Kenneth N Raymond

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/942232/publications.pdf

Version: 2024-02-01

320 papers

34,789 citations

94 h-index 171 g-index

343 all docs 343 docs citations

times ranked

343

20727 citing authors

#	Article	IF	CITATIONS
1	Source of Rate Acceleration for Carbocation Cyclization in Biomimetic Supramolecular Cages. Journal of the American Chemical Society, 2022, 144, 11413-11424.	6.6	15
2	Impact of Host Flexibility on Selectivity in a Supramolecular Host-Catalyzed Enantioselective aza-Darzens Reaction. Journal of the American Chemical Society, 2022, 144, 11425-11433.	6.6	35
3	Chemoselective and Site-Selective Reductions Catalyzed by a Supramolecular Host and a Pyridine–Borane Cofactor. Journal of the American Chemical Society, 2021, 143, 2108-2114.	6.6	28
4	A Nanovessel-Catalyzed Three-Component Aza-Darzens Reaction. Journal of the American Chemical Society, 2020, 142, 733-737.	6.6	39
5	Advances in supramolecular host-mediated reactivity. Nature Catalysis, 2020, 3, 969-984.	16.1	216
6	Heterogeneous Supramolecular Catalysis through Immobilization of Anionic M ₄ L ₆ Assemblies on Cationic Polymers. Journal of the American Chemical Society, 2020, 142, 19327-19338.	6.6	27
7	An isolated water droplet in the aqueous solution of a supramolecular tetrahedral cage. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32954-32961.	3.3	24
8	A Supramolecular Strategy for Selective Catalytic Hydrogenation Independent of Remote Chain Length. Journal of the American Chemical Society, 2019, 141, 11806-11810.	6.6	66
9	Supramolecular Host-Selective Activation of Iodoarenes by Encapsulated Organometallics. Journal of the American Chemical Society, 2019, 141, 1701-1706.	6.6	43
10	Measuring ion-pairing and hydration in variable charge supramolecular cages with microwave microfluidics. Communications Chemistry, 2019, 2, .	2.0	12
11	Energy Transfer from Antenna Ligand to Europium(III) Followed Using Ultrafast Optical and X-ray Spectroscopy. Journal of the American Chemical Society, 2019, 141, 11071-11081.	6.6	63
12	Parsing the functional specificity of Siderocalin/Lipocalin 2/NGAL for siderophores and related small-molecule ligands. Journal of Structural Biology: X, 2019, 2, 100008.	0.7	18
13	Self-Assembled Tetrahedral Hosts as Supramolecular Catalysts. Accounts of Chemical Research, 2018, 51, 2447-2455.	7.6	292
14	Deconvoluting the Role of Charge in a Supramolecular Catalyst. Journal of the American Chemical Society, 2018, 140, 6591-6595.	6.6	81
15	Different and Often Opposing Forces Drive the Encapsulation and Multiple Exterior Binding of Charged Guests to a M ₄ L ₆ Supramolecular Vessel in Water. Chemistry - A European Journal, 2017, 23, 16813-16818.	1.7	18
16	Conformational Selection as the Mechanism of Guest Binding in a Flexible Supramolecular Host. Journal of the American Chemical Society, 2017, 139, 8013-8021.	6.6	93
17	Synthesis and Chemical Reactivity of a 6â€Meâ€3,2â€Hydroxypyridinone Dithiazolide with Primary Amines: A route to New Hexadentate Chelators for Hard Metal(III) lons. Journal of Heterocyclic Chemistry, 2016, 53, 1065-1073.	1.4	2
18	Scope and Mechanism of Cooperativity at the Intersection of Organometallic and Supramolecular Catalysis. Journal of the American Chemical Society, 2016, 138, 9682-9693.	6.6	86

#	Article	IF	CITATIONS
19	A Macrocyclic Chelator That Selectively Binds Ln ⁴⁺ over Ln ³⁺ by a Factor of 10 ²⁹ . Inorganic Chemistry, 2016, 55, 9989-10002.	1.9	29
20	Untangling the Diverse Interior and Multiple Exterior Guest Interactions of a Supramolecular Host by the Simultaneous Analysis of Complementary Observables. Analytical Chemistry, 2016, 88, 6923-6929.	3.2	14
21	Siderophore inspired tetra- and octadentate antenna ligands for luminescent Eu(III) and Tb(III) complexes. Journal of Inorganic Biochemistry, 2016, 162, 263-273.	1.5	16
22	Effects of Ligand Geometry on the Photophysical Properties of Photoluminescent Eu(III) and Sm(III) 1-Hydroxypyridin-2-one Complexes in Aqueous Solution. Inorganic Chemistry, 2016, 55, 114-124.	1.9	26
23	Improved scope and diastereoselectivity of C–H activation in an expanded supramolecular host. Supramolecular Chemistry, 2016, 28, 188-191.	1.5	1
24	A supramolecular microenvironment strategy for transition metal catalysis. Science, 2015, 350, 1235-1238.	6.0	401
25	New Insights into Structure and Luminescence of Eu ^{III} and Sm ^{III} Complexes of the 3,4,3-LI(1,2-HOPO) Ligand. Journal of the American Chemical Society, 2015, 137, 2816-2819.	6.6	64
26	Optimization of the Sensitization Process and Stability of Octadentate Eu(III) 1,2-HOPO Complexes. Inorganic Chemistry, 2015, 54, 6807-6820.	1.9	15
27	Enabling New Modes of Reactivity via Constrictive Binding in a Supramolecular-Assembly-Catalyzed Aza-Prins Cyclization. Journal of the American Chemical Society, 2015, 137, 9202-9205.	6.6	111
28	Catechol Siderophore Transport by Vibrio cholerae. Journal of Bacteriology, 2015, 197, 2840-2849.	1.0	50
29	Supramolecular Catalysis in Metal–Ligand Cluster Hosts. Chemical Reviews, 2015, 115, 3012-3035.	23.0	1,021
30	Supramolecular Ga ₄ L ₆ ^{12â€"} Cage Photosensitizes 1,3-Rearrangement of Encapsulated Guest via Photoinduced Electron Transfer. Journal of the American Chemical Society, 2015, 137, 10128-10131.	6.6	92
31	Coordination Chemistry of Microbial Iron Transport. Accounts of Chemical Research, 2015, 48, 2496-2505.	7.6	126
32	Protein-like proton exchange in a synthetic host cavity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15303-15307.	3.3	16
33	The effect of host structure on the selectivity and mechanism of supramolecular catalysis of Prins cyclizations. Chemical Science, 2015, 6, 1383-1393.	3.7	68
34	Characterization, HPLC method development and impurity identification for 3,4,3-LI(1,2-HOPO), a potent actinide chelator for radionuclide decorporation. Journal of Pharmaceutical and Biomedical Analysis, 2015, 102, 443-449.	1.4	5
35	Biochemical and Physical Properties of Siderophores. , 2014, , 1-17.		52
36	Origins of Large Rate Enhancements in the Nazarov Cyclization Catalyzed by Supramolecular Encapsulation. Chemistry - A European Journal, 2014, 20, 3966-3973.	1.7	47

#	Article	IF	CITATIONS
37	Nucleophilic Substitution Catalyzed by a Supramolecular Cavity Proceeds with Retention of Absolute Stereochemistry. Journal of the American Chemical Society, 2014, 136, 14409-14412.	6.6	114
38	Direct Observation of 4f Intrashell Excitation in Luminescent Eu Complexes by Time-Resolved X-ray Absorption Near Edge Spectroscopy. Journal of the American Chemical Society, 2014, 136, 4186-4191.	6.6	33
39	Direct Evidence of Iron Uptake by the Gram-Positive Siderophore-Shuttle Mechanism without Iron Reduction. ACS Chemical Biology, 2014, 9, 2092-2100.	1.6	30
40	Chiral Amide Directed Assembly of a Diastereo- and Enantiopure Supramolecular Host and its Application to Enantioselective Catalysis of Neutral Substrates. Journal of the American Chemical Society, 2013, 135, 18802-18805.	6.6	193
41	Campylobacter jejuni ferric–enterobactin receptor CfrA is TonB3 dependent and mediates iron acquisition from structurally different catechol siderophores. Metallomics, 2013, 5, 988.	1.0	32
42	Solvent and Pressure Effects on the Motions of Encapsulated Guests: Tuning the Flexibility of a Supramolecular Host. Journal of the American Chemical Society, 2013, 135, 4299-4306.	6.6	44
43	Siderocalins: Siderophore binding proteins evolved for primary pathogen host defense. Current Opinion in Chemical Biology, 2013, 17, 150-157.	2.8	55
44	A supramolecular approach to combining enzymatic and transition metal catalysis. Nature Chemistry, 2013, 5, 100-103.	6.6	312
45	Porphyrin-Substituted H-NOX Proteins as High-Relaxivity MRI Contrast Agents. Inorganic Chemistry, 2013, 52, 2277-2279.	1.9	38
46	<i>Bacillus cereus</i> iron uptake protein fishes out an unstable ferric citrate trimer. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16829-16834.	3.3	30
47	Selective Monoterpene-like Cyclization Reactions Achieved by Water Exclusion from Reactive Intermediates in a Supramolecular Catalyst. Journal of the American Chemical Society, 2012, 134, 17873-17876.	6.6	144
48	Equilibrium Isotope Effects on Noncovalent Interactions in a Supramolecular Host–Guest System. Journal of the American Chemical Society, 2012, 134, 2057-2066.	6.6	42
49	Analysis of Lanthanide Complex Dendrimer Conjugates for Bimodal NIR and MRI Imaging. Macromolecules, 2012, 45, 8982-8990.	2.2	36
50	Silica Microparticles as a Solid Support for Gadolinium Phosphonate Magnetic Resonance Imaging Contrast Agents. Journal of the American Chemical Society, 2012, 134, 8046-8049.	6.6	45
51	Circularly Polarized Luminescence of Curium: A New Characterization of the 5f Actinide Complexes. Journal of the American Chemical Society, 2012, 134, 15545-15549.	6.6	47
52	Conjugation to Biocompatible Dendrimers Increases Lanthanide <i>T</i> ₂ Relaxivity of Hydroxypyridinone Complexes for Magnetic Resonance Imaging. European Journal of Inorganic Chemistry, 2012, 2012, 2108-2114.	1.0	28
53	Improving <i>T</i> ₁ and <i>T</i> ₂ magnetic resonance imaging contrast agents through the conjugation of an esteramide dendrimer to highâ€waterâ€coordination Gd(III) hydroxypyridinone complexes. Contrast Media and Molecular Imaging, 2012, 7, 95-99.	0.4	45
54	A Single Sensitizer for the Excitation of Visible and NIR Lanthanide Emitters in Water with High Quantum Yields. Angewandte Chemie - International Edition, 2012, 51, 2371-2374.	7.2	84

#	Article	IF	CITATIONS
55	Siderocalin/Lcn2/NGAL/24p3 Does Not Drive Apoptosis Through Gentisic Acid Mediated Iron Withdrawal in Hematopoietic Cell Lines. PLoS ONE, 2012, 7, e43696.	1.1	45
56	3,4,3-LI(1,2-HOPO): In vitro formation of highly stable lanthanide complexes translates into efficacious in vivo europium decorporation. Dalton Transactions, 2011, 40, 8340.	1.6	58
57	Hydroalkoxylation Catalyzed by a Gold(I) Complex Encapsulated in a Supramolecular Host. Journal of the American Chemical Society, 2011, 133, 7358-7360.	6.6	204
58	Conjugation Effects of Various Linkers on Gd(III) MRI Contrast Agents with Dendrimers: Optimizing the Hydroxypyridinonate (HOPO) Ligands with Nontoxic, Degradable Esteramide (EA) Dendrimers for High Relaxivity. Journal of the American Chemical Society, 2011, 133, 2390-2393.	6.6	90
59	Immune Interference in <i>Mycobacterium tuberculosis</i> Intracellular Iron Acquisition through Siderocalin Recognition of Carboxymycobactins. ACS Chemical Biology, 2011, 6, 1327-1331.	1.6	27
60	Hexadentate Terephthalamide(bis-hydroxypyridinone) Ligands for Uranyl Chelation: Structural and Thermodynamic Consequences of Ligand Variation. Journal of the American Chemical Society, 2011, 133, 7942-7956.	6.6	41
61	High-Turnover Supramolecular Catalysis by a Protected Ruthenium(II) Complex in Aqueous Solution. Journal of the American Chemical Society, 2011, 133, 11964-11966.	6.6	107
62	¹ H NMR Chemical Shift Calculations as a Probe of Supramolecular Host–Guest Geometry. Journal of the American Chemical Society, 2011, 133, 11205-11212.	6.6	37
63	Uranyl sequestration: synthesis and structural characterization of uranyl complexes with a tetradentate methylterephthalamide ligand. Chemical Communications, 2011, 47, 6392.	2.2	17
64	Multidentate Terephthalamidate and Hydroxypyridonate Ligands: Towards New Orally Active Chelators. Hemoglobin, 2011, 35, 276-290.	0.4	18
65	Multivalent, High-Relaxivity MRI Contrast Agents Using Rigid Cysteine-Reactive Gadolinium Complexes. Journal of the American Chemical Society, 2011, 133, 14704-14709.	6.6	115
66	Octadentate Cages of Tb(III) 2-Hydroxyisophthalamides: A New Standard for Luminescent Lanthanide Labels. Journal of the American Chemical Society, 2011, 133, 19900-19910.	6.6	198
67	Inner and Outer Beauty. Topics in Current Chemistry, 2011, 323, 1-18.	4.0	7
68	Galline Ex-FABP Is an Antibacterial Siderocalin and a Lysophosphatidic Acid Sensor Functioning through Dual Ligand Specificities. Structure, 2011, 19, 1796-1806.	1.6	29
69	Assembly of Nearâ€Infrared Luminescent Lanthanide Host(Host–Guest) Complexes With a Metallacrown Sandwich Motif. Angewandte Chemie - International Edition, 2011, 50, 9660-9664.	7.2	161
70	Enzymeâ€like Control of Carbocation Deprotonation Regioselectivity in Supramolecular Catalysis of the Nazarov Cyclization. Angewandte Chemie - International Edition, 2011, 50, 10570-10573.	7.2	82
71	The Influence of Linker Geometry in Bis(3â€hydroxyâ€ <i>N</i> à€methylâ€pyridinâ€2â€one) Ligands on Solution Phase Uranyl Affinity. Chemistry - A European Journal, 2011, 17, 1818-1827.	1.7	22
72	BIOMIMETIC ACTINIDE CHELATORS: AN UPDATE ON THE PRECLINICAL DEVELOPMENT OF THE ORALLY ACTIVE HYDROXYPYRIDONATE DECORPORATION AGENTS 3,4,3-LI(1,2-HOPO) AND 5-LIO(ME-3,2-HOPO). Health Physics, 2010, 99, 401-407.	0.3	98

#	Article	IF	CITATIONS
73	1-Methyl-3-hydroxy-pyridin-2-one Complexes of Near Infra-Red Emitting Lanthanides: Efficient Sensitization of Yb(III) and Nd(III) in Aqueous Solution. Inorganic Chemistry, 2010, 49, 4156-4166.	1.9	37
74	Strong Circularly Polarized Luminescence from Highly Emissive Terbium Complexes in Aqueous Solution. European Journal of Inorganic Chemistry, 2010, 2010, 3343-3347.	1.0	38
75	Does Size Really Matter? The Steric Isotope Effect in a Supramolecular Host–Guest Exchange Reaction. Angewandte Chemie - International Edition, 2010, 49, 3635-3637.	7.2	61
76	Inside Cover: Does Size Really Matter? The Steric Isotope Effect in a Supramolecular Host-Guest Exchange Reaction (Angew. Chem. Int. Ed. 21/2010). Angewandte Chemie - International Edition, 2010, 49, 3546-3546.	7.2	0
77	Iron traffics in circulation bound to a siderocalin (Ngal)–catechol complex. Nature Chemical Biology, 2010, 6, 602-609.	3.9	270
78	A ferrocene-based catecholamide ligand: the consequences of ligand swivel for directed supramolecular self-assembly. Journal of Coordination Chemistry, 2010, 63, 2779-2789.	0.8	14
79	Encapsulated Guestâ^'Host Dynamics: Guest Rotational Barriers and Tumbling as a Probe of Host Interior Cavity Space. Journal of the American Chemical Society, 2010, 132, 16256-16264.	6.6	46
80	Enzymelike Catalysis of the Nazarov Cyclization by Supramolecular Encapsulation. Journal of the American Chemical Society, 2010, 132, 6938-6940.	6.6	308
81	External and Internal Guest Binding of a Highly Charged Supramolecular Host in Water: Deconvoluting the Very Different Thermodynamics. Journal of the American Chemical Society, 2010, 132, 1005-1009.	6.6	87
82	Eu(III) Complexes of Functionalized Octadentate 1-Hydroxypyridin-2-ones: Stability, Bioconjugation, and Luminescence Resonance Energy Transfer Studies. Inorganic Chemistry, 2010, 49, 9928-9939.	1.9	22
83	Fe L-Edge X-ray Absorption Spectroscopy Determination of Differential Orbital Covalency of Siderophore Model Compounds: Electronic Structure Contributions to High Stability Constants. Journal of the American Chemical Society, 2010, 132, 4006-4015.	6.6	68
84	Influence of Linker Geometry on Uranyl Complexation by Rigidly Linked Bis(3-hydroxy- <i>N</i> -methyl-pyridin-2-one). Inorganic Chemistry, 2010, 49, 6755-6765.	1.9	25
85	Eulll Complexes of Octadentate 1-Hydroxy-2-pyridinones: Stability and Improved Photophysical Performance. Australian Journal of Chemistry, 2009, 62, 1300.	0.5	6
86	Characterization of a <i>Bacillus subtilis</i> transporter for petrobactin, an anthrax stealth siderophore. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21854-21859.	3.3	80
87	Encapsulation and characterization of proton-bound amine homodimers in a water-soluble, self-assembled supramolecular host. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10438-10443.	3.3	56
88	A [Cyclentetrakis(methylene)]tetrakis[2â€hydroxybenzamide] Ligand That Complexes and Sensitizes Lanthanide(III) Ions. Helvetica Chimica Acta, 2009, 92, 2439-2460.	1.0	12
89	Effect of a mesityleneâ€based ligand cap on the relaxometric properties of Gd(III) hydroxypyridonate MRI contrast agents. Contrast Media and Molecular Imaging, 2009, 4, 220-229.	0.4	13
90	Phosphorus caged. Nature, 2009, 460, 585-586.	13.7	19

#	Article	IF	Citations
91	Designing the Ideal Uranyl Ligand: a Sterically Induced Speciation Change in Complexes with Thiophene-Bridged Bis(3-hydroxy-N-methylpyridin-2-one). Inorganic Chemistry, 2009, 48, 11489-11491.	1.9	23
92	Aryl Bridged 1-Hydroxypyridin-2-one: Effect of the Bridge on the Eu(III) Sensitization Process. Inorganic Chemistry, 2009, 48, 9316-9324.	1.9	20
93	Enantioselective Catalysis of the Aza-Cope Rearrangement by a Chiral Supramolecular Assembly. Journal of the American Chemical Society, 2009, 131, 17530-17531.	6.6	215
94	Using the Antenna Effect as a Spectroscopic Tool: Photophysics and Solution Thermodynamics of the Model Luminescent Hydroxypyridonate Complex [Eu ^{III} (3,4,3-LI(1,2-HOPO))] ^{â°°} . Inorganic Chemistry, 2009, 48, 10868-10870.	1.9	65
95	Proton-Mediated Chemistry and Catalysis in a Self-Assembled Supramolecular Host. Accounts of Chemical Research, 2009, 42, 1650-1659.	7.6	555
96	Enzymatic Hydrolysis of Trilactone Siderophores: Where Chiral Recognition Occurs in Enterobactin and Bacillibactin Iron Transport. Journal of the American Chemical Society, 2009, 131, 12682-12692.	6.6	84
97	1,2-Hydroxypyridonate/Terephthalamide Complexes of Gadolinium(III): Synthesis, Stability, Relaxivity, and Water Exchange Properties. Inorganic Chemistry, 2009, 48, 277-286.	1.9	40
98	Structural Consequences of Anionic Hostâ^'Cationic Guest Interactions in a Supramolecular Assembly. Inorganic Chemistry, 2009, 48, 111-120.	1.9	65
99	The Acid Hydrolysis Mechanism of Acetals Catalyzed by a Supramolecular Assembly in Basic Solution. Journal of Organic Chemistry, 2009, 74, 58-63.	1.7	61
100	Predicting Efficient Antenna Ligands for Tb(III) Emission. Inorganic Chemistry, 2009, 48, 687-698.	1.9	95
101	Gdâ^'Hydroxypyridinone (HOPO)-Based High-Relaxivity Magnetic Resonance Imaging (MRI) Contrast Agents. Accounts of Chemical Research, 2009, 42, 938-947.	7.6	230
102	From Antenna to Assay: Lessons Learned in Lanthanide Luminescence. Accounts of Chemical Research, 2009, 42, 542-552.	7.6	945
103	Siderophore-Mediated Iron Acquisition Systems in <i>Bacillus cereus</i> : Identification of Receptors for Anthrax Virulence-Associated Petrobactin [,] . Biochemistry, 2009, 48, 3645-3657.	1.2	89
104	Circularly Polarized Luminescence in Enantiopure Europium and Terbium Complexes with Modular, All-Oxygen Donor Ligands. Inorganic Chemistry, 2009, 48, 8469-8479.	1.9	43
105	Terephthalamide-containing ligands: fast removal of iron from transferrin. Journal of Biological Inorganic Chemistry, 2008, 13, 229-240.	1.1	18
106	Surprising Coordination Geometry Differences in Ce ^{IV} ―and Pu ^{IV} â€Maltol Complexes. European Journal of Inorganic Chemistry, 2008, 2008, 2143-2147.	1.0	28
107	Efficient Route to Highly Waterâ€Soluble Aromatic Cyclic Hydroxamic Acid Ligands. European Journal of Organic Chemistry, 2008, 2008, 2697-2700.	1.2	4
108	Highâ€Relaxivity MRI Contrast Agents: Where Coordination Chemistry Meets Medical Imaging. Angewandte Chemie - International Edition, 2008, 47, 8568-8580.	7.2	415

#	Article	IF	Citations
109	Design and Formation of a Large Tetrahedral Cluster Using 1,1′â€Binaphthyl Ligands. Angewandte Chemie - International Edition, 2008, 47, 6062-6064.	7.2	65
110	3â€Hydroxypyridinâ€2â€one Complexes of Nearâ€Infrared (NIR) Emitting Lanthanides: Sensitization of Holmium(III) and Praseodymium(III) in Aqueous Solution. Angewandte Chemie - International Edition, 2008, 47, 9500-9503.	7.2	75
111	Simultaneously bound guests and chiral recognition: a chiral self-assembled supramolecular host encapsulates hydrophobic guests. Tetrahedron, 2008, 64, 8362-8367.	1.0	42
112	Enthalpyâ^'Entropy Compensation Reveals Solvent Reorganization as a Driving Force for Supramolecular Encapsulation in Water. Journal of the American Chemical Society, 2008, 130, 2798-2805.	6.6	150
113	Highly Luminescent Lanthanide Complexes of 1-Hydroxy-2-pyridinones. Inorganic Chemistry, 2008, 47, 3105-3118.	1.9	69
114	High Relaxivity Gadolinium Hydroxypyridonateâ^'Viral Capsid Conjugates:  Nanosized MRI Contrast Agents ¹ . Journal of the American Chemical Society, 2008, 130, 2546-2552.	6.6	165
115	Use of YbIII-Centered Near-Infrared (NIR) Luminescence To Determine the Hydration State of a 3,2-HOPO-Based MRI Contrast Agent. Inorganic Chemistry, 2008, 47, 8571-8573.	1.9	20
116	Aza Cope Rearrangement of Propargyl Enammonium Cations Catalyzed By a Self-Assembled "Nanozyme― Journal of the American Chemical Society, 2008, 130, 10977-10983.	6.6	140
117	Water-Soluble 2-Hydroxyisophthalamides for Sensitization of Lanthanide Luminescence. Inorganic Chemistry, 2008, 47, 7535-7544.	1.9	62
118	The Role of Electrostatics in Siderophore Recognition by the Immunoprotein Siderocalin $\sup 1 < \sup > 1 $	6.6	51
119	Aqueous Ln(III) Luminescence Agents Derived from a Tasty Precursor. Inorganic Chemistry, 2008, 47, 7951-7953.	1.9	14
120	Aryl-Bridged 1-Hydroxypyridin-2-one: Sensitizer Ligands for Eu(III). Inorganic Chemistry, 2008, 47, 6109-6111.	1.9	41
121	Petrobactin-Mediated Iron Transport in Pathogenic Bacteria:  Coordination Chemistry of an Unusual 3,4-Catecholate/Citrate Siderophore. Journal of the American Chemical Society, 2008, 130, 2124-2125.	6.6	79
122	Supramolecular Catalysis of Orthoformate Hydrolysis in Basic Solution: An Enzyme-Like Mechanism. Journal of the American Chemical Society, 2008, 130, 11423-11429.	6.6	93
123	Diffusion of a Highly Charged Supramolecular Assembly: Direct Observation of Ion Association in Water1. Inorganic Chemistry, 2008, 47, 1411-1413.	1.9	31
124	Acceleration of Amide Bond Rotation by Encapsulation in the Hydrophobic Interior of a Water-Soluble Supramolecular Assembly. Journal of Organic Chemistry, 2008, 73, 7132-7136.	1.7	25
125	Encapsulation of Protonated Diamines in a Water-Soluble, Chiral, Supramolecular Assembly Allows for Measurement of Hydrogen-Bond Breaking Followed by Nitrogen Inversion/Rotation. Journal of the American Chemical Society, 2008, 130, 6362-6366.	6.6	51
126	Highly Fluorescent Group 13 Metal Complexes With Cyclic, Aromatic Hydroxamic Acid Ligands. Inorganic Chemistry, 2008, 47, 8665-8673.	1.9	8

#	Article	IF	CITATIONS
127	On the Suitability of Lanthanides as Actinide Analogs. Materials Research Society Symposia Proceedings, 2008, 1104, 1.	0.1	3
128	Brilliant Sm, Eu, Tb, and Dy Chiral Lanthanide Complexes with Strong Circularly Polarized Luminescence. Journal of the American Chemical Society, 2007, 129, 77-83.	6.6	278
129	Reversible guest exchange mechanisms in supramolecular host–guest assemblies. Chemical Society Reviews, 2007, 36, 161-171.	18.7	448
130	Magnetic Resonance Contrast Agents from Viral Capsid Shells:  A Comparison of Exterior and Interior Cargo Strategies. Nano Letters, 2007, 7, 2207-2210.	4.5	135
131	The Hydrophobic Effect Drives the Recognition of Hydrocarbons by an Anionic Metalâ^'Ligand Cluster1. Journal of the American Chemical Society, 2007, 129, 12094-12095.	6.6	87
132	1,2-Hydroxypyridonates as Contrast Agents for Magnetic Resonance Imaging:  TREN-1,2-HOPO. Inorganic Chemistry, 2007, 46, 9182-9191.	1.9	58
133	Highly Soluble Tris-hydroxypyridonate Gd(III) Complexes with Increased Hydration Number, Fast Water Exchange, Slow Electronic Relaxation, and High Relaxivity1. Journal of the American Chemical Society, 2007, 129, 1870-1871.	6.6	97
134	An Octadentate Luminescent Eu(III) 1,2-HOPO Chelate with Potent Aqueous Stability. Inorganic Chemistry, 2007, 46, 5468-5470.	1.9	37
135	Acid Catalysis in Basic Solution: A Supramolecular Host Promotes Orthoformate Hydrolysis. Science, 2007, 316, 85-88.	6.0	717
136	Resolution of Chiral, Tetrahedral M ₄ L ₆ Metalâ^'Ligand Hosts ¹ . Journal of the American Chemical Society, 2007, 129, 15354-15363.	6.6	142
137	Making Amines Strong Bases:  Thermodynamic Stabilization of Protonated Guests in a Highly-Charged Supramolecular Host ¹ . Journal of the American Chemical Society, 2007, 129, 11459-11467.	6.6	117
138	Characterization of a Mixed Salt of 1-Hydroxypyridin-2-one Pu(IV) Complexes1. Journal of the American Chemical Society, 2007, 129, 6674-6675.	6.6	27
139	Optimized Relaxivity and Stability of [Gd(H(2,2)-1,2-HOPO)(H2O)]-for Use as an MRI Contrast Agent1. Inorganic Chemistry, 2007, 46, 4796-4798.	1.9	39
140	Highly Selective Supramolecular Catalyzed Allylic Alcohol Isomerization. Journal of the American Chemical Society, 2007, 129, 2746-2747.	6.6	229
141	Enantiopure, Octadentate Ligands as Sensitizers for Europium and Terbium Circularly Polarized Luminescence in Aqueous Solution. Journal of the American Chemical Society, 2007, 129, 15468-15470.	6.6	115
142	Sequestered Plutonium: [PulV{5LIO(Me-3,2-HOPO)}2]â€"The First Structurally Characterized Plutonium Hydroxypyridonate Complex. Chemistry - A European Journal, 2007, 13, 378-378.	1.7	2
143	Second-Order Jahn–Teller Effect in a Host–Guest Complex. Angewandte Chemie - International Edition, 2007, 46, 4976-4978.	7.2	12
144	Catalytic Deprotection of Acetals in Basic Solution with a Selfâ€Assembled Supramolecular "Nanozyme― Angewandte Chemie - International Edition, 2007, 46, 8587-8589.	7.2	117

#	Article	IF	Citations
145	The Lanthanide Contraction Revisited. Journal of the American Chemical Society, 2007, 129, 11153-11160.	6.6	244
146	1,2-HOIQOa Highly Versatile 1,2-HOPO Analogue. Inorganic Chemistry, 2007, 46, 351-353.	1.9	33
147	Supramolecular Asymmetric Induction in Dinuclear Triple-Stranded Helicates 1. Inorganic Chemistry, 2006, 45, 1130-1139.	1.9	59
148	Molecular Recognition and Stabilization of Iminium Ions in Water. Journal of the American Chemical Society, 2006, 128, 14464-14465.	6.6	216
149	Scope and Mechanism of the Câ°'H Bond Activation Reactivity within a Supramolecular Host by an Iridium Guest:Â A Stepwise Ion Pair Guest Dissociation Mechanism. Journal of the American Chemical Society, 2006, 128, 9781-9797.	6.6	141
150	Guest Exchange Dynamics in an M4L6Tetrahedral Host§. Journal of the American Chemical Society, 2006, 128, 1324-1333.	6.6	109
151	Bacillibactin-Mediated Iron Transport inBacillussubtilis1. Journal of the American Chemical Society, 2006, 128, 22-23.	6.6	118
152	Supramolecular Catalysis of Unimolecular Rearrangements:Â Substrate Scope and Mechanistic Insights. Journal of the American Chemical Society, 2006, 128, 10240-10252.	6.6	170
153	Tris(pyrone) Chelates of Gd(III) as High Solubility MRI-CA. Journal of the American Chemical Society, 2006, 128, 2222-2223.	6.6	38
154	Substituent Effects on Gd(III)-Based MRI Contrast Agents:  Optimizing the Stability and Selectivity of the Complex and the Number of Coordinated Water Molecules 1. Inorganic Chemistry, 2006, 45, 8355-8364.	1.9	82
155	Fe(III)-Templated Gd(III) Self-AssembliesA New Route toward Macromolecular MRI Contrast Agents1. Journal of the American Chemical Society, 2006, 128, 9272-9273.	6.6	46
156	Microbial Evasion of the Immune System:Â Structural Modifications of Enterobactin Impair Siderocalin Recognition1. Journal of the American Chemical Society, 2006, 128, 10998-10999.	6.6	63
157	Tren-Based Analogues of Bacillibactin:Â Structure and Stability1. Inorganic Chemistry, 2006, 45, 5465-5478.	1.9	28
158	"Cymothoe sangaris― An Extremely Stable and Highly Luminescent 1,2-Hydroxypyridinonate Chelate of Eu(III). Journal of the American Chemical Society, 2006, 128, 10648-10649.	6.6	77
159	A Bidentate Terephthalamide Ligand, TAMmeg, as an Entry into Terephthalamide-Containing Therapeutic Iron Chelating Agentsâ€. Inorganic Chemistry, 2006, 45, 2438-2447.	1.9	17
160	Enterobactin Protonation and Iron Release:Â Structural Characterization of the Salicylate Coordination Shift in Ferric Enterobactin1. Journal of the American Chemical Society, 2006, 128, 8920-8931.	6.6	76
161	Synthesis and Thermodynamic Evaluation of Mixed Hexadentate Linear Iron Chelators Containing Hydroxypyridinone and Terephthalamide Units1. Inorganic Chemistry, 2006, 45, 3622-3631.	1.9	30
162	Tuning the Coordination Number of Hydroxypyridonate-Based Gadolinium Complexes:Â Implications for MRI Contrast Agents 1. Journal of the American Chemical Society, 2006, 128, 5344-5345.	6.6	49

#	Article	IF	Citations
163	Terephthalamide-Containing Analogues of TREN-Me-3,2-HOPO. Inorganic Chemistry, 2006, 45, 1078-1090.	1.9	19
164	Characterization of self-assembled supramolecular [Ga4L6] host-guest complexes by electrospray ionization mass spectrometry. Journal of the American Society for Mass Spectrometry, 2006, 17, 292-296.	1.2	23
165	Siderophore-mediated iron transport in Bacillus subtilis and Corynebacterium glutamicum. Journal of Biological Inorganic Chemistry, 2006, 11, 1087-1097.	1.1	46
166	Stabilization of Reactive Organometallic Intermediates Inside a Self-Assembled Nanoscale Host. Angewandte Chemie - International Edition, 2006, 45, 745-748.	7.2	162
167	Dangling Arms: A Tetrahedral Supramolecular Host with Partially Encapsulated Guests. Angewandte Chemie - International Edition, 2006, 45, 83-86.	7.2	41
168	Structurally Characterized Quadruple-Stranded Bisbidentate Helicates. Angewandte Chemie - International Edition, 2006, 45, 6480-6485.	7.2	63
169	The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16502-16507.	3.3	264
170	Anthrax pathogen evades the mammalian immune system through stealth siderophore production. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18499-18503.	3.3	178
171	Selective Molecular Recognition, Câ^'H Bond Activation, and Catalysis in Nanoscale Reaction Vessels. Accounts of Chemical Research, 2005, 38, 349-358.	7.6	916
172	Sequestered Plutonium: [PuIV{5LIO(Me-3,2-HOPO)}2]?The First Structurally Characterized Plutonium Hydroxypyridonate Complex. Chemistry - A European Journal, 2005, 11, 2842-2848.	1.7	51
173	The Removal of Pu(IV) from Aqueous Solution Using 2,3â€Dihydroxyterephthalamideâ€Functionalized PEI with Polymer Filtration. Separation Science and Technology, 2005, 39, 321-339.	1.3	4
174	The Big Squeeze:Â Guest Exchange in an M4L6Supramolecular Host. Journal of the American Chemical Society, 2005, 127, 7912-7919.	6.6	201
175	Next Generation, High Relaxivity Gadolinium MRI Agents. Bioconjugate Chemistry, 2005, 16, 3-8.	1.8	301
176	Large M4L4(M = Al(III), Ga(III), In(III), Ti(IV)) Tetrahedral Coordination Cages:Â an Extension of Symmetry-Based Design. Inorganic Chemistry, 2005, 44, 6228-6239.	1.9	75
177	In Vivo Evaluation of Gadolinium Hydroxypyridonate Chelates:Â Initial Experience as Contrast Media in Magnetic Resonance Imaging 1. Journal of Medicinal Chemistry, 2005, 48, 3874-3877.	2.9	34
178	Dendrimeric Gadolinium Chelate with Fast Water Exchange and High Relaxivity at High Magnetic Field Strength. Journal of the American Chemical Society, 2005, 127, 504-505.	6.6	84
179	Hydroxypyridinone Extraction Agents for Pu(IV). Solvent Extraction and Ion Exchange, 2004, 22, 1037-1068.	0.8	17
180	Large cooperativity in the removal of iron from transferrin at physiological temperature and chloride ion concentration. Journal of Biological Inorganic Chemistry, 2004, 9, 936-944.	1.1	39

#	Article	IF	Citations
181	Selective CH Bond Activation by a Supramolecular Host–Guest Assembly. Angewandte Chemie - International Edition, 2004, 43, 963-966.	7.2	185
182	Supramolecular Catalysis of a Unimolecular Transformation: Aza-Cope Rearrangement within a Self-Assembled Host. Angewandte Chemie - International Edition, 2004, 43, 6748-6751.	7.2	273
183	Cover Picture: Supramolecular Catalysis of a Unimolecular Transformation: Aza-Cope Rearrangement within a Self-Assembled Host (Angew. Chem. Int. Ed. 48/2004). Angewandte Chemie - International Edition, 2004, 43, 6565-6565.	7.2	0
184	Gadolinium(III) 1,2-Hydroxypyridonate-Based Complexes:Â Toward MRI Contrast Agents of High Relaxivity1. Inorganic Chemistry, 2004, 43, 5492-5494.	1.9	63
185	Time Gating Improves Sensitivity in Energy Transfer Assays with Terbium Chelate/Dark Quencher Oligonucleotide Probes. Journal of the American Chemical Society, 2004, 126, 16451-16455.	6.6	69
186	Toward Optimized High-Relaxivity MRI Agents:Â Thermodynamic Selectivity of Hydroxypyridonate/Catecholate Ligands 1. Inorganic Chemistry, 2004, 43, 8520-8525.	1.9	27
187	Enantioselective Guest Binding and Dynamic Resolution of Cationic Ruthenium Complexes by a Chiral Metalâ^'Ligand Assembly. Journal of the American Chemical Society, 2004, 126, 3674-3675.	6.6	181
188	Encapsulation of Cationic Ruthenium Complexes into a Chiral Self-Assembled Cage. Inorganic Chemistry, 2004, 43, 846-848.	1.9	81
189	Hetero-Tripodal Hydroxypyridonate Gadolinium Complexes:Â Syntheses, Relaxometric Properties, Water Exchange Dynamics, and Human Serum Albumin Binding1. Inorganic Chemistry, 2004, 43, 8577-8586.	1.9	39
190	Competition studies in horse spleen ferritin probed by a kinetically inert inhibitor, [Cr(TREN)(H2O)(OH)]2+, and a highly luminescent Tb(III) reagent. Journal of Biological Inorganic Chemistry, 2003, 8, 195-205.	1.1	11
191	Supramolecular Chirality: A Reporter of Structural Memory. Angewandte Chemie, 2003, 115, 689-692.	1.6	44
192	Supramolecular Chirality: A Reporter of Structural Memory. Angewandte Chemie - International Edition, 2003, 42, 665-668.	7.2	144
193	Rational Design of Sequestering Agents for Plutonium and Other Actinides. Chemical Reviews, 2003, 103, 4207-4282.	23.0	505
194	Thorium(IV) Complexes of Bidentate Hydroxypyridinonates 1. Inorganic Chemistry, 2003, 42, 2665-2674.	1.9	49
195	What Should Be Impossible:Â Resolution of the Mononuclear Gallium Coordination Complex, Tris(benzohydroxamato)gallium(III)1. Journal of the American Chemical Society, 2003, 125, 12066-12067.	6.6	8
196	The Effect of Ligand Scaffold Size on the Stability of Tripodal Hydroxypyridonate Gadolinium Complexes. Inorganic Chemistry, 2003, 42, 2577-2583.	1.9	32
197	A Highly Stable Gadolinium Complex with a Fast, Associative Mechanism of Water Exchange. Journal of the American Chemical Society, 2003, 125, 14274-14275.	6.6	81
198	Stable Lanthanide Luminescence Agents Highly Emissive in Aqueous Solution:Â Multidentate 2-Hydroxyisophthalamide Complexes of Sm3+, Eu3+, Tb3+, Dy3+. Journal of the American Chemical Society, 2003, 125, 13324-13325.	6.6	438

#	Article	IF	CITATIONS
199	Toward Optimized High-Relaxivity MRI Agents:  The Effect of Ligand Basicity on the Thermodynamic Stability of Hexadentate Hydroxypyridonate/Catecholate Gadolinium(III) Complexes. Inorganic Chemistry, 2003, 42, 4930-4937.	1.9	77
200	Enterobactin: An archetype for microbial iron transport. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3584-3588.	3.3	768
201	Iron uptake in ferritin is blocked by binding of [Cr(TREN)(H2O)(OH)]2+, a slow dissociating model for [Fe(H2O)6]2+. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5195-5200.	3.3	33
202	Supramolecular assembly dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4793-4796.	3.3	210
203	Hexadentate Hydroxypyridonate Iron Chelators Based on TREN-Me-3,2-HOPO:Â Variation of Cap Size1. Inorganic Chemistry, 2002, 41, 6731-6742.	1.9	47
204	Corynebactin and a Serine Trilactone Based Analogue:Â Chirality and Molecular Modeling of Ferric Complexes. Inorganic Chemistry, 2002, 41, 5475-5478.	1.9	26
205	Corynebactin and Enterobactin:Â Related Siderophores of Opposite Chirality. Journal of the American Chemical Society, 2002, 124, 2436-2437.	6.6	46
206	The Neutrophil Lipocalin NGAL Is a Bacteriostatic Agent that Interferes with Siderophore-Mediated Iron Acquisition. Molecular Cell, 2002, 10, 1033-1043.	4.5	1,193
207	Self-Assembly of Tetrahedral and Trigonal Antiprismatic Clusters [Fe4(L4)4] and [Fe6(L5)6] on the Basis of Trigonal Tris-Bidentate Chelators. Chemistry - A European Journal, 2002, 8, 493-497.	1.7	105
208	Iron(III) 2,3-dihydroxyterephthalamides revisited. Charge effects on highly stable ferric complexes. Comptes Rendus Chimie, 2002, 5, 395-404.	0.2	5
209	Imposition of Chirality in a Dinuclear Triple-Stranded Helicate by Ion Pair Formation 1. Inorganic Chemistry, 2001, 40, 2216-2217.	1.9	58
210	Optimization of the Relaxivity of MRI Contrast Agents:  Effect of Poly(ethylene glycol) Chains on the Water-Exchange Rates of GdIII Complexes. Journal of the American Chemical Society, 2001, 123, 10758-10759.	6.6	87
211	The Self-Assembly of a [Ga4L6]12-Tetrahedral ClusterThermodynamicallyDriven by Hostâ^Guest Interactionsâ€. Inorganic Chemistry, 2001, 40, 5157-5161.	1.9	78
212	Rational Design and Assembly of M2Mâ€~3L6Supramolecular Clusters withC3hSymmetry by Exploiting Incommensurate Symmetry Numbers§. Journal of the American Chemical Society, 2001, 123, 2752-2763.	6.6	104
213	A Silver-Linked Supramolecular Cluster Encapsulating a Cesium Cationâ€. Inorganic Chemistry, 2001, 40, 4504-4506.	1.9	46
214	Structural Criteria for the Rational Design of Selective Ligands. 3. Quantitative Structureâ [^] Stability Relationship for Iron(III) Complexation by Tris-Catecholamide Siderophores. Inorganic Chemistry, 2001, 40, 3922-3935.	1.9	80
215	Design, Formation and Properties of Tetrahedral M4L4and M4L6Supramolecular Clusters1. Journal of the American Chemical Society, 2001, 123, 8923-8938.	6.6	263
216	6-Carboxamido-5,4-Hydroxypyrimidinones:Â A New Class of Heterocyclic Ligands and Their Evaluation as Gadolinium Chelating Agents. Inorganic Chemistry, 2001, 40, 6746-6756.	1.9	44

#	Article	IF	Citations
217	Synthesis of Homochiral Tris(2-alkyl-2-aminoethyl)amine Derivatives from Chiral α-Amino Aldehydes and Their Application in the Synthesis of Water Soluble Chelators. Inorganic Chemistry, 2001, 40, 3208-3216.	1.9	30
218	A Streamlined Synthesis for 2,3-Dihydroxyterephthalamides. Organic Letters, 2001, 3, 2827-2830.	2.4	21
219	Synthesis and Metal Binding Properties of Salicylate-, Catecholate-, and Hydroxypyridinonate-Functionalized Dendrimers. Chemistry - A European Journal, 2001, 7, 272-279.	1.7	60
220	Resolution and Kinetic Stability of a Chiral Supramolecular Assembly Made of Labile Components. Angewandte Chemie - International Edition, 2001, 40, 157-160.	7.2	163
221	Combinatorial Libraries of Metal-Ligand Assemblies with an Encapsulated Guest Molecule. Angewandte Chemie - International Edition, 2001, 40, 733-736.	7.2	51
222	The Role of Guest Molecules in the Self-assembly of Metalâ€"ligand Clusters. Supramolecular Chemistry, 2001, 13, 639-659.	1.5	84
223	CHELATING AGENTS FOR URANIUM(VI): 2. EFFICACY AND TOXICITY OF TETRADENTATE CATECHOLATE AND HYDROXYPYRIDINONATE LIGANDS IN MICE. Health Physics, 2000, 78, 511-521.	0.3	74
224	The Hexadentate Hydroxypyridinonate TRENâ€(Meâ€3,2â€HOPO) is a More Orally Active Iron Chelator Than Its Bidentate Analogue. Journal of Pharmaceutical Sciences, 2000, 89, 545-555.	1.6	39
225	Host within a Host: Encapsulation of Alkali Ion – Crown Ether Complexes into a [Ga4L6]12 Supramolecular Cluster. Angewandte Chemie - International Edition, 2000, 39, 1239-1242.	7.2	75
226	Lord of the Rings: An Octameric Lanthanum Pyrazolonate Cluster. Angewandte Chemie - International Edition, 2000, 39, 2745-2747.	7.2	107
227	Fast biological iron chelators: kinetics of iron removal from human diferric transferrin by multidentate hydroxypyridonates. Journal of Biological Inorganic Chemistry, 2000, 5, 634-641.	1.1	70
228	Synthesis of a Ligand Based upon a New Entry into the 3-Hydroxy-N-alkyl-2(1H)-pyridinone Ring System and Thermodynamic Evaluation of Its Gadolinium Complex. Inorganic Chemistry, 2000, 39, 2652-2660.	1.9	55
229	Plutonium(IV) Sequestration: Structural and Thermodynamic Evaluation of the Extraordinarily Stable Cerium(IV) Hydroxypyridinonate Complexes1. Inorganic Chemistry, 2000, 39, 4156-4164.	1.9	196
230	Mixed Hydroxypyridinonate Ligands as Iron Chelators 1. Inorganic Chemistry, 2000, 39, 4339-4346.	1.9	46
231	Syntheses and Relaxation Properties of Mixed Gadolinium Hydroxypyridinonate MRI Contrast Agents. Inorganic Chemistry, 2000, 39, 5747-5756.	1.9	95
232	Catecholate/Salicylate Heteropodands:  Demonstration of a Catecholate to Salicylate Coordination Change1. Inorganic Chemistry, 2000, 39, 3624-3631.	1.9	35
233	A Tris-hydroxymethyl-Substituted Derivative of Gd-TREN-Me-3,2-HOPO:  An MRI Relaxation Agent with Improved Efficiency. Journal of the American Chemical Society, 2000, 122, 11228-11229.	6.6	83
234	Exploiting Incommensurate Symmetry Numbers: Rational Design and Assembly of M2M3′L6 Supramolecular Clusters with C3h Symmetry. Angewandte Chemie - International Edition, 1999, 38, 1303-1307.	7.2	94

#	Article	IF	CITATIONS
235	Triple Helicate—Tetrahedral Cluster Interconversion Controlled by Host-Guest Interactions. Angewandte Chemie - International Edition, 1999, 38, 1587-1592.	7.2	107
236	meso Myths: What Drives Assembly of Helical versusmeso-[M2L3] Clusters?. Angewandte Chemie - International Edition, 1999, 38, 2878-2882.	7.2	111
237	Self-Assembly of a Three-Dimensional [Ga6(L2)6] Metal-Ligand "Cylinder― Angewandte Chemie - International Edition, 1999, 38, 2882-2885.	7.2	88
238	Supermolecules by Design. Accounts of Chemical Research, 1999, 32, 975-982.	7.6	1,358
239	The rational design of high symmetry coordination clusters â€. Journal of the Chemical Society Dalton Transactions, 1999, , 1185-1200.	1.1	393
240	EXTRACTION OF PLUTONIUM BY CHELATING HYDROXYPYRIDINONE AND CATECHOLAMIDE RESINSâ [*] —. Solvent Extraction and Ion Exchange, 1999, 17, 1327-1353.	0.8	15
241	Dynamic Isomerization of a Supramolecular Tetrahedral M4L6Cluster1. Journal of the American Chemical Society, 1999, 121, 4200-4206.	6.6	102
242	Uranyl Sequestering Agents:Â Correlation of Properties and Efficacy with Structure for UO22+Complexes of Linear Tetradentate 1-Methyl-3-hydroxy-2(1H)-pyridinone Ligands1. Inorganic Chemistry, 1999, 38, 308-315.	1.9	74
243	A Novel Salicylate-Based Macrobicycle with a "Split Personality― Inorganic Chemistry, 1999, 38, 4522-4529.	1.9	18
244	PLUTONIUM(IV) AND PLUTONIUM(VI) EXTRACTION BY 1-HYDROXY-6-N-OCTYLCARBOXAMIDE-2(1H)-PYRIDINONE*. Solvent Extraction and Ion Exchange, 1999, 17, 55-71.	0.8	12
245	Umwandlung eines Tripelhelicats in einen Tetraedercluster mittels Wirt-Gast-Wechselwirkungen. , 1999, 111, 1689.		24
246	Self-Assembly of {2}-Metallacryptands and {2}-Metallacryptates., 1998, 1998, 1313-1317.		74
247	Symmetry-Driven Rational Design of a Tetrahedral Supramolecular Ti4L4 Cluster. Angewandte Chemie - International Edition, 1998, 37, 1837-1839.	7.2	145
248	The Self-Assembly of a Predesigned Tetrahedral M4L6 Supramolecular Cluster. Angewandte Chemie - International Edition, 1998, 37, 1840-1843.	7.2	436
249	Electrospray ionization ion trap mass spectrometry of a tetrahedral supramolecular Ti4L4 cluster. Journal of the American Society for Mass Spectrometry, 1998, 9, 1099-1103.	1.2	16
250	Selective Encapsulation of Aqueous Cationic Guests into a Supramolecular Tetrahedral [M4L6]12-Anionic Host1. Journal of the American Chemical Society, 1998, 120, 8003-8004.	6.6	190
251	THE SIGNIFICANCE AND RELATIONSHIP OF CORRELATION COEFFICIENTS FOR STEPWISE FORMATION CONSTANTS (K) AND CUMULATIVE FORMATION CONSTANTS (\hat{l}^2). Journal of Coordination Chemistry, 1998, 46, 51-57.	0.8	7
252	Enterobactin Protonation and Iron Release:Â Hexadentate Tris-Salicylate Ligands as Models for Triprotonated Ferric Enterobactin1. Journal of the American Chemical Society, 1998, 120, 6277-6286.	6.6	84

#	Article	IF	Citations
253	The Self-Assembly of a Predesigned Tetrahedral M4L6 Supramolecular Cluster. , 1998, 37, 1840.		2
254	Selectivity of Ferric Enterobactin Binding and Cooperativity of Transport in Gram-Negative Bacteria. Journal of Bacteriology, 1998, 180, 6689-6696.	1.0	63
255	Rearrangement Reactions in Dinuclear Triple Helicates 1. Inorganic Chemistry, 1997, 36, 5179-5191.	1.9	120
256	High-Yield Synthesis of the Enterobactin Trilactone and Evaluation of Derivative Siderophore Analogs1. Journal of the American Chemical Society, 1997, 119, 10093-10103.	6.6	71
257	Superamolecular Self-Recognition and Self-Assembly in Gallium(III) Catecholamide Triple Helices. Angewandte Chemie International Edition in English, 1997, 36, 1440-1442.	4.4	187
258	Selbsterkennung und â€organisation bei der Bildung von Gallium(<scp>III</scp>)â€Tripelhelicaten mit Brenzcatechinâ€haltigen Liganden. Angewandte Chemie, 1997, 109, 1508-1510.	1.6	74
259	Enhanced iron(III) chelation through ligand predisposition: syntheses, structures and stability of tris-catecholate enterobactin analogs. Inorganica Chimica Acta, 1997, 263, 341-355.	1.2	61
260	Gallium(III) Catecholate Complexes as Probes for the Kinetics and Mechanism of Inversion and Isomerization of Siderophore Complexes 1. Journal of the American Chemical Society, 1996, 118, 5712-5721.	6.6	58
261	Dinuclear Catecholate Helicates:Â Their Inversion Mechanism. Journal of the American Chemical Society, 1996, 118, 7221-7222.	6.6	150
262	Preorganization of Ferric Alcaligin, Fe2L3. The First Structure of a Ferric Dihydroxamate Siderophore. Journal of the American Chemical Society, 1996, 118, 5148-5149.	6.6	66
263	Symmetriegesteuerte Bildung von Metallclustern. Angewandte Chemie, 1996, 108, 1166-1168.	1.6	69
264	Symmetry-Based Metal Complex Cluster Formation. Angewandte Chemie International Edition in English, 1996, 35, 1084-1086.	4.4	213
265	Rezeptoren für Oxometallâ€Kationen: Koordination an das Dioxoosmium(<scp>VI</scp>)â€Kation über verschiedenartige bindende Wechselwirkungen. Angewandte Chemie, 1995, 107, 1473-1476.	1.6	3
266	Metal Oxo Cation Receptors: Multimode Coordination to the Dioxoosmium(VI) Cation. Angewandte Chemie International Edition in English, 1995, 34, 1359-1362.	4.4	21
267	Stereognostic coordination chemistry 4 the design and synthesis of a selective uranyl ion complexant. Inorganica Chimica Acta, 1995, 240, 593-601.	1.2	37
268	Specific Sequestering Agents for the Actinides. 28. Synthesis and Initial Evaluation of Multidentate 4-Carbamoyl-3-hydroxy-1-methyl-2(1H)-pyridinone Ligands for in Vivo Plutonium(IV) Chelation. Journal of Medicinal Chemistry, 1995, 38, 2606-2614.	2.9	92
269	Gadolinium complex of tris[(3-hydroxy-1-methyl-) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 107 Td (2-oxo-1 resonance relaxation agents. Journal of the American Chemical Society, 1995, 117, 7245-7246.	,2-didehyd 6.6	ropyridine-4 159
270	High Surface Area Silica Particles as a New Vehicle for Ligand Immobilization on the Quartz Crystal Microbalance. ACS Symposium Series, 1994, , 71-77.	0.5	3

#	Article	IF	CITATIONS
271	Macrobicyclic Tris(catecholate ligand) complexes: Spectroscopy, Electrochemistry, and the Structure of K2[(H2-bicappedTRENCAM)MoO2]. Inorganic Chemistry, 1994, 33, 5785-5793.	1.9	41
272	Transferrin: the role of conformational changes in iron removal by chelators. Journal of the American Chemical Society, 1993, 115, 6758-6764.	6.6	77
273	Specific sequestering agents for the actinides. 21. Synthesis and initial biological testing of octadentate mixed catecholate-hydroxypyridinonate ligands. Journal of Medicinal Chemistry, 1993, 36, 504-509.	2.9	22
274	Rational reduction of the conformational space of a siderophore analog through nonbonded interactions: the role of entropy in enterobactin. Journal of the American Chemical Society, 1993, 115, 6466-6467.	6.6	112
275	Stereoselectivity in chiral iron(III) and gallium(III) tris(catecholate) complexes effected by nonbonded weakly polar interactions. Journal of the American Chemical Society, 1993, 115, 6115-6125.	6.6	82
276	Coordination chemistry of microbial iron transport. 49. The vanadium(IV) enterobactin complex: structural, spectroscopic, and electrochemical characterization. Journal of the American Chemical Society, 1993, 115, 1842-1851.	6.6	111
277	Octahedral versus trigonal prismatic geometry in a series of catechol macrobicyclic ligand-metal complexes. Journal of the American Chemical Society, 1993, 115, 182-192.	6.6	124
278	Synthesis and Characterization of Chiral Isomers of Tris(1-Oxo-22(1H)-Pyridinethionate)Iron(III), Chromium(III), and Cobalt(III) Complexes. Journal of Coordination Chemistry, 1992, 26, 1-14.	0.8	8
279	Hydrogen Bonding in Catechoylamides. Journal of Coordination Chemistry, 1992, 25, 241-253.	0.8	32
280	An eight-coordinate cage: synthesis and structure of the first macrotricyclic tetraterephthalamide ligand. Inorganic Chemistry, 1992, 31, 4903-4905.	1.9	21
281	Stereognostic coordination chemistry. 1. The design and synthesis of chelators for the uranyl ion. Journal of the American Chemical Society, 1992, 114, 8138-8146.	6.6	130
282	The First Structural Characterization of a Metal–Enterobactin Complex:[V(enterobactin)]2â^'. Angewandte Chemie International Edition in English, 1992, 31, 466-468.	4.4	69
283	Ionic versus nonionic MR imaging contrast media: Operational definitions. Journal of Magnetic Resonance Imaging, 1992, 2, 95-98.	1.9	20
284	Ferric ion sequestering agents. 22. Synthesis and characterization of macrobicyclic iron(III) sequestering agents. Journal of the American Chemical Society, 1991, 113, 2965-2977.	6.6	129
285	Solution equilibria of enterobactin and metal-enterobactin complexes. Inorganic Chemistry, 1991, 30, 906-911.	1.9	291
286	Iron(III) coordination chemistry of linear dihydroxyserine compounds derived from enterobactin. Inorganic Chemistry, 1991, 30, 900-906.	1.9	64
287	Kinetics of Gallium Removal from Transferrin and Thermodynamics of Gallium-Binding by Sulfonated Tricatechol Ligands. Journal of Coordination Chemistry, 1991, 23, 361-387.	0.8	9
288	Ferric ion sequestering agents. 20. 2,3-Dihydroxyterephthalamides: highly efficient iron(III)-chelating agents. Inorganic Chemistry, 1989, 28, 128-133.	1.9	57

#	Article	IF	Citations
289	Coordination chemistry of lanthanide catecholates. Inorganica Chimica Acta, 1988, 147, 115-121.	1.2	21
290	The spectroelectrochemical determination of the reduction potential of differic serum transferrin. BBA - Proteins and Proteomics, 1988, 956, 85-94.	2.1	38
291	Specific sequestering agents for the actinides. 16. Synthesis and initial biological testing of polydentate oxohydroxypyridinecarboxylate ligands. Journal of Medicinal Chemistry, 1988, 31, 11-18.	2.9	100
292	Effects of ionic strength on iron removal from the monoferric transferrins. Inorganic Chemistry, 1988, 27, 1436-1441.	1.9	64
293	Ferric ion sequestering agents. 17. Macrobicyclic iron(III) sequestering agents. Journal of the American Chemical Society, 1987, 109, 7196-7198.	6.6	76
294	Ferric ion sequestering agents. 15. Synthesis, solution chemistry, and electrochemistry of a new cationic analog of enterobactin. Inorganic Chemistry, 1987, 26, 1622-1625.	1.9	120
295	Biphasic kinetics and temperature dependence of iron removal from transferrin by 3,4-LICAMS. Journal of the American Chemical Society, 1986, 108, 6212-6218.	6.6	77
296	The structure and properties of tetrakis(tironato)cerate(IV), Na12[Ce(C6H2O2(SO3)2)4]·9H2O·6C3H7NO. Inorganica Chimica Acta, 1986, 122, 111-118.	1.2	24
297	Ferric ion sequestering agents. 14. 1-Hydroxy-2(1H)-pyridinone complexes: properties and structure of a novel iron-iron dimer. Journal of the American Chemical Society, 1985, 107, 6540-6546.	6.6	134
298	Ferric ion sequestering agents. 12. Gallium and indium imaging agents. 4. Lipophilic enterobactin analogs. Stabilities of the gallium and ferric ion complexes of terminally N-substituted catechoylamines. Inorganic Chemistry, 1985, 24, 2447-2452.	1.9	22
299	Actinide-specific complexing agents: Their structural and solution chemistry. Inorganica Chimica Acta, 1984, 94, 193-204.	1.2	65
300	Synthetic, structural, and physical studies of titanium complexes of catechol and 3,5-di-tert-butylcatechol. Inorganic Chemistry, 1984, 23, 1009-1016.	1.9	211
301	Ferric ion sequestering agents. 11. Synthesis and kinetics of iron removal from transferrin of catechoyl derivatives of desferrioxamine B. Journal of Medicinal Chemistry, 1983, 26, 439-442.	2.9	38
302	Ferric ion sequestering agents. 6. The spectrophotometric and potentiometric evaluation of sulfonated tricatecholate ligands. Journal of the American Chemical Society, 1981, 103, 2667-2675.	6.6	135
303	Specific sequestering agents for the actinides. 3. Polycatecholate ligands derived from 2,3-dihydroxy-5-sulfobenzoyl conjugates of diaza- and tetraazaalkanes. Journal of the American Chemical Society, 1980, 102, 2289-2293.	6.6	60
304	Stereochemistry of Microbial Iron Transport Compounds. ACS Symposium Series, 1980, , 133-167.	0.5	6
305	Specific Sequestering Agents for the Actinides: 4. Removal of 238 Pu(IV) from Mice by Sulfonated Tetrameric Catechoyl Amides. Radiation Research, 1980, 81, 170.	0.7	34
306	Coordination chemistry of microbial iron transport compounds. 19. Stability constants and electrochemical behavior of ferric enterobactin and model complexes. Journal of the American Chemical Society, 1979, 101, 6097-6104.	6.6	285

#	Article	IF	CITATIONS
307	Synthesis and evaluation of an enterobactin model compound. 1,3,5-Tris-(2,3-dihydroxybenzoylaminomethyl)benzene and its iron(III) complex. Journal of the Chemical Society Chemical Communications, 1979, , 177.	2.0	18
308	Sulfonated catecholamide analogs of enterobactin as iron sequestering agents. Journal of Medicinal Chemistry, 1979, 22, 1281-1283.	2.9	39
309	Ferric ion sequestering agents. 3. The spectrophotometric and potentiometric evaluation of two new enterobactin analogs: 1,5,9-N,N',N''-tris(2,3-dihydroxybenzoyl)cyclotriazatridecane and 1,3,5-N,N',N''-tris(2,3-dihydroxybenzoyl)triaminomethylbenzene. Journal of the American Chemical Society, 1979, 101, 6534-6541.	6.6	100
310	Ferric ion sequestering agents. 1. Hexadentate O-bonding N,N',N"-tris(2,3-dihydroxybenzoyl) derivatives of 1,5,9-triazacyclotridecane and 1,3,5-triaminomethylbenzene. Journal of the American Chemical Society, 1979, 101, 2728-2731.	6.6	91
311	Ferric ion sequestering agents. 2. Kinetics and mechanism of iron removal from transferrin by enterobactin and synthetic tricatechols. Journal of the American Chemical Society, 1979, 101, 5401-5404.	6.6	146
312	Coordination chemistry and microbial iron transport. Accounts of Chemical Research, 1979, 12, 183-190.	7.6	302
313	Spectrophotometric determination of the proton-dependent stability constant of ferric enterobactin. Journal of the American Chemical Society, 1979, 101, 2213-2214.	6.6	120
314	Coordination chemistry of microbial iron transport compounds. 9. Stability constants for catechol models of enterobactin. Journal of the American Chemical Society, 1978, 100, 5362-5370.	6.6	307
315	Specific sequestering agents for the actinides. 1. N,N',N'''-Tetra(2,3-dihydroxybenzoyl)tetraazacyclotetra- and -hexadecanes. Journal of the American Chemical Society, 1978, 100, 1170-1172.	6.6	40
316	Specific sequestering agents for the actinides. 2. A ligand field effect in the crystal and molecular structures of tetrakis(catecholato)uranate(IV) and -thorate(IV). Journal of the American Chemical Society, 1978, 100, 7882-7887.	6.6	45
317	Kinetically Inert Complexes of the Siderophores in Studies of Microbial Iron Transport. Advances in Chemistry Series, 1977, , 33-54.	0.6	23
318	Supramolecular Chirality in Coordination Chemistry., 0,, 147-183.		115
319	Selective Stoichiometric and Catalytic Reactivity in the Confines of a Chiral Supramolecular Assembly. , 0, , 165-197.		7
320	Hexadentate Hydroxypyridonate Iron Chelators Based on TREN-Me-3,2-HOPO:  Variation of Cap Size1., 0, , .		1