
Susan Bonner-Weir, Susan Bonner Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9422730/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	β-Cell Deficit and Increased β-Cell Apoptosis in Humans With Type 2 Diabetes. Diabetes, 2003, 52, 102-110.	0.6	3,615
2	Disruption of IRS-2 causes type 2 diabetes in mice. Nature, 1998, 391, 900-904.	27.8	1,607
3	Translational Control Is Required for the Unfolded Protein Response and In Vivo Glucose Homeostasis. Molecular Cell, 2001, 7, 1165-1176.	9.7	1,217
4	Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes, 1999, 48, 2270-2276.	0.6	1,161
5	In vitro cultivation of human islets from expanded ductal tissue. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 7999-8004.	7.1	962
6	p16INK4a induces an age-dependent decline in islet regenerative potential. Nature, 2006, 443, 453-457.	27.8	922
7	Five Stages of Evolving Beta-Cell Dysfunction During Progression to Diabetes. Diabetes, 2004, 53, S16-S21.	0.6	888
8	A Second Pathway for Regeneration of Adult Exocrine and Endocrine Pancreas: A Possible Recapitulation of Embryonic Development. Diabetes, 1993, 42, 1715-1720.	0.6	628
9	Selective β-Cell Loss and α-Cell Expansion in Patients with Type 2 Diabetes Mellitus in Korea. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 2300-2308.	3.6	578
10	Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes, 2000, 49, 741-748.	0.6	543
11	Development of a Novel Polygenic Model of NIDDM in Mice Heterozygous for IR and IRS-1 Null Alleles. Cell, 1997, 88, 561-572.	28.9	517
12	Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes, 1998, 47, 358-364.	0.6	495
13	Chronic Hyperglycemia Triggers Loss of Pancreatic Î ² Cell Differentiation in an Animal Model of Diabetes. Journal of Biological Chemistry, 1999, 274, 14112-14121.	3.4	495
14	Residual Insulin Production and Pancreatic β-Cell Turnover After 50 Years of Diabetes: Joslin Medalist Study. Diabetes, 2010, 59, 2846-2853.	0.6	422
15	Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release Journal of Clinical Investigation, 1983, 71, 1544-1553.	8.2	420
16	Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19915-19919.	7.1	409
17	New sources of pancreatic β-cells. Nature Biotechnology, 2005, 23, 857-861.	17.5	381
18	β-Cell Dysfunction Induced by Chronic Hyperglycemia: Current Ideas on Mechanism of Impaired Glucose-Induced Insulin Secretion. Diabetes Care, 1992, 15, 442-455.	8.6	378

#	Article	IF	CITATIONS
19	Severe hypoglycaemia post-gastric bypass requiring partial pancreatectomy: evidence for inappropriate insulin secretion and pancreatic islet hyperplasia. Diabetologia, 2005, 48, 2236-2240.	6.3	345
20	The homeodomain protein IDX-1 increases after an early burst of proliferation during pancreatic regeneration. Diabetes, 1999, 48, 507-513.	0.6	319
21	Downregulation of GLP-1 and GIP Receptor Expression by Hyperglycemia: Possible Contribution to Impaired Incretin Effects in Diabetes. Diabetes, 2007, 56, 1551-1558.	0.6	319
22	The pancreatic ductal epithelium serves as a potential pool of progenitor cells. Pediatric Diabetes, 2004, 5, 16-22.	2.9	311
23	Involvement of c-Jun N-terminal Kinase in Oxidative Stress-mediated Suppression of Insulin Gene Expression. Journal of Biological Chemistry, 2002, 277, 30010-30018.	3.4	294
24	Improved Glucose and Lipid Metabolism in Genetically Obese Mice Lacking aP2. Endocrinology, 2000, 141, 3388-3396.	2.8	292
25	Islet growth and development in the adult. Journal of Molecular Endocrinology, 2000, 24, 297-302.	2.5	287
26	Defective insulin secretion in hepatocyte nuclear factor 1alpha-deficient mice Journal of Clinical Investigation, 1998, 101, 2215-2222.	8.2	286
27	Activation of the Hexosamine Pathway Leads to Deterioration of Pancreatic \hat{l}^2 -Cell Function through the Induction of Oxidative Stress. Journal of Biological Chemistry, 2001, 276, 31099-31104.	3.4	279
28	Acceleration of β Cell Aging Determines Diabetes and Senolysis Improves Disease Outcomes. Cell Metabolism, 2019, 30, 129-142.e4.	16.2	277
29	A switch from MafB to MafA expression accompanies differentiation to pancreatic \hat{I}^2 -cells. Developmental Biology, 2006, 293, 526-539.	2.0	268
30	Islet amyloid formation associated with hyperglycemia in transgenic mice with pancreatic beta cell expression of human islet amyloid polypeptide Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 3492-3496.	7.1	267
31	Pancreatic stem cells. Journal of Pathology, 2002, 197, 519-526.	4.5	265
32	Islet β cell mass in diabetes and how it relates to function, birth, and death. Annals of the New York Academy of Sciences, 2013, 1281, 92-105.	3.8	264
33	Life and Death of the Pancreatic \hat{I}^2 Cells. Trends in Endocrinology and Metabolism, 2000, 11, 375-378.	7.1	257
34	Gene Expression Profiles of Beta-Cell Enriched Tissue Obtained by Laser Capture Microdissection from Subjects with Type 2 Diabetes. PLoS ONE, 2010, 5, e11499.	2.5	252
35	In vivo imaging of islet transplantation. Nature Medicine, 2006, 12, 144-148.	30.7	248
36	Perspective: Postnatal Pancreatic Î 2 Cell Growth. Endocrinology, 2000, 141, 1926-1929.	2.8	222

#	Article	IF	CITATIONS
37	PDX-1 Protein Containing Its Own Antennapedia-Like Protein Transduction Domain Can Transduce Pancreatic Duct and Islet Cells. Diabetes, 2003, 52, 1732-1737.	0.6	219
38	The cholecystokinin-A receptor mediates inhibition of food intake yet is not essential for the maintenance of body weight. Journal of Clinical Investigation, 1999, 103, 383-391.	8.2	218
39	β-Cell Growth and Regeneration: Replication Is Only Part of the Story. Diabetes, 2010, 59, 2340-2348.	0.6	212
40	REPRODUCIBLE HIGH YIELD OF RAT ISLETS BY STATIONARY IN VITRO DIGESTION FOLLOWING PANCREATIC DUCTAL OR PORTAL VENOUS COLLAGENASE INJECTION1. Transplantation, 1987, 43, 725-730.	1.0	208
41	Beta-cell turnover: its assessment and implications. Diabetes, 2001, 50, S20-S24.	0.6	201
42	The Neuroendocrine Protein 7B2 Is Required for Peptide Hormone Processing In Vivo and Provides a Novel Mechanism for Pituitary Cushing's Disease. Cell, 1999, 96, 689-700.	28.9	191
43	ANGPTL8/Betatrophin Does Not Control Pancreatic Beta Cell Expansion. Cell, 2014, 159, 691-696.	28.9	187
44	Increased Expression of Antioxidant and Antiapoptotic Genes in Islets That May Contribute to Â-Cell Survival During Chronic Hyperglycemia. Diabetes, 2002, 51, 413-423.	0.6	183
45	Beta cell mass and growth after syngeneic islet cell transplantation in normal and streptozocin diabetic C57BL/6 mice Journal of Clinical Investigation, 1993, 91, 780-787.	8.2	178
46	Genetic Regulation of Metabolic Pathways in β-Cells Disrupted by Hyperglycemia. Journal of Biological Chemistry, 2002, 277, 10912-10921.	3.4	173
47	Pancreatic Î ² Cell Regeneration as a Possible Therapy for Diabetes. Cell Metabolism, 2018, 27, 57-67.	16.2	172
48	Reduced expression of the liver/beta-cell glucose transporter isoform in glucose-insensitive pancreatic beta cells of diabetic rats Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 6492-6496.	7.1	171
49	Tissue-specific disallowance of housekeeping genes: The other face of cell differentiation. Genome Research, 2011, 21, 95-105.	5.5	163
50	In Vivo Imaging of Immune Rejection in Transplanted Pancreatic Islets. Diabetes, 2006, 55, 2419-2428.	0.6	158
51	Mutations at the <i>BLK</i> locus linked to maturity onset diabetes of the young and β-cell dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14460-14465.	7.1	156
52	Curative and β cell regenerative effects of α1-antitrypsin treatment in autoimmune diabetic NOD mice. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16242-16247.	7.1	154
53	Stem cell therapy for type 1 diabetes mellitus. Nature Reviews Endocrinology, 2010, 6, 139-148.	9.6	153
54	Transdifferentiation of pancreatic ductal cells to endocrine β-cells. Biochemical Society Transactions, 2008, 36, 353-356.	3.4	152

#	Article	IF	CITATIONS
55	Minimal chronic hyperglycemia is a critical determinant of impaired insulin secretion after an incomplete pancreatectomy Journal of Clinical Investigation, 1988, 81, 1407-1414.	8.2	152
56	β Cell Aging Markers Have Heterogeneous Distribution and Are Induced by Insulin Resistance. Cell Metabolism, 2017, 25, 898-910.e5.	16.2	149
57	OUTCOME OF SUBCUTANEOUS ISLET TRANSPLANTATION IMPROVED BY POLYMER DEVICE1. Transplantation, 1996, 61, 1557-1561.	1.0	146
58	Regulatory factor linked to late-onset diabetes?. Nature, 1998, 392, 560-560.	27.8	144
59	Activation of pancreatic-duct-derived progenitor cells during pancreas regeneration in adult rats. Journal of Cell Science, 2010, 123, 2792-2802.	2.0	143
60	Critical Reduction in β-Cell Mass Results in Two Distinct Outcomes over Time. Journal of Biological Chemistry, 2003, 278, 2997-3005.	3.4	140
61	Differentiation of Affinity-Purified Human Pancreatic Duct Cells to Â-Cells. Diabetes, 2007, 56, 1802-1809.	0.6	139
62	Mafa expression enhances glucose-responsive insulin secretion in neonatal rat beta cells. Diabetologia, 2011, 54, 583-593.	6.3	138
63	Quantitative analysis of cell composition and purity of human pancreatic islet preparations. Laboratory Investigation, 2010, 90, 1661-1675.	3.7	137
64	Adaptation of β-cell mass to substrate oversupply: enhanced function with normal gene expression. American Journal of Physiology - Endocrinology and Metabolism, 2001, 280, E788-E796.	3.5	135
65	Suppression of Î ² Cell Energy Metabolism and Insulin Release by PGC-1α. Developmental Cell, 2003, 5, 73-83.	7.0	134
66	Dimorphic histopathology of long-standing childhood-onset diabetes. Diabetologia, 2010, 53, 690-698.	6.3	134
67	Islets of Langerhans: the puzzle of intraislet interactions and their relevance to diabetes Journal of Clinical Investigation, 1990, 85, 983-987.	8.2	130
68	Overexpression of c-Myc in Â-Cells of Transgenic Mice Causes Proliferation and Apoptosis, Downregulation of Insulin Gene Expression, and Diabetes. Diabetes, 2002, 51, 1793-1804.	0.6	126
69	Survival and Maturation of Microencapsulated Porcine Neonatal Pancreatic Cell Clusters Transplanted into Immunocompetent Diabetic Mice. Diabetes, 2003, 52, 69-75.	0.6	125
70	Hypoxia induces vascular endothelial growth factor gene and protein expression in cultured rat islet cells. Diabetes, 1998, 47, 1894-1903.	0.6	124
71	Enhanced insulin-like growth factor I gene expression in regenerating rat pancreas Proceedings of the United States of America, 1991, 88, 6152-6156.	7.1	122
72	2 Intra-islet insulin—glucagon—somatostatin relationships. Clinics in Endocrinology and Metabolism, 1986, 15, 33-58.	1.6	120

#	Article	IF	CITATIONS
73	Thyroid Hormone Promotes Postnatal Rat Pancreatic β-Cell Development and Glucose-Responsive Insulin Secretion Through MAFA. Diabetes, 2013, 62, 1569-1580.	0.6	120
74	Responses of neonatal rat islets to streptozotocin: limited B-cell regeneration and hyperglycemia. Diabetes, 1981, 30, 64-69.	0.6	117
75	Conversion of Mature Human β-Cells Into Glucagon-Producing α-Cells. Diabetes, 2013, 62, 2471-2480.	0.6	115
76	Inadequate β-cell mass is essential for the pathogenesis of type 2 diabetes. Lancet Diabetes and Endocrinology,the, 2020, 8, 249-256.	11.4	114
77	Compensatory growth of pancreatic beta-cells in adult rats after short-term glucose infusion. Diabetes, 1989, 38, 49-53.	0.6	114
78	Vulnerability of islets in the immediate posttransplantation period. Dynamic changes in structure and function. Diabetes, 1996, 45, 1161-1167.	0.6	112
79	Rat neonatal beta cells lack the specialised metabolic phenotype of mature beta cells. Diabetologia, 2011, 54, 594-604.	6.3	111
80	BETA2/NeuroD Protein Can Be Transduced Into Cells Due to an Arginine- and Lysine-Rich Sequence. Diabetes, 2005, 54, 2859-2866.	0.6	110
81	Noninvasive In Vivo Measurement of Â-Cell Mass in Mouse Model of Diabetes. Diabetes, 2001, 50, 2231-2236.	0.6	106
82	Expansion of Adult Human Pancreatic Tissue Yields Organoids Harboring Progenitor Cells with Endocrine Differentiation Potential. Stem Cell Reports, 2018, 10, 712-724.	4.8	106
83	GLP-1/exendin-4 facilitates β-cell neogenesis in rat and human pancreatic ducts. Diabetes Research and Clinical Practice, 2006, 73, 107-110.	2.8	102
84	\hat{l}^2 -cell dedifferentiation in diabetes is important, but what is it?. Islets, 2013, 5, 233-237.	1.8	102
85	IMMUNOCYTOCHEMISTRY OF VITAMIN D-DEPENDENT CALCIUM BINDING PROTEIN IN CHICK PANCREAS: EXCLUSIVE LOCALIZATION IN B-CELLS.*. Endocrinology, 1982, 110, 2216-2218.	2.8	101
86	Islet secretion in a new experimental model for non-insulin-dependent diabetes. Diabetes, 1981, 30, 590-595.	0.6	100
87	Human Islet Morphology Revisited. Journal of Histochemistry and Cytochemistry, 2015, 63, 604-612.	2.5	92
88	GENE EXPRESSION OF VEGF AND ITS RECEPTORS Flk-1/KDR AND Flt-1 IN CULTURED AND TRANSPLANTED RAT ISLETS1. Transplantation, 2001, 71, 924-935.	1.0	89
89	Regulation of Pancreatic Î ² -Cell Mass in Vivo. , 1994, 49, 91-104.		86
90	Differentiation and Expansion of Beta Cell Mass in Porcine Neonatal Pancreatic Cell Clusters Transplanted into Nude Mice. Cell Transplantation, 1999, 8, 673-689.	2.5	86

#	Article	IF	CITATIONS
91	Induction of Pancreatic Stem/Progenitor Cells into Insulin-Producing Cells by Adenoviral-Mediated Gene Transfer Technology. Cell Transplantation, 2006, 15, 929-938.	2.5	85
92	Rat islet cell aggregates are superior to islets for transplantation in microcapsules. Diabetologia, 2010, 53, 937-945.	6.3	85
93	Improved Vascularization of Planar Membrane Diffusion Devices following Continuous Infusion of Vascular Endothelial Growth Factor. Cell Transplantation, 2000, 9, 115-124.	2.5	79
94	Islet transplantation outcomes in mice are better with fresh islets and exendin-4 treatment. Diabetologia, 2005, 48, 2074-2079.	6.3	78
95	Perspective: Postnatal Pancreatic Cell Growth. Endocrinology, 2000, 141, 1926-1929.	2.8	78
96	Effects of diabetes and hypoxia on gene markers of angiogenesis (HGF, cMET, uPA and uPAR, TGF-α, TGF-Î2,) Tj E	тQ _q g 0 0	rgBT /Overloo
97	FUNCTION AND SURVIVAL OF MACROENCAPSULATED SYNGENEIC ISLETS TRANSPLANTED INTO STREPTOZOCIN-DIABETIC MICE1. Transplantation, 1998, 66, 21-28.	1.0	75
98	Mice with a Targeted Deletion of the Type 2 Deiodinase Are Insulin Resistant and Susceptible to Diet Induced Obesity. PLoS ONE, 2011, 6, e20832.	2.5	74
99	Gene Expression of Purified β-Cell Tissue Obtained from Human Pancreas with Laser Capture Microdissection. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 1046-1053.	3.6	73
100	Overexpression of Inducible Cyclic AMP Early Repressor Inhibits Transactivation of Genes and Cell Proliferation in Pancreatic β Cells. Molecular and Cellular Biology, 2004, 24, 2831-2841.	2.3	71
101	Islet cell growth and the growth factors involved. Trends in Endocrinology and Metabolism, 1994, 5, 60-64.	7.1	69
102	ISLETS IN ALGINATE MACROBEADS REVERSE DIABETES DESPITE MINIMAL ACUTE INSULIN SECRETORY RESPONSES1. Transplantation, 2001, 71, 203-211.	1.0	68
103	Adult mouse intrahepatic biliary epithelial cells induced in vitro to become insulin-producing cells. Journal of Endocrinology, 2009, 201, 37-47.	2.6	66
104	Photo-acceleration of protein release from endosome in the protein transduction system. FEBS Letters, 2004, 572, 221-226.	2.8	64
105	Preservation of β-cell function by targeting β-cell mass. Trends in Pharmacological Sciences, 2008, 29, 218-227.	8.7	64
106	Ductal Origin Hypothesis of Pancreatic Regeneration under Attack. Cell Metabolism, 2010, 11, 2-3.	16.2	64
107	Concise Review: Pancreas Regeneration: Recent Advances and Perspectives. Stem Cells Translational Medicine, 2012, 1, 150-159.	3.3	64
108	In Situ Electrochemical Oxygen Generation with an Immunoisolation Device. Annals of the New York Academy of Sciences, 1999, 875, 105-125.	3.8	63

#	Article	IF	CITATIONS
109	Induction of c-Myc Expression Suppresses Insulin Gene Transcription by Inhibiting NeuroD/BETA2-mediated Transcriptional Activation. Journal of Biological Chemistry, 2002, 277, 12998-13006.	3.4	63
110	REVERSAL OF HYPERGLYCEMIA IN MICE AFTER SUBCUTANEOUS TRANSPLANTATION OF MACROENCAPSULATED ISLETS1. Transplantation, 1999, 67, 665-671.	1.0	63
111	Residual β cell function and monogenic variants in long-duration type 1 diabetes patients. Journal of Clinical Investigation, 2019, 129, 3252-3263.	8.2	62
112	Islets in Type 2 Diabetes: In Honor of Dr. Robert C. Turner. Diabetes, 2008, 57, 2899-2904.	0.6	61
113	Morphological evidence for pancreatic polarity of beta-cell within islets of Langerhans. Diabetes, 1988, 37, 616-621.	0.6	61
114	Beta cell identity changes with mild hyperglycemia: Implications for function, growth, and vulnerability. Molecular Metabolism, 2020, 35, 100959.	6.5	60
115	Mechanism of PDX-1 protein transduction. Biochemical and Biophysical Research Communications, 2005, 332, 68-74.	2.1	59
116	Modification of adverse inflammation is required to cure new-onset type 1 diabetic hosts. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13074-13079.	7.1	59
117	Protein-tyrosine Phosphatase 1B Deficiency Reduces Insulin Resistance and the Diabetic Phenotype in Mice with Polygenic Insulin Resistance*. Journal of Biological Chemistry, 2007, 282, 23829-23840.	3.4	58
118	Single pancreatic beta cells co-express multiple islet hormone genes in mice. Diabetologia, 2010, 53, 128-138.	6.3	58
119	Quantitative Assessment of Islets of Langerhans Encapsulated in Alginate. Tissue Engineering - Part C: Methods, 2011, 17, 435-449.	2.1	58
120	Transplanted beta cell response to increased metabolic demand. Changes in beta cell replication and mass Journal of Clinical Investigation, 1994, 93, 1577-1582.	8.2	58
121	A dominant role for glucose in \hat{l}^2 cell compensation of insulin resistance. Journal of Clinical Investigation, 2007, 117, 81-83.	8.2	56
122	Changes in gene expression in beta cells after islet isolation and transplantation using laser-capture microdissection. Diabetologia, 2007, 50, 334-342.	6.3	56
123	Macrophage depletion improves survival of porcine neonatal pancreatic cell clusters contained in alginate macrocapsules transplanted into rats. Xenotransplantation, 2003, 10, 240-251.	2.8	55
124	Are there pancreatic progenitor cells from which new islets form after birth?. Nature Clinical Practice Endocrinology and Metabolism, 2006, 2, 240-241.	2.8	55
125	Involvement of Protein Kinase C β2 in c-mycInduction by High Glucose in Pancreatic β-Cells. Journal of Biological Chemistry, 2002, 277, 3680-3685.	3.4	54
126	In vivo multimodal imaging of transplanted pancreatic islets. Nature Protocols, 2006, 1, 429-435.	12.0	53

#	Article	IF	CITATIONS
127	Preferential reduction of β cells derived from Pax6–MafB pathway in MafB deficient mice. Developmental Biology, 2008, 314, 443-456.	2.0	53
128	Evidence for a Role of the Ubiquitin-Proteasome Pathway in Pancreatic Islets. Diabetes, 2006, 55, 1223-1231.	0.6	52
129	Dynamic development of the pancreas from birth to adulthood. Upsala Journal of Medical Sciences, 2016, 121, 155-158.	0.9	52
130	Normal Relationship of Â- and Non Â-Cells Not Needed for Successful Islet Transplantation. Diabetes, 2007, 56, 2312-2318.	0.6	50
131	Discordance of exocrine and endocrine growth after 90% pancreatectomy in rats. Diabetes, 1988, 37, 232-236.	0.6	50
132	PROLONGED XENOGRAFT SURVIVAL OF ISLETS INFECTED WITH SMALL DOSES OF ADENOVIRUS EXPRESSING CTLA4lg1. Transplantation, 1999, 67, 1607-1613.	1.0	49
133	Islet Neogenesis: A Possible Pathway for Beta-Cell Replenishment. Review of Diabetic Studies, 2012, 9, 407-416.	1.3	49
134	Limited B cell regeneration in a B cell deficient rat model: Studies with dexamethasone. Metabolism: Clinical and Experimental, 1981, 30, 914-918.	3.4	47
135	Implicating PARP and NAD+ depletion in type I diabetes. Nature Medicine, 1999, 5, 269-270.	30.7	47
136	Regenerating pancreatic β-cells: plasticity of adult pancreatic cells and the feasibility of in-vivo neogenesis. Current Opinion in Organ Transplantation, 2010, 15, 79-85.	1.6	47
137	Subpopulations of GFP-Marked Mouse Pancreatic β-Cells Differ in Size, Granularity, and Insulin Secretion. Endocrinology, 2012, 153, 5180-5187.	2.8	47
138	Reanalysis of study of pancreatic effects of incretin therapy: methodological deficiencies. Diabetes, Obesity and Metabolism, 2014, 16, 661-666.	4.4	47
139	Influence of diabetes on the loss of beta cell differentiation after islet transplantation in rats. Diabetologia, 2007, 50, 2117-2125.	6.3	45
140	Stem cell approaches for diabetes: towards beta cell replacement. Genome Medicine, 2011, 3, 61.	8.2	45
141	Making \hat{I}^2 Cells from Adult Cells Within the Pancreas. Current Diabetes Reports, 2013, 13, 695-703.	4.2	45
142	Islet mass and function in diabetes and transplantation. Diabetes, 1990, 39, 401-405.	0.6	44
143	The organization of the endocrine pancreas: A hypothetical unifying view of the phylogenetic differences. General and Comparative Endocrinology, 1979, 38, 28-37.	1.8	43
144	Establishment of a Diabetic Mouse Model with Progressive Diabetic Nephropathy. American Journal of Pathology, 2005, 167, 327-336.	3.8	42

#	Article	IF	CITATIONS
145	Identification of Markers for Newly Formed β-Cells in the Perinatal Period: A Time of Recognized β-Cell Immaturity. Journal of Histochemistry and Cytochemistry, 2010, 58, 369-376.	2.5	42
146	Reduced Ki67 Staining in the Postmortem State Calls Into Question Past Conclusions About the Lack of Turnover of Adult Human β-Cells. Diabetes, 2015, 64, 1698-1702.	0.6	40
147	Expression of the Intermediate Filament Vimentin in Proliferating Duct Cells as a Marker of Pancreatic Precursor Cells. Pancreas, 2004, 28, 121-128.	1.1	39
148	Expression of MafA in pancreatic progenitors is detrimental for pancreatic development. Developmental Biology, 2009, 333, 108-120.	2.0	39
149	MAFA and T3 Drive Maturation of Both Fetal Human Islets and Insulin-Producing Cells Differentiated From hESC. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 3651-3659.	3.6	38
150	Porcine Marginal Mass Islet Autografts Resist Metabolic Failure Over Time and Are Enhanced by Early Treatment with Liraglutide. Endocrinology, 2009, 150, 2145-2152.	2.8	36
151	Abnormal glucose regulation of insulin secretion in models of reduced B-cell mass. Diabetes, 1984, 33, 667-673.	0.6	36
152	Beneficial influence of glycemic control upon the growth and function of transplanted islets. Diabetes, 1994, 43, 1334-1339.	0.6	36
153	Transcription factor abnormalities as a cause of beta cell dysfunction in diabetes: a hypothesis. Acta Diabetologica, 1997, 34, 177-184.	2.5	35
154	Importance of hyperglycemia on the primary function of allogeneic islet transplants1. Transplantation, 2003, 76, 657-664.	1.0	35
155	Imaging Â-Cell Death With a Near-Infrared Probe. Diabetes, 2005, 54, 1780-1788.	0.6	35
156	NMR Spectroscopy in \hat{I}^2 Cell Engineering and Islet Transplantation. Annals of the New York Academy of Sciences, 2001, 944, 96-119.	3.8	35
157	Timing and expression pattern of carbonic anhydrase II in pancreas. Developmental Dynamics, 2006, 235, 1571-1577.	1.8	35
158	p38 MAPK Is a Major Regulator of MafA Protein Stability under Oxidative Stress. Molecular Endocrinology, 2009, 23, 1281-1290.	3.7	34
159	Pancreatic Duct Ligation After Almost Complete β-Cell Loss: Exocrine Regeneration but No Evidence of β-Cell Regeneration. Endocrinology, 2013, 154, 4493-4502.	2.8	34
160	Occurrence of Spontaneous Pancreatic Lesions in Normal and Diabetic Rats: A Potential Confounding Factor in the Nonclinical Assessment of GLP-1–Based Therapies. Diabetes, 2014, 63, 1303-1314.	0.6	33
161	Loss of Ncb5or Results in Impaired Fatty Acid Desaturation, Lipoatrophy, and Diabetes. Journal of Biological Chemistry, 2008, 283, 29285-29291.	3.4	31
162	Finally! A human pancreatic Î ² cell line. Journal of Clinical Investigation, 2011, 121, 3395-3397.	8.2	31

#	Article	IF	CITATIONS
163	Prior streptozotocin treatment does not inhibit pancreas regeneration after 90% pancreatectomy in rats. American Journal of Physiology - Endocrinology and Metabolism, 1999, 276, E822-E827.	3.5	30
164	Protective Unfolded Protein Response in Human Pancreatic Beta Cells Transplanted into Mice. PLoS ONE, 2010, 5, e11211.	2.5	29
165	Transplantation of islets transduced with CTLA4-Ig and TGFÎ ² using adenovirus and lentivirus vectors. Transplant Immunology, 2004, 13, 191-200.	1.2	28
166	Induced ICER IÎ ³ down-regulates cyclin A expression and cell proliferation in insulin-producing Î ² cells. Biochemical and Biophysical Research Communications, 2005, 329, 925-929.	2.1	28
167	Reprogramming Mouse Cells With a Pancreatic Duct Phenotype to Insulin-Producing β-Like Cells. Endocrinology, 2015, 156, 2029-2038.	2.8	28
168	Hyperglycaemia attenuates in vivo reprogramming of pancreatic exocrine cells to beta cells in mice. Diabetologia, 2016, 59, 522-532.	6.3	27
169	Heterogeneity of SOX9 and HNF1Î ² in Pancreatic Ducts Is Dynamic. Stem Cell Reports, 2018, 10, 725-738.	4.8	27
170	Unique Human and Mouse β-Cell Senescence-Associated Secretory Phenotype (SASP) Reveal Conserved Signaling Pathways and Heterogeneous Factors. Diabetes, 2021, 70, 1098-1116.	0.6	27
171	β-Cell Differentiation of Human Pancreatic Duct–Derived Cells After In Vitro Expansion. Cellular Reprogramming, 2014, 16, 456-466.	0.9	26
172	Birth and Death of Human β-Cells in Pancreases from Cadaver Donors, Autopsies, Surgical Specimens, and Islets Transplanted into Mice. Cell Transplantation, 2014, 23, 139-151.	2.5	26
173	Glucose utilization in islets of hyperglycemic rat models with impaired glucose-induced insulin secretion. Metabolism: Clinical and Experimental, 1987, 36, 335-337.	3.4	25
174	NeuroD and reaggregation induce β-cell specific gene expression in cultured hepatocytes. Diabetes/Metabolism Research and Reviews, 2007, 23, 239-249.	4.0	25
175	Differentiation of COPAS-sorted non-endocrine pancreatic cells into insulin-positive cells in the mouse. Diabetologia, 2009, 52, 645-652.	6.3	24
176	ENHANCED MATURATION OF PORCINE NEONATAL PANCREATIC CELL CLUSTERS WITH GROWTH FACTORS FAILS TO IMPROVE TRANSPLANTATION OUTCOME1. Transplantation, 2001, 71, 1154-1162.	1.0	23
177	Laser Capture Microdissection of Human Pancreatic β-Cells and RNA Preparation for Gene Expression Profiling. Methods in Molecular Biology, 2009, 560, 87-98.	0.9	23
178	PDX1 in Ducts Is Not Required for Postnatal Formation of Â-Cells but Is Necessary for Their Subsequent Maturation. Diabetes, 2013, 62, 3459-3468.	0.6	21
179	TNF-Like Weak Inducer of Apoptosis (TWEAK) Promotes Beta Cell Neogenesis from Pancreatic Ductal Epithelium in Adult Mice. PLoS ONE, 2013, 8, e72132.	2.5	21
180	GABA Signaling Stimulates Î ² Cell Regeneration in Diabetic Mice. Cell, 2017, 168, 7-9.	28.9	21

#	Article	IF	CITATIONS
181	PORCINE NEONATAL PANCREATIC CELL CLUSTERS IN TISSUE CULTURE: BENEFITS OF SERUM AND IMMOBILIZATION IN ALGINATE HYDROGEL1. Transplantation, 2001, 71, 1518-1526.	1.0	20
182	Accurate control of oxygen level in cells during culture on silicone rubber membranes with application to stem cell differentiation. Biotechnology Progress, 2010, 26, 805-818.	2.6	20
183	Evidence of stress in $\langle b \rangle \hat{l}^2 \langle b \rangle$ cells obtained with laser capture microdissection from pancreases of brain dead donors. Islets, 2017, 9, 19-29.	1.8	20
184	β-cell precursors—a work in progress. Nature Biotechnology, 2004, 22, 1095-1096.	17.5	19
185	Abnormal islet and adipocyte function in young B-cell-deficient rats with near-normoglycemia. Diabetes, 1984, 33, 170-175.	0.6	19
186	Function, mass, and replication of porcine and rat islets transplanted into diabetic nude mice. Diabetes, 1995, 44, 104-111.	0.6	19
187	New islets from old. Nature Medicine, 2000, 6, 250-251.	30.7	18
188	Developmental pathways during in vitro progression of human islet neogenesis. Differentiation, 2009, 77, 135-147.	1.9	18
189	Pancreatic β-cell heterogeneity revisited. Nature, 2016, 535, 365-366.	27.8	18
190	Sleeping Islets and the Relationship Between \hat{I}^2 -Cell Mass and Function. Diabetes, 2011, 60, 2018-2019.	0.6	17
191	Differentiation of pancreatic endocrine progenitors reversibly blocked by premature induction of MafA. Developmental Biology, 2014, 385, 2-12.	2.0	17
192	Abnormal insulin secretion in a streptozocin model of diabetes. Effects of insulin treatment. Diabetes, 1985, 34, 660-666.	0.6	17
193	Characterization of Islet Preparations. , 2007, , 85-133.		16
194	Enumeration of islets by nuclei counting and light microscopic analysis. Laboratory Investigation, 2010, 90, 1676-1686.	3.7	16
195	The β-cell glucose toxicity hypothesis: Attractive but difficult to prove. Metabolism: Clinical and Experimental, 2021, 124, 154870.	3.4	16
196	T3 Induces Both Markers of Maturation and Aging in Pancreatic Î ² -Cells. Diabetes, 2018, 67, 1322-1331.	0.6	14
197	V-Maf Musculoaponeurotic Fibrosarcoma Oncogene Homolog A Synthetic Modified mRNA Drives Reprogramming of Human Pancreatic Duct-Derived Cells Into Insulin-Secreting Cells. Stem Cells Translational Medicine, 2016, 5, 1525-1537.	3.3	13
198	Externalized phosphatidylinositides on apoptotic cells are eat-me signals recognized by CD14. Cell Death and Differentiation, 2022, 29, 1423-1432.	11.2	12

#	Article	IF	CITATIONS
199	Development and retroviral transduction of porcine neonatal pancreatic islet cells in monolayer culture. Development Growth and Differentiation, 2003, 45, 39-50.	1.5	11
200	Stem Cells in Diabetes: What Has Been Achieved. Hormone Research in Paediatrics, 2003, 60, 10-10.	1.8	11
201	Endogenous beta-galactosidase expression in murine pancreatic islets. Diabetologia, 2006, 49, 1120-1122.	6.3	11
202	Bone marrow or foetal liver cells fail to induce islet regeneration in diabetic Akita mice. Diabetes/Metabolism Research and Reviews, 2008, 24, 585-590.	4.0	11
203	Dreams for Type 1 Diabetes: Shutting Off Autoimmunity and Stimulating Î ² -Cell Regeneration. Endocrinology, 2010, 151, 2971-2973.	2.8	11
204	Direct Reprogramming for Pancreatic Beta-Cells Using Key Developmental Genes. Current Pathobiology Reports, 2015, 3, 57-65.	3.4	11
205	Pancreatic Somatostatin. Advances in Experimental Medicine and Biology, 1985, 188, 403-423.	1.6	11
206	Pancreatic islets of variable size - insulin secretion and glucose utilization. Life Sciences, 1985, 37, 1059-1065.	4.3	10
207	Sustained NF-κB Activation and Inhibition in β-Cells Have Minimal Effects on Function and Islet Transplant Outcomes. PLoS ONE, 2013, 8, e77452.	2.5	10
208	Myths about the structure and function of porcine islets. Xenotransplantation, 1995, 2, 207-212.	2.8	9
209	How can we get more beta cells?. Current Diabetes Reports, 2006, 6, 96-101.	4.2	9
210	Reduced glucose-induced first-phase insulin release is a danger signal that predicts diabetes. Journal of Clinical Investigation, 2021, 131, .	8.2	9
211	Loss of glucose-induced insulin secretion and GLUT2 expression in transplanted beta-cells. Diabetes, 1995, 44, 75-79.	0.6	9
212	Generation of Pancreatic Ductal Organoids and Wholeâ€Mount Immunostaining of Intact Organoids. Current Protocols in Cell Biology, 2019, 83, e82.	2.3	8
213	Beta Cell Replication and Mass in Islet Transplantation. Advances in Experimental Medicine and Biology, 1997, 426, 421-427.	1.6	8
214	Trimeprazine increases IRS2 in human islets and promotes pancreatic \hat{l}^2 cell growth and function in mice. JCl Insight, 2016, 1, .	5.0	8
215	Lack of Evidence for Recipient Precursor Cells Replenishing β-Cells in Transplanted Islets. Cell Transplantation, 2010, 19, 1563-1572.	2.5	7
216	Glucose Driven Changes in Beta Cell Identity Are Important for Function and Possibly Autoimmune Vulnerability during the Progression of Type 1 Diabetes. Frontiers in Genetics, 2017, 8, 2.	2.3	7

#	Article	IF	CITATIONS
217	Elevated proinsulin biosynthesis in vitro from a rat model of non-insulin-dependent diabetes mellitus. Diabetes, 1983, 32, 277-283.	0.6	7
218	Impaired insulin biosynthetic capacity in a rat model for non-insulin-dependent diabetes. Studies with dexamethasone. Diabetes, 1985, 34, 235-240.	0.6	7
219	Regulation of vascular permeability in cell culture. Diabetes, 1987, 36, 1460-1467.	0.6	7
220	New clues to bariatric surgery's benefits. Nature Medicine, 2012, 18, 860-861.	30.7	6
221	Production of insulin antibodies by mice rejecting insulin transfected cells. Journal of Autoimmunity, 1989, 2, 219-227.	6.5	4
222	OVO homologue-like 1 (Ovol1) transcription factor: a novel target of neurogenin-3 in rodent pancreas. Diabetologia, 2010, 53, 115-122.	6.3	4
223	β-cell secretory dysfunction: a key cause of type 2 diabetes – Authors' reply. Lancet Diabetes and Endocrinology,the, 2020, 8, 370-371.	11.4	4
224	Transplantation of porcine islets in nude mice: Implications for islet replacement therapy in humans. Xenotransplantation, 1995, 2, 201-206.	2.8	3
225	Reply to comment on: Patti ME, McMahon G, Mun EC et al. (2005) Severe hypoglycaemia post-gastric bypass requiring partial pancreatectomy: evidence for inappropriate insulin secretion and pancreatic islet hyperplasia. Diabetologia 48:2236–2240. Diabetologia, 2006, 49, 609-610.	6.3	3
226	Islet number in an immunobarrier device required to treat diabetes in mice. Transplantation Proceedings, 1997, 29, 2142-2143.	0.6	2
227	Insulin-Producing Cells Derived from Embryonic Stem Cells: A Potential Treatment for Diabetes. , 2004, , 723-729.		2
228	Analysis: Assessment of Human Islet Preparations to Be Used for Islet Expansion, Survival, or Transplant. Diabetes Technology and Therapeutics, 2004, 6, 493-494.	4.4	2
229	Reply to 'In vivo imaging of islet transplantation'. Nature Medicine, 2007, 13, 773-773.	30.7	2
230	Pancreatic Regeneration After Partial Pancreatectomy in Rodents. Pancreatic Islet Biology, 2016, , 111-123.	0.3	2
231	The islets of Langerhans continue to reveal their secrets. Nature Reviews Endocrinology, 2020, 16, 73-74.	9.6	2
232	Mechanisms of Postnatal \hat{l}^2 -Cell Mass Regulation. Growth Hormone, 2001, , 289-297.	0.2	2
233	New evidence for adult beta cell neogenesis. Cell Stem Cell, 2021, 28, 1889-1890.	11.1	2
234	Subcutaneous Transplantation of Rat Islets Into Diabetic Nude. Transplantation Proceedings, 1998, 30, 479-480.	0.6	1

#	Article	IF	CITATIONS
235	Estimating Number and Volume of Islets Transplanted Within a Planar Immunobarrier Diffusion Chamber. , 1999, 18, 497-506.		1
236	Strategies for β-cell replacement in diabetes: obtaining and protecting islet tissue. Current Opinion in Endocrinology, Diabetes and Obesity, 2001, 8, 213-218.	0.6	1
237	Response to Comment on: Keenan et al. (2010) Residual Insulin Production and Pancreatic Â-Cell Turnover After 50 Years of Diabetes: Joslin Medalist Study. Diabetes 2010;59:2846-2853. Diabetes, 2010, 59, e27-e27.	0.6	1
238	Ductal Origin Hypothesis of Pancreatic Regeneration under Attack. Cell Metabolism, 2010, 11, 172.	16.2	1
239	Regulation of Insulin Secretion and Islet Cell Function. , 2012, , 1-17.		1
240	Compensatory Response by Late Embryonic Tubular Epithelium to the Reduction in Pancreatic Progenitors. PLoS ONE, 2015, 10, e0142286.	2.5	1
241	The cholecystokinin-A receptor mediates inhibition of food intake yet is not essential for the maintenance of body weight. Journal of Clinical Investigation, 1999, 103, 759-759.	8.2	1
242	Insulin-producing Cells Derived from Stem Cells. , 2009, , 513-521.		1
243	Nerve Growth Factor and Pancreatic APUD Cells. Endocrine Research Communications, 1980, 7, 71-75.	0.5	0
244	ENHANCED OXYGEN SUPPLY TO TISSUE IN PLANAR IMMUNOBARRIER DEVICES BY IN SITU ELECTROCHEMICAL OXYGEN GENERATION. ASAIO Journal, 1999, 45, 130.	1.6	0
245	Adult Progenitor Cells as a Potential Treatment for Diabetes. , 2004, , 731-737.		0
246	BS1-A Islet neogenesis. Diabetes Research and Clinical Practice, 2008, 79, S3-S4.	2.8	0
247	Adult Progenitor Cells as a Potential Treatment for Diabetes. , 2013, , 827-834.		0
248	Adult Progenitor Cells as a Potential Treatment for Diabetes. , 2014, , 491-500.		0
249	A Special Thanks to the Reviewers ofDiabetes. Diabetes, 2016, 65, 1451-1451.	0.6	0
250	Generation of Islets from Pancreatic Progenitor Cells. , 2006, , 309-319.		0
251	What Does It Take to Make a Beta Cell?. , 2010, , 137-152.		0
252	Generation of Beta Cells from Pancreatic Duct Cells and/or Stem Cells. , 2010, , 167-182.		0

#	Article	IF	CITATIONS
253	Dexamethasone as a Regulator of \hat{I}^2 -Cell Maturation. , 2011, , P2-501-P2-501.		Ο
254	Plasma Prolactin Levels May Affect the Development of Postnatal Rat Islets. , 2011, , P2-491-P2-491.		0
255	Experimental islet transplantation. , 1996, , 145-152.		Ο
256	COMPARISON OF LOCAL VS. SYSTEMIC CTLA4lg IN THE PROLONGATION OF ISLET XENOGRAFT SURVIVAL. Transplantation, 1998, 66, S15.	1.0	0
257	SUN-LB059 A Rare Case Of Hypoglycemia Secondary To Proinsulin-Intermediate Secreting Tumor. Journal of the Endocrine Society, 2019, 3, .	0.2	0
258	Pancreatic beta-cell ageing: Novel mechanisms and consequences in the management of diabetes. Endocrine Abstracts, 0, , .	0.0	0