Advances in Enzyme Regulation, 2011, 51, 2-12.	2.6	16
107	Preclinical testing of the Akt inhibitor triciribine in Tâ€cell acute lymphoblastic leukemia. Journal of Cellular Physiology, 2011, 226, 822-831.	4.1	59
108	Therapeutic resistance resulting from mutations in Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways. Journal of Cellular Physiology, 2011, 226, 2762-2781.	4.1	147

#	Article	IF	CITATIONS
109	Involvement of Akt and mTOR in chemotherapeutic- and hormonal-based drug resistance and response to radiation in breast cancer cells. Cell Cycle, 2011, 10, 3003-3015.	2.6	77
110	Nuclear phosphoinositides and their roles in cell biology and disease. Critical Reviews in Biochemistry and Molecular Biology, 2011, 46, 436-457.	5.2	30
111	Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging, 2011, 3, 192-222.	3.1	520
112	Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Inhibitors: Rationale and Importance to Inhibiting These Pathways in Human Health. Oncotarget, 2011, 2, 135-164.	1.8	509
113	Exploiting p53 Status to Enhance Effectiveness of Chemotherapy by Lowering Associated Toxicity. Oncotarget, 2011, 2, 109-112.	1.8	17
114	Involvement of Akt-1 and mTOR in Sensitivity of Breast Cancer to Targeted Therapy. Oncotarget, 2011, 2, 538-550.	1.8	73
115	Inositide signaling in the nucleus: From physiology to pathology. Advances in Enzyme Regulation, 2010, 50, 2-11.	2.6	17
116	The emerging role of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in normal myelopoiesis and leukemogenesis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 991-1002.	4.1	106
117	Activity of the Novel Dual Phosphatidylinositol 3-Kinase/Mammalian Target of Rapamycin Inhibitor NVP-BEZ235 against T-Cell Acute Lymphoblastic Leukemia. Cancer Research, 2010, 70, 8097-8107.	0.9	152
118	The Raf/MEK/ERK pathway can govern drug resistance, apoptosis and sensitivity to targeted therapy. Cell Cycle, 2010, 9, 1781-1791.	2.6	110
119	The Emerging Role of the Phosphatidylinositol 3-Kinase/ Akt/Mammalian Target of Rapamycin Signaling Network in Cancer Stem Cell Biology. Cancers, 2010, 2, 1576-1596.	3.7	40
120	ldentification of a functional nuclear export sequence in diacyl glycerol kinase-ζ. Cell Cycle, 2010, 9, 384-388.	2.6	26
121	The phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin signaling network and the control of normal myelopoiesis. Histology and Histopathology, 2010, 25, 669-80.	0.7	30
122	The phosphatidylinositol 3-kinase/Akt/mTOR signaling network as a therapeutic target in acute myelogenous leukemia patients. Oncotarget, 2010, 1, 89-103.	1.8	227
123	Phosphoinositide-Phospholipase C β1 Mono-Allelic Deletion Is Associated With Myelodysplastic Syndromes Evolution Into Acute Myeloid Leukemia. Journal of Clinical Oncology, 2009, 27, 782-790.	1.6	70
124	Dual Inhibition of Class IA Phosphatidylinositol 3-Kinase and Mammalian Target of Rapamycin as a New Therapeutic Option for T-Cell Acute Lymphoblastic Leukemia. Cancer Research, 2009, 69, 3520-3528.	0.9	116
125	The cyclin-dependent kinase inhibitor roscovitine and the nucleoside analog sangivamycin induce apoptosis in caspase-3 deficient breast cancer cells independent of caspase mediated P-glycoprotein cleavage: Implications for therapy of drug resistant breast cancers. Cell Cycle, 2009, 8, 1421-1425.	2.6	9
126	TIS21/BTG2/PC3 and cyclin D1 are key determinants of nuclear diacylglycerol kinase-ζ-dependent cell cycle arrest. Cellular Signalling, 2009, 21, 801-809.	3.6	26

#	Article	IF	CITATIONS
127	PKR activity is required for acute leukemic cell maintenance and growth: A role for PKRâ€mediated phosphatase activity to regulate GSKâ€3 phosphorylation. Journal of Cellular Physiology, 2009, 221, 232-241.	4.1	29
128	Nuclear inositides: PI-PLC signaling in cell growth, differentiation and pathology. Advances in Enzyme Regulation, 2009, 49, 2-10.	2.6	42
129	Targeting the PI3K/AKT/mTOR signaling network in acute myelogenous leukemia. Expert Opinion on Investigational Drugs, 2009, 18, 1333-1349.	4.1	104
130	Diacylglycerol kinase ζ is associated with chromatin, but dissociates from condensed chromatin during mitotic phase in NIH3T3 cells. Journal of Cellular Biochemistry, 2008, 105, 756-765.	2.6	24
131	Catalytic activity of nuclear PLC-β1 is required for its signalling function during C2C12 differentiation. Cellular Signalling, 2008, 20, 2013-2021.	3.6	37
132	Synergistic Proapoptotic Activity of Recombinant TRAIL Plus the Akt Inhibitor Perifosine in Acute Myelogenous Leukemia Cells. Cancer Research, 2008, 68, 9394-9403.	0.9	84
133	PKR Regulates B56α-mediated BCL2 Phosphatase Activity in Acute Lymphoblastic Leukemia-derived REH Cells. Journal of Biological Chemistry, 2008, 283, 35474-35485.	3.4	45
134	Proapoptotic Activity and Chemosensitizing Effect of the Novel Akt Inhibitor (2S)-1-(1H-Indol-3-yl)-3-[5-(3-methyl-2H-indazol-5-yl)pyridin-3-yl]oxypropan2-amine (A443654) in T-Cell Acute Lymphoblastic Leukemia. Molecular Pharmacology, 2008, 74, 884-895.	2.3	33
135	The Akt/Mammalian Target of Rapamycin Signal Transduction Pathway Is Activated in High-Risk Myelodysplastic Syndromes and Influences Cell Survival and Proliferation. Cancer Research, 2007, 67, 4287-4294.	0.9	87
136	Nuclear diacylglycerol kinaseâ€Î¶ is a negative regulator of cell cycle progression in C2C12 mouse myoblasts. FASEB Journal, 2007, 21, 3297-3307.	0.5	41
137	Inositide-Dependent Phospholipase C Signaling Mimics Insulin in Skeletal Muscle Differentiation by Affecting Specific Regions of the Cyclin D3 Promoter. Endocrinology, 2007, 148, 1108-1117.	2.8	53
138	Targeting the RAF/MEK/ERK, PI3K/AKT and P53 pathways in hematopoietic drug resistance. Advances in Enzyme Regulation, 2007, 47, 64-103.	2.6	77
139	Nuclear protein kinase C. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 542-551.	2.4	72
140	Intranuclear 3′-phosphoinositide metabolism and Akt signaling: New mechanisms for tumorigenesis and protection against apoptosis?. Cellular Signalling, 2006, 18, 1101-1107.	3.6	121
141	Caspase-dependent cleavage of 170-kDa P-glycoprotein during apoptosis of human T-lymphoblastoid CEM cells. Journal of Cellular Physiology, 2006, 207, 836-844.	4.1	45
142	Subnuclear localization and differentiation-dependent increased expression of DGK-ζ in C2C12 mouse myoblasts. Journal of Cellular Physiology, 2006, 209, 370-378.	4.1	33
143	Deguelin, A PI3K/AKT inhibitor, enhances chemosensitivity of leukaemia cells with an active PI3K/AKT pathway. British Journal of Haematology, 2005, 129, 677-686.	2.5	73
144	Phosphoinositide 3-kinase/Akt inhibition increases arsenic trioxide-induced apoptosis of acute promyelocytic and T-cell leukaemias. British Journal of Haematology, 2005, 130, 716-725.	2.5	43

#	Article	IF	CITATIONS
145	Nuclear inositol lipid metabolism: More than just second messenger generation?. Journal of Cellular Biochemistry, 2005, 96, 285-292.	2.6	36
146	Phosphoinositide 3-kinase/Akt involvement in arsenic trioxide resistance of human leukemia cells. Journal of Cellular Physiology, 2005, 202, 623-634.	4.1	58
147	Novel 2′-substituted, 3′-deoxy-phosphatidyl-myo-inositol analogues reduce drug resistance in human leukaemia cell lines with an activated phosphoinositide 3-kinase/Akt pathway. British Journal of Haematology, 2004, 126, 574-582.	2.5	22
148	Detection of serine 473 phosphorylated Akt in acute myeloid leukaemia blasts by flow cytometry. British Journal of Haematology, 2004, 126, 675-681.	2.5	37
149	Nuclear inositides: facts and perspectives. , 2004, 101, 47-64.		74
150	Nuclear diacylglycerol kinase-Î, is activated in response to nerve growth factor stimulation of PC12 cells. Cellular Signalling, 2004, 16, 1263-1271.	3.6	20
151	Expression of phospholipase C beta family isoenzymes in C2C12 myoblasts during terminal differentiation. Journal of Cellular Physiology, 2004, 200, 291-296.	4.1	42
152	Up-regulation of nuclear PLC?1 in myogenic differentiation. Journal of Cellular Physiology, 2003, 195, 446-452.	4.1	61
153	Threonine 308 phosphorylated form of akt translocates to the nucleus of PC12 cells under nerve growth factor stimulation and associates with the nuclear matrix protein nucleolin. Journal of Cellular Physiology, 2003, 196, 79-88.	4.1	61
154	Diacylglycerol kinase-Î, is localized in the speckle domains of the nucleus. Experimental Cell Research, 2003, 287, 143-154.	2.6	87
155	The phosphoinositide 3-kinase/AKT1 pathway involvement in drug and all-trans-retinoic acid resistance of leukemia cells. Molecular Cancer Research, 2003, 1, 234-46.	3.4	59
156	Molecular characterization of the human PLC β1 gene. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1584, 46-54.	2.4	21
157	Erythropoietin (EPO)-induced erythroid differentiation of K562 cells is accompanied by the nuclear translocation of phosphatidylinositol 3-kinase and intranuclear generation of phosphatidylinositol (3,4,5) trisphosphate. Cellular Signalling, 2002, 14, 21-29.	3.6	20
158	Increase in nuclear phosphatidylinositol 3â€kinase activity and phosphatidylinositol (3,4,5) trisphosphate synthesis precede PKCâ€i¶ translocation to the nucleus of NGFâ€treated PC12 cells. FASEB Journal, 1999, 13, 2299-2310.	0.5	103
159	Nuclear Diacylglycerol Produced by Phosphoinositide-specific Phospholipase C Is Responsible for Nuclear Translocation of Protein Kinase C-α. Journal of Biological Chemistry, 1998, 273, 29738-29744.	3.4	100
160	Selective nuclear translocation of protein kinase C α in Swiss 3T3 cells treated with IGF-I, PDGF and EGF. FEBS Letters, 1994, 347, 63-68.	2.8	58
161	Nuclear localization and signalling activity of phosphoinositidase Cβ in Swiss 3T3 cells. Nature, 1992, 358, 242-245.	27.8	329
162	Changes in nuclear inositol phospholipids induced in intact cells by insulin-like growth factor I. Biochemical and Biophysical Research Communications, 1989, 159, 720-725.	2.1	104

#	Article	IF	CITATIONS
163	Rapid changes in phospholipid metabolism in the nuclei of Swiss 3T3 cells induced by treatment of the cells with insulin-like growth factor I. Biochemical and Biophysical Research Communications, 1988, 154, 1266-1272.	2.1	99