
Erik H A Rikkerink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9422949/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Actigardâ"¢ induces a defence response to limit Pseudomonas syringae pv. actinidiae in Actinidia chinensis var. chinensis â€~Hort16A' tissue culture plants Scientia Horticulturae, 2022, 295, 110806.	3.6	7
2	Real-Time PCR and Droplet Digital PCR Are Accurate and Reliable Methods To Quantify <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> Biovar 3 in Kiwifruit Infected Plantlets. Plant Disease, 2021, 105, 1748-1757.	1.4	10
3	<i>Rpa1</i> mediates an immune response to <i>avrRpm1_{Psa}</i> and confers resistance against <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> . Plant Journal, 2020, 102, 688-702.	5.7	22
4	Computational Disorder Analysis in Ethylene Response Factors Uncovers Binding Motifs Critical to Their Diverse Functions. International Journal of Molecular Sciences, 2020, 21, 74.	4.1	7
5	Construction of a kiwifruit yeast two-hybrid cDNA library to identify host targets of the Pseudomonas syringae pv. actinidiae effector AvrPto5. BMC Research Notes, 2019, 12, 63.	1.4	3
6	Highly specific assays to detect isolates of <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> biovar 3 and <i>Pseudomonas syringae</i> pv. <i>actinidifoliorum</i> directly from plant material. Plant Pathology, 2018, 67, 1220-1230.	2.4	12
7	Re-programming of Pseudomonas syringae pv. actinidiae gene expression during early stages of infection of kiwifruit. BMC Genomics, 2018, 19, 822.	2.8	42
8	A Single Effector Protein, AvrRpt2 _{EA} , from <i>Erwinia amylovora</i> Can Cause Fire Blight Disease Symptoms and Induces a Salicylic Acid–Dependent Defense Response. Molecular Plant-Microbe Interactions, 2018, 31, 1179-1191.	2.6	19
9	Pathogens and Disease Play Havoc on the Host Epiproteome—The "First Line of Response―Role for Proteomic Changes Influenced by Disorder. International Journal of Molecular Sciences, 2018, 19, 772.	4.1	10
10	A bacterial acetyltransferase triggers immunity in Arabidopsis thaliana independent of hypersensitive response. Scientific Reports, 2017, 7, 3557.	3.3	69
11	A novel hairpin library-based approach to identify NBS–LRR genes required for effector-triggered hypersensitive response in Nicotiana benthamiana. Plant Methods, 2017, 13, 32.	4.3	25
12	Origin and Evolution of the Kiwifruit Canker Pandemic. Genome Biology and Evolution, 2017, 9, 932-944.	2.5	106
13	Transposon insertion libraries for the characterization of mutants from the kiwifruit pathogen Pseudomonas syringae pv. actinidiae. PLoS ONE, 2017, 12, e0172790.	2.5	26
14	Microarray analysis of kiwifruit (Actinidia chinensis) bark following challenge by the sucking insect Hemiberlesia lataniae (Hemiptera: Diaspididae). Genomics Data, 2016, 7, 281-283.	1.3	1
15	A <i>micro<scp>RNA</scp></i> allele that emerged prior to apple domestication may underlie fruit size evolution. Plant Journal, 2015, 84, 417-427.	5.7	95
16	Complete DNA Sequence of Pseudomonas syringae pv. actinidiae, the Causal Agent of Kiwifruit Canker Disease. Genome Announcements, 2015, 3, .	0.8	36
17	Characterisation, evolutionary trends and mapping of putative resistance and defence genes in Actinidia (kiwifruit). Tree Genetics and Genomes, 2015, 11, 1.	1.6	7
18	Transcriptome Analysis of Kiwifruit (Actinidia chinensis) Bark in Response to Armoured Scale Insect (Hemiberlesia lataniae) Feeding. PLoS ONE, 2015, 10, e0141664.	2.5	18

#	Article	IF	CITATIONS
19	TRANSPOSITION, INSERTION, DELETION AND RECOMBINATION DRIVE VARIABILITY IN THE TYPE 3 SECRETOME OF PSEUDOMONAS SYRINGAE PV. ACTINIDIAE, THE TRANSITION FROM GLOBAL EFFECTOR COMPARISONS TO KIWIFRUIT RESISTANCE BREEDING STRATEGIES. Acta Horticulturae, 2015, , 65-74.	0.2	3
20	The intrinsically disordered structural platform of the plant defence hub protein <scp>RPM</scp> 1â€interacting protein 4 provides insights into its mode of action in the hostâ€pathogen interface and evolution of the nitrateâ€induced domain protein family. FEBS Journal, 2014, 281, 3955-3979.	4.7	50
21	Genomic Analysis of the Kiwifruit Pathogen Pseudomonas syringae pv. actinidiae Provides Insight into the Origins of an Emergent Plant Disease. PLoS Pathogens, 2013, 9, e1003503.	4.7	247
22	Using fundamental knowledge of induced resistance to develop control strategies for bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae. Frontiers in Plant Science, 2013, 4, 24.	3.6	36
23	Multifarious Roles of Intrinsic Disorder in Proteins Illustrate Its Broad Impact on Plant Biology. Plant Cell, 2013, 25, 38-55.	6.6	138
24	GRAS proteins: the versatile roles of intrinsically disordered proteins in plant signalling. Biochemical Journal, 2012, 442, 1-12.	3.7	136
25	Revision of the Nomenclature of the Differential Host-Pathogen Interactions of <i>Venturia inaequalis</i> and <i>Malus</i> . Annual Review of Phytopathology, 2011, 49, 391-413.	7.8	176
26	A functionally required unfoldome from the plant kingdom: intrinsically disordered N-terminal domains of GRAS proteins are involved in molecular recognition during plant development. Plant Molecular Biology, 2011, 77, 205-223.	3.9	135
27	DEVELOPMENT OF A SET OF APPLE SSRS MARKERS SPANNING THE APPLE GENOME, GENOTYPING OF HIDRAS PLANT MATERIAL AND VALIDATION OF GENOTYPIC DATA. Acta Horticulturae, 2009, , 603-608.	0.2	3
28	Development and test of 21 multiplex PCRs composed of SSRs spanning most of the apple genome. Tree Genetics and Genomes, 2009, 5, 211-223.	1.6	52
29	BAC-end sequence-based SNPs and Bin mapping for rapid integration of physical and genetic maps in apple. Genomics, 2009, 93, 282-288.	2.9	31
30	"FAST-BREEDING" IN APPLE: A STRATEGY TO ACCELERATE INTROGRESSION OF NEW TRAITS INTO ELITE GERMPLASM. Acta Horticulturae, 2009, , 163-168.	0.2	20
31	A PROPOSAL FOR THE NOMENCLATURE OF VENTURIA INAEQUALIS RACES. Acta Horticulturae, 2009, , 739-746.	0.2	29
32	BREEDING FOR RED FLESH COLOUR IN APPLE: PROGRESS AND CHALLENGES. Acta Horticulturae, 2009, , 337-342.	0.2	47
33	Genome mapping of three major resistance genes to woolly apple aphid (Eriosoma lanigerum Hausm.). Tree Genetics and Genomes, 2008, 4, 223-236.	1.6	84
34	Analysis of expressed sequence tags from Actinidia: applications of a cross species EST database for gene discovery in the areas of flavor, health, color and ripening. BMC Genomics, 2008, 9, 351.	2.8	178
35	Development of a set of SNP markers present in expressed genes of the apple. Genomics, 2008, 92, 353-358.	2.9	140
36	Two novel Venturia inaequalis genes induced upon morphogenetic differentiation during infection and in vitro growth on cellophane. Fungal Genetics and Biology, 2008, 45, 1329-1339.	2.1	35

#	Article	IF	CITATIONS
37	Screening a BAC Library With Nonradioactive Overlapping Oligonucleotide (Overgo) Probes. , 2007, 353, 79-92.		6
38	Linkage Disequilibrium. , 2007, , 11-39.		18
39	Prospects of Association Mapping in Perennial Horticultural Crops. , 2007, , 249-269.		21
40	CONSTRUCTION OF KIWIFRUIT BAC CONTIG MAPS BY OVERGO HYBRIDIZATION AND THEIR USE FOR MAPPING THE SEX LOCUS. Acta Horticulturae, 2007, , 185-190.	0.2	3
41	Analyses of Expressed Sequence Tags from Apple. Plant Physiology, 2006, 141, 147-166.	4.8	246
42	The Vh8 locus of a new geneâ€forâ€gene interaction between Venturia inaequalis and the wild apple Malus sieversii is closely linked to the Vh2 locus in Malus pumila R12740â€7A. New Phytologist, 2005, 166, 1035-1049.	7.3	92
43	Estimation of allele frequencies in polyploids under certain patterns of inheritance. Heredity, 2005, 95, 327-334.	2.6	100
44	The Vh2 and Vh4 scab resistance genes in two differential hosts derived from Russian apple R12740-7A map to the same linkage group of apple. Molecular Breeding, 2005, 15, 103-116.	2.1	85
45	Analysis of a Secreted Aspartic Peptidase Disruption Mutant of Glomerella cingulata. European Journal of Plant Pathology, 2004, 110, 265-274.	1.7	18
46	AN UPDATE ON APPLE SCAB RESISTANCE BREEDING IN NEW ZEALAND. Acta Horticulturae, 2002, , 43-47.	0.2	15
47	Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theoretical and Applied Genetics, 1998, 97, 60-73.	3.6	391
48	Effect of Disruption of a Cutinase Gene (cutA) on Virulence and Tissue Specificity of Fusarium solani f. sp. cucurbitae race 2 Toward Cucurbita maxima and C. moschata. Molecular Plant-Microbe Interactions, 1997, 10, 355-368.	2.6	44
49	Microsatellites in Malus X domestica (apple): abundance, polymorphism and cultivar identification. Theoretical and Applied Genetics, 1997, 94, 249-254.	3.6	288
50	A detailed linkage map around an apple scab resistance gene demonstrates that two disease resistance classes both carry the V f gene. Theoretical and Applied Genetics, 1996, 93, 485-493.	3.6	64
51	Gene inactivation in the plant pathogen Glomerella cingulata: three strategies for the disruption of the pectin lyase gene pnIA. Molecular Genetics and Genomics, 1995, 246, 196-205.	2.4	48
52	Integration of vectors by homologous recombination in the plant pathogen Glomerella cingulata. Current Genetics, 1994, 25, 202-208.	1.7	26
53	The use of species-specific DNA probes for the identification of Mycosphaerella fijiensis and M. musicola, the causal agents of Sigatoka disease of banana. Plant Pathology, 1994, 43, 701-707.	2.4	30
54	The pectin lyase-encoding gene (pnl) family from Glomerella cingulata: characterization of pnlA and its expression in yeast. Gene, 1994, 142, 141-146.	2.2	49

Εγικ Η Α Ρικκεγινκ

#	Article	IF	CITATIONS
55	The ARG4 gene of Candida albicans. Gene, 1994, 142, 213-218.	2.2	19
56	Cloning and molecular characterization of the glyceraldehyde-3-phosphate dehydrogenase-encoding gene and cDNA from the plant pathogenic fungus Glomerella cingulata. Gene, 1992, 122, 225-230.	2.2	285
57	Genetics of the white-opaque transition in Candida albicans: demonstration of switching recessivity and mapping of switching genes. Journal of Bacteriology, 1992, 174, 2951-2957.	2.2	17
58	High efficiency transformation of Fusarium solani f. sp. cucurbitae race 2 (mating population V). Current Genetics, 1992, 21, 463-469.	1.7	20
59	Differentiation of Fusarium solani f. sp. cucurbitae races 1 and 2 by random amplification of polymorphic DNA. Current Genetics, 1991, 20, 391-396.	1.7	221
60	Genomic structure of Candida stellatoidea: extra chromosomes and gene duplication. Infection and Immunity, 1990, 58, 949-954.	2.2	19
61	Methods for the genetics and molecular biology of Candida albicans. Analytical Biochemistry, 1988, 175, 361-372.	2.4	35
62	Opaque-white phenotype transition: a programmed morphological transition in Candida albicans. Journal of Bacteriology, 1988, 170, 895-899.	2.2	185
63	Heat shock induces chromosome loss in the yeast Candida albicans. Molecular Genetics and Genomics, 1985, 200, 162-8.	2.4	74
64	Genetic analysis of red, adenine-requiring mutants of Candida albicans. Journal of Bacteriology, 1983, 156, 1066-1077.	2.2	71