Howard Riezman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9422213/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasma membrane effects of sphingolipid-synthesis inhibition by myriocin in CHO cells: a biophysical and lipidomic study. Scientific Reports, 2022, 12, 955.	1.6	1
2	Vacuole-Specific Lipid Release for Tracking Intracellular Lipid Metabolism and Transport in <i>Saccharomyces cerevisiae</i> . ACS Chemical Biology, 2022, 17, 1485-1494.	1.6	4
3	Ether lipids, sphingolipids and toxic 1â€deoxyceramides as hallmarks for lean and obese type 2 diabetic patients. Acta Physiologica, 2021, 232, e13610.	1.8	29
4	Genetically Encoded Supramolecular Targeting of Fluorescent Membrane Tension Probes within Live Cells: Precisely Localized Controlled Release by External Chemical Stimulation. Jacs Au, 2021, 1, 221-232.	3.6	19
5	Short Photoswitchable Ceramides Enable Optical Control of Apoptosis. ACS Chemical Biology, 2021, 16, 452-456.	1.6	22
6	Can we Dispense with Sphingolipids? Correlation between Membrane Lipid Composition and Biophysical Properties in Sphingolipid-Restricted Mammalian Cells. Biophysical Journal, 2021, 120, 5a.	0.2	0
7	Luciferase Controlled Protein Interactions. Journal of the American Chemical Society, 2021, 143, 3665-3670.	6.6	6
8	CHO/LYâ€B cell growth under limiting sphingolipid supply: Correlation between lipid composition and biophysical properties of sphingolipidâ€restricted cell membranes. FASEB Journal, 2021, 35, e21657.	0.2	6
9	Determination of the lipid composition of the GPI anchor. PLoS ONE, 2021, 16, e0256184.	1.1	3
10	Patched regulates lipid homeostasis by controlling cellular cholesterol levels. Nature Communications, 2021, 12, 4898.	5.8	15
11	Flipper Probes for the Community. Chimia, 2021, 75, 1004.	0.3	9
12	Chemical Biology Tools to Study Lipids and their Metabolism with Increased Spatial and Temporal Resolution. Chimia, 2021, 75, 1012.	0.3	0
13	Editorial: Special Issue on 'Chemical Biology of Membranes and Signaling' Chimia, 2021, 75, 1001.	0.3	0
14	Vesicular and non-vesicular lipid export from the ER to the secretory pathway. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158453.	1.2	26
15	Conserved Functions of Ether Lipids and Sphingolipids in the Early Secretory Pathway. Current Biology, 2020, 30, 3775-3787.e7.	1.8	59
16	HaloFlippers: A General Tool for the Fluorescence Imaging of Precisely Localized Membrane Tension Changes in Living Cells. ACS Central Science, 2020, 6, 1376-1385.	5.3	44
17	Tricalbins Are Required for Non-vesicular Ceramide Transport at ER-Golgi Contacts and Modulate Lipid Droplet Biogenesis. IScience, 2020, 23, 101603.	1.9	20
18	Cultured macrophages transfer surplus cholesterol into adjacent cells in the absence of serum or high-density lipoproteins. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10476-10483.	3.3	21

#	Article	IF	CITATIONS
19	Patches and Blebs: A Comparative Study of the Composition and Biophysical Properties of Two Plasma Membrane Preparations from CHO Cells. International Journal of Molecular Sciences, 2020, 21, 2643.	1.8	8
20	Combined Omics Approach Identifies Gambogic Acid and Related Xanthones as Covalent Inhibitors of the Serine Palmitoyltransferase Complex. Cell Chemical Biology, 2020, 27, 586-597.e12.	2.5	16
21	Ceramide chain length–dependent protein sorting into selective endoplasmic reticulum exit sites. Science Advances, 2020, 6, .	4.7	38
22	Phosphatidylcholines from Pieris brassicae eggs activate an immune response in Arabidopsis. ELife, 2020, 9, .	2.8	36
23	Luciferaseâ€Induced Photouncaging: Bioluminolysis. Angewandte Chemie - International Edition, 2019, 58, 16033-16037.	7.2	18
24	Luciferaseâ€Induced Photouncaging: Bioluminolysis. Angewandte Chemie, 2019, 131, 16179-16183.	1.6	5
25	Cytotoxicity of 1-deoxysphingolipid unraveled by genome-wide genetic screens and lipidomics in <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 2019, 30, 2814-2826.	0.9	14
26	Lysosome-targeted photoactivation reveals local sphingosine metabolism signatures. Chemical Science, 2019, 10, 2253-2258.	3.7	46
27	Yeast ceramide synthases, Lag1 and Lac1, have distinct substrate specificity. Journal of Cell Science, 2019, 132, .	1.2	26
28	On the road to unraveling the molecular functions of ether lipids. FEBS Letters, 2019, 593, 2378-2389.	1.3	77
29	Optical control of sphingosine-1-phosphate formation and function. Nature Chemical Biology, 2019, 15, 623-631.	3.9	66
30	Sphingolipids and membrane targets for therapeutics. Current Opinion in Chemical Biology, 2019, 50, 19-28.	2.8	14
31	1-Deoxydihydroceramide causes anoxic death by impairing chaperonin-mediated protein folding. Nature Metabolism, 2019, 1, 996-1008.	5.1	15
32	A Chemogenetic Approach for the Optical Monitoring of Voltage in Neurons. Angewandte Chemie - International Edition, 2019, 58, 2341-2344.	7.2	34
33	A Chemogenetic Approach for the Optical Monitoring of Voltage in Neurons. Angewandte Chemie, 2019, 131, 2363-2366.	1.6	6
34	Mitochondrial arginase-2 is a cell‑autonomous regulator of CD8+ T cell function and antitumor efficacy. JCl Insight, 2019, 4, .	2.3	47
35	Understanding the diversity of membrane lipid composition. Nature Reviews Molecular Cell Biology, 2018, 19, 281-296.	16.1	1,179
36	Structure–function insights into direct lipid transfer between membranes by Mmm1–Mdm12 of ERMES. Journal of Cell Biology, 2018, 217, 959-974.	2.3	116

#	Article	IF	CITATIONS
37	Transcriptomic analyses reveal rhythmic and CLOCK-driven pathways in human skeletal muscle. ELife, 2018, 7, .	2.8	87
38	Mitochondria-specific photoactivation to monitor local sphingosine metabolism and function. ELife, 2018, 7, .	2.8	57
39	Macrophages release plasma membrane-derived particles rich in accessible cholesterol. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8499-E8508.	3.3	41
40	Lysophospholipids Facilitate COPII Vesicle Formation. Current Biology, 2018, 28, 1950-1958.e6.	1.8	47
41	Mitochondrial disruption in peroxisome deficient cells is hepatocyte selective but is not mediated by common hepatic peroxisomal metabolites. Mitochondrion, 2018, 39, 51-59.	1.6	26
42	Subcellular Distribution of Cholesterol and Sphingolipids in Rat Hepatocytes. FASEB Journal, 2018, 32, 541.1.	0.2	0
43	Structure and conserved function of iso-branched sphingoid bases from the nematode Caenorhabditis elegans. Chemical Science, 2017, 8, 3676-3686.	3.7	39
44	Sphingolipid metabolic flow controls phosphoinositide turnover at the <i>trans</i> â€Golgi network. EMBO Journal, 2017, 36, 1736-1754.	3.5	79
45	Lipidomics reveals diurnal lipid oscillations in human skeletal muscle persisting in cellular myotubes cultured in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8565-E8574.	3.3	74
46	The SAGA complex, together with transcription factors and the endocytic protein Rvs167p, coordinates the reprofiling of gene expression in response to changes in sterol composition in </td <td>0.9</td> <td>11</td>	0.9	11
47	mTORC2 Promotes Tumorigenesis via Lipid Synthesis. Cancer Cell, 2017, 32, 807-823.e12.	7.7	282
48	Identification and Mode of Action of a Plant Natural Product Targeting Human Fungal Pathogens. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	35
49	Membrane Phosphoproteomics of Yeast Early Response to Acetic Acid: Role of Hrk1 Kinase and Lipid Biosynthetic Pathways, in Particular Sphingolipids. Frontiers in Microbiology, 2017, 8, 1302.	1.5	14
50	Detection of genome-edited mutant clones by a simple competition-based PCR method. PLoS ONE, 2017, 12, e0179165.	1.1	23
51	Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency. Journal of Clinical Investigation, 2017, 127, 912-928.	3.9	160
52	Making Sense of the Yeast Sphingolipid Pathway. Journal of Molecular Biology, 2016, 428, 4765-4775.	2.0	41
53	Limited ER quality control for GPI-anchored proteins. Journal of Cell Biology, 2016, 213, 693-704.	2.3	43
54	A method for analysis and design of metabolism using metabolomics data and kinetic models: Application on lipidomics using a novel kinetic model of sphingolipid metabolism. Metabolic Engineering, 2016, 37, 46-62.	3.6	44

#	Article	IF	CITATIONS
55	Trafficking of glycosylphosphatidylinositol anchored proteins from the endoplasmic reticulum to the cell surface. Journal of Lipid Research, 2016, 57, 352-360.	2.0	87
56	Intracellular sphingosine releases calcium from lysosomes. ELife, 2015, 4, .	2.8	115
57	Prolonged starvation drives reversible sequestration of lipid biosynthetic enzymes and organelle reorganization in <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 2015, 26, 1601-1615.	0.9	59
58	Autophagy Competes for a Common Phosphatidylethanolamine Pool with Major Cellular PE-Consuming Pathways in <i>Saccharomyces cerevisiae</i> . Genetics, 2015, 199, 475-485.	1.2	13
59	Cell-intrinsic adaptation of lipid composition to local crowding drives social behaviour. Nature, 2015, 523, 88-91.	13.7	88
60	D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage. Journal of Biomedical Optics, 2015, 21, 061003.	1.4	61
61	COPII Coat Composition Is Actively Regulated by Luminal Cargo Maturation. Current Biology, 2015, 25, 152-162.	1.8	62
62	The SwissLipids knowledgebase for lipid biology. Bioinformatics, 2015, 31, 2860-2866.	1.8	114
63	LAPTM4B facilitates late endosomal ceramide export to control cell death pathways. Nature Chemical Biology, 2015, 11, 799-806.	3.9	49
64	Deuterated Cholesterol Uptake Revealed With Stimulated Raman Microscopy. , 2015, , .		0
65	Osh proteins regulate COPII-mediated vesicular transport of ceramide from the endoplasmic reticulum in budding yeast. Journal of Cell Science, 2014, 127, 376-87.	1.2	36
66	Systematic lipidomic analysis of yeast protein kinase and phosphatase mutants reveals novel insights into regulation of lipid homeostasis. Molecular Biology of the Cell, 2014, 25, 3234-3246.	0.9	69
67	A Fluorogenic Probe for SNAP-Tagged Plasma Membrane Proteins Based on the Solvatochromic Molecule Nile Red. ACS Chemical Biology, 2014, 9, 606-612.	1.6	85
68	Sphingolipid homeostasis in the web of metabolic routes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 647-656.	1.2	66
69	Synthetic Multivalent Antifungal Peptides Effective against Fungi. PLoS ONE, 2014, 9, e87730.	1.1	33
70	HCV 3a Core Protein Increases Lipid Droplet Cholesteryl Ester Content via a Mechanism Dependent on Sphingolipid Biosynthesis. PLoS ONE, 2014, 9, e115309.	1.1	23
71	The Peroxisomal Enzyme L-PBE Is Required to Prevent the Dietary Toxicity of Medium-Chain Fatty Acids. Cell Reports, 2013, 5, 248-258.	2.9	45
72	TORC1 Inhibits GSK3-Mediated Elo2 Phosphorylation to Regulate Very Long Chain Fatty Acid Synthesis and Autophagy. Cell Reports, 2013, 5, 1036-1046.	2.9	41

#	Article	IF	CITATIONS
73	Dynamic Amphiphile Libraries To Screen for the "Fragrant―Delivery of siRNA into HeLa Cells and Human Primary Fibroblasts. Journal of the American Chemical Society, 2013, 135, 9295-9298.	6.6	85
74	The Yeast P5 Type ATPase, Spf1, Regulates Manganese Transport into the Endoplasmic Reticulum. PLoS ONE, 2013, 8, e85519.	1.1	62
75	Lipidomic Profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii Reveals Critical Changes in Lipid Composition in Response to Acetic Acid Stress. PLoS ONE, 2013, 8, e73936.	1.1	104
76	Glycosylphosphatidylinositol. , 2013, , 2320-2323.		0
77	Loss of ceramide synthase 3 causes lethal skin barrier disruption. Human Molecular Genetics, 2012, 21, 586-608.	1.4	236
78	Activation of the unfolded protein response pathway causes ceramide accumulation in yeast and INS-1E insulinoma cells. Journal of Lipid Research, 2012, 53, 412-420.	2.0	36
79	Amphiphilic dynamic NDI and PDI probes: imaging microdomains in giant unilamellar vesicles. Organic and Biomolecular Chemistry, 2012, 10, 6087.	1.5	17
80	Glycosylphosphatidylinositol anchors regulate glycosphingolipid levels. Journal of Lipid Research, 2012, 53, 1522-1534.	2.0	41
81	Yeast as a model system for studying lipid homeostasis and function. FEBS Letters, 2012, 586, 2858-2867.	1.3	43
82	Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis. Nature Cell Biology, 2012, 14, 542-547.	4.6	303
83	An essential function of sphingolipids in yeast cell division. Molecular Microbiology, 2012, 84, 1018-1032.	1.2	52
84	Rsp5 Ubiquitin Ligase Is Required for Protein Trafficking in Saccharomyces cerevisiae COPI Mutants. PLoS ONE, 2012, 7, e39582.	1.1	18
85	NCCR Chemical Biology: Interdisciplinary Research Excellence, Outreach, Education, and New Tools for Switzerland. Chimia, 2011, 65, 832-834.	0.3	2
86	Chemical Biology Approaches to Membrane Homeostasis and Function. Chimia, 2011, 65, 849-852.	0.3	3
87	Conceptually New Entries into Cells. Chimia, 2011, 65, 853-858.	0.3	10
88	Disruption of the ceramide synthase LOH1 causes spontaneous cell death in <i>Arabidopsis thaliana</i> . New Phytologist, 2011, 192, 841-854.	3.5	90
89	A stable yeast strain efficiently producing cholesterol instead of ergosterol is functional for tryptophan uptake, but not weak organic acid resistance. Metabolic Engineering, 2011, 13, 555-569.	3.6	95
90	Two Pathways of Sphingolipid Biosynthesis Are Separated in the Yeast Pichia pastoris. Journal of Biological Chemistry, 2011, 286, 11401-11414.	1.6	58

#	Article	IF	CITATIONS
91	Sorting of GPI-anchored proteins into ER exit sites by p24 proteins is dependent on remodeled GPI. Journal of Cell Biology, 2011, 194, 61-75.	2.3	115
92	An efficient method for the production of isotopically enriched cholesterol for NMR. Journal of Lipid Research, 2011, 52, 1062-1065.	2.0	17
93	The yeast p24 complex regulates CPI-anchored protein transport and quality control by monitoring anchor remodeling. Molecular Biology of the Cell, 2011, 22, 2924-2936.	0.9	113
94	Distribution and Functions of Sterols and Sphingolipids. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004762-a004762.	2.3	158
95	A Systems Biology Approach Reveals the Role of a Novel Methyltransferase in Response to Chemical Stress and Lipid Homeostasis. PLoS Genetics, 2011, 7, e1002332.	1.5	21
96	Mathematical Modeling and Validation of the Ergosterol Pathway in Saccharomyces cerevisiae. PLoS ONE, 2011, 6, e28344.	1.1	22
97	Structure and Function of Sphingosine-1-Phosphate Lyase, a Key Enzyme of Sphingolipid Metabolism. Structure, 2010, 18, 1054-1065.	1.6	67
98	Survival strategies of a sterol auxotroph. Development (Cambridge), 2010, 137, 3675-3685.	1.2	125
99	Yeast Lipid Analysis and Quantification by Mass Spectrometry. Methods in Enzymology, 2010, 470, 369-391.	0.4	67
100	Protection of <i>C. elegans</i> from Anoxia by HYL-2 Ceramide Synthase. Science, 2009, 324, 381-384.	6.0	159
101	Functional Interactions between Sphingolipids and Sterols in Biological Membranes Regulating Cell Physiology. Molecular Biology of the Cell, 2009, 20, 2083-2095.	0.9	196
102	Concentration of GPIâ€Anchored Proteins upon ER Exit in Yeast. Traffic, 2009, 10, 186-200.	1.3	150
103	Methylation of the Sterol Nucleus by STRM-1 Regulates Dauer Larva Formation in Caenorhabditis elegans. Developmental Cell, 2009, 16, 833-843.	3.1	48
104	Chapter 13 Transport of GPlâ€Anchored Proteins. The Enzymes, 2009, 26, 269-288.	0.7	1
105	History of Biochemistry at the University of Geneva From the Boulevard des Philosophes to Quai Ernest-Ansermet. Chimia, 2009, 63, 826.	0.3	0
106	The Biochemistry Department of the University of Geneva: Understanding the Molecular Basis and Function of Intracellular Organization. Chimia, 2009, 63, 830.	0.3	0
107	Distinct acto/myosin-I structures associate with endocytic profiles at the plasma membrane. Journal of Cell Biology, 2008, 180, 1219-1232.	2.3	134
108	Identifying Key Residues of Sphinganine-1-phosphate Lyase for Function in Vivo and in Vitro. Journal of Biological Chemistry, 2008, 283, 20159-20169.	1.6	16

#	Article	IF	CITATIONS
109	Natamycin Blocks Fungal Growth by Binding Specifically to Ergosterol without Permeabilizing the Membrane. Journal of Biological Chemistry, 2008, 283, 6393-6401.	1.6	193
110	The yeast p24 complex is required for the formation of COPI retrograde transport vesicles from the Golgi apparatus. Journal of Cell Biology, 2008, 180, 713-720.	2.3	62
111	Yeast <i>ARV1</i> Is Required for Efficient Delivery of an Early GPI Intermediate to the First Mannosyltransferase during GPI Assembly and Controls Lipid Flow from the Endoplasmic Reticulum. Molecular Biology of the Cell, 2008, 19, 2069-2082.	0.9	97
112	The presence of an ER exit signal determines the protein sorting upon ER exit in yeast. Biochemical Journal, 2008, 414, 237-245.	1.7	8
113	The Long and Short of Fatty Acid Synthesis. Cell, 2007, 130, 587-588.	13.5	32
114	Sch9 Is a Major Target of TORC1 in Saccharomyces cerevisiae. Molecular Cell, 2007, 26, 663-674.	4.5	723
115	Proteasome-Independent Functions of Ubiquitin in Endocytosis and Signaling. Science, 2007, 315, 201-205.	6.0	1,073
116	Organization and functions of sphingolipid biosynthesis in yeast. Biochemical Society Transactions, 2006, 34, 367-369.	1.6	11
117	Transmembrane topology of ceramide synthase in yeast. Biochemical Journal, 2006, 398, 585-593.	1.7	82
118	Sphingoid Base Is Required for Translation Initiation during Heat Stress in Saccharomyces cerevisiae. Molecular Biology of the Cell, 2006, 17, 1164-1175.	0.9	65
119	TEDS Site Phosphorylation of the Yeast Myosins I Is Required for Ligand-induced but Not for Constitutive Endocytosis of the G Protein-coupled Receptor Ste2p. Journal of Biological Chemistry, 2006, 281, 11104-11114.	1.6	28
120	Sphingolipid Trafficking. , 2006, , 123-139.		0
121	Conformational changes in the Arp2/3 complex leading to actin nucleation. Nature Structural and Molecular Biology, 2005, 12, 26-31.	3.6	159
122	Lip1p: a novel subunit of acyl-CoA ceramide synthase. EMBO Journal, 2005, 24, 730-741.	3.5	137
123	The ins and outs of sphingolipid synthesis. Trends in Cell Biology, 2005, 15, 312-318.	3.6	299
124	Why Do Cells Require Heat Shock Proteins to Survive Heat Stress?. Cell Cycle, 2004, 3, 60-62.	1.3	60
125	Lipid pickup and delivery. Nature Cell Biology, 2004, 6, 15-16.	4.6	16
126	Sorting GPI-anchored proteins. Nature Reviews Molecular Cell Biology, 2004, 5, 110-120.	16.1	384

#	Article	IF	CITATIONS
127	Differential ER exit in yeast and mammalian cells. Current Opinion in Cell Biology, 2004, 16, 350-355.	2.6	52
128	Yeast Ras Regulates the Complex that Catalyzes the First Step in GPI-Anchor Biosynthesis at the ER. Cell, 2004, 117, 637-648.	13.5	63
129	Where sterols are required for endocytosis. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1666, 51-61.	1.4	87
130	Why do cells require heat shock proteins to survive heat stress?. Cell Cycle, 2004, 3, 61-3.	1.3	27
131	Increased ubiquitin-dependent degradation can replace the essential requirement for heat shock protein induction. EMBO Journal, 2003, 22, 3783-3791.	3.5	69
132	Genetic and biochemical interactions between the Arp2/3 complex, Cmd1p, casein kinase II, and Tub4p in yeast. FEMS Yeast Research, 2003, 4, 37-49.	1.1	20
133	Drs2p-related P-type ATPases Dnf1p and Dnf2p Are Required for Phospholipid Translocation across the Yeast Plasma Membrane and Serve a Role in Endocytosis. Molecular Biology of the Cell, 2003, 14, 1240-1254.	0.9	338
134	Lcb4p Is a Key Regulator of Ceramide Synthesis from Exogenous Long Chain Sphingoid Base in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2003, 278, 7325-7334.	1.6	60
135	The ER v-SNAREs are required for GPI-anchored protein sorting from other secretory proteins upon exit from the ER. Journal of Cell Biology, 2003, 162, 403-412.	2.3	57
136	Upstream of Growth and Differentiation Factor 1 (uog1), a Mammalian Homolog of the Yeast Longevity Assurance Gene 1 (LAG1), RegulatesN-Stearoyl-sphinganine (C18-(Dihydro)ceramide) Synthesis in a Fumonisin B1-independent Manner in Mammalian Cells. Journal of Biological Chemistry, 2002, 277, 35642-35649.	1.6	252
137	Scd5p and Clathrin Function Are Important for Cortical Actin Organization, Endocytosis, and Localization of Sla2p in Yeast. Molecular Biology of the Cell, 2002, 13, 2607-2625.	0.9	57
138	Multiple Functions of Sterols in Yeast Endocytosis. Molecular Biology of the Cell, 2002, 13, 2664-2680.	0.9	151
139	Sphingolipids Are Required for the Stable Membrane Association of Glycosylphosphatidylinositol-anchored Proteins in Yeast. Journal of Biological Chemistry, 2002, 277, 49538-49544.	1.6	95
140	Biosynthesis and Trafficking of Sphingolipids in the YeastSaccharomyces cerevisiaeâ€. Biochemistry, 2002, 41, 15105-15114.	1.2	65
141	The Rab GTPase Ypt1p and Tethering Factors Couple Protein Sorting at the ER to Vesicle Targeting to the Golgi Apparatus. Developmental Cell, 2002, 2, 307-317.	3.1	99
142	Ordering of Compartments in the Yeast Endocytic Pathway. Traffic, 2002, 3, 37-49.	1.3	59
143	Rho1p mutations specific for regulation of β(1→3)glucan synthesis and the order of assembly of the yeast cell wall. Molecular Microbiology, 2002, 44, 1167-1183.	1.2	36
144	The ubiquitin connection. Nature, 2002, 416, 381-383.	13.7	19

#	Article	IF	CITATIONS
145	Protein Sorting upon Exit from the Endoplasmic Reticulum. Cell, 2001, 104, 313-320.	13.5	227
146	Identification and characterization ofSaccharomyces cerevisiae mutants defective in fluid-phase endocytosis. Yeast, 2001, 18, 759-773.	0.8	57
147	Sphingoid base signaling via Pkh kinases is required for endocytosis in yeast. EMBO Journal, 2001, 20, 6783-6792.	3.5	162
148	Vesicular and nonvesicular transport of ceramide from ER to the Golgi apparatus in yeast. Journal of Cell Biology, 2001, 155, 949-960.	2.3	172
149	Rvs161p and Rvs167p, the Two Yeast Amphiphysin Homologs, Function Together in Vivo. Journal of Biological Chemistry, 2001, 276, 6016-6022.	1.6	54
150	Skp1p and the F-Box Protein Rcy1p Form a Non-SCF Complex Involved in Recycling of the SNARE Snc1p in Yeast. Molecular and Cellular Biology, 2001, 21, 3105-3117.	1.1	157
151	Lag1p and Lac1p Are Essential for the Acyl-CoA–dependent Ceramide Synthase Reaction in <i>Saccharomyces cerevisae</i> . Molecular Biology of the Cell, 2001, 12, 3417-3427.	0.9	263
152	Specific Retrieval of the Exocytic SNARE Snc1p from Early Yeast Endosomes. Molecular Biology of the Cell, 2000, 11, 23-38.	0.9	326
153	Functional Interactions between the p35 Subunit of the Arp2/3 Complex and Calmodulin in Yeast. Molecular Biology of the Cell, 2000, 11, 1113-1127.	0.9	43
154	The F-Box Protein Rcy1p Is Involved in Endocytic Membrane Traffic and Recycling Out of an Early Endosome in Saccharomyces cerevisiae. Journal of Cell Biology, 2000, 149, 397-410.	2.3	159
155	The Emp24 Complex Recruits a Specific Cargo Molecule into Endoplasmic Reticulum–Derived Vesicles. Journal of Cell Biology, 2000, 148, 925-930.	2.3	234
156	Gaa1p and Gpi8p Are Components of a Glycosylphosphatidylinositol (GPI) Transamidase That Mediates Attachment of GPI to Proteins. Molecular Biology of the Cell, 2000, 11, 1523-1533.	0.9	120
157	Protein and Lipid Requirements for Endocytosis. Annual Review of Genetics, 2000, 34, 255-295.	3.2	116
158	Pig-n, a Mammalian Homologue of Yeast Mcd4p, Is Involved in Transferring Phosphoethanolamine to the First Mannose of the Glycosylphosphatidylinositol. Journal of Biological Chemistry, 1999, 274, 35099-35106.	1.6	123
159	Specific Sterols Required for the Internalization Step of Endocytosis in Yeast. Molecular Biology of the Cell, 1999, 10, 3943-3957.	0.9	151
160	Clathrin functions in the absence of heterotetrameric adaptors and AP180-related proteins in yeast. EMBO Journal, 1999, 18, 3897-3908.	3.5	134
161	Distinct functions of calmodulin are required for the uptake step of receptor-mediated endocytosis in yeast: the type I myosin Myo5p is one of the calmodulin targets. EMBO Journal, 1998, 17, 635-647.	3.5	54
162	Conformation and Relative Configuration of a Very Potent Glycosylphosphatidylinositol-Anchoring Inhibitor with an Unusual Tricarbocyclic Sesterterpenoidδ-Lactone Skeleton from the FungusPaecilomyces inflatus. Helvetica Chimica Acta, 1998, 81, 2031-2042.	1.0	14

#	Article	IF	CITATIONS
163	A glycosylphosphatidylinositol-anchoring inhibitor with an unusual tetracarbocyclic sesterterpene skeleton from the fungus Codinaea simplex. Tetrahedron, 1998, 54, 6415-6426.	1.0	22
164	Protein traffic in the yeast endocytic and vacuolar protein sorting pathways. Current Opinion in Cell Biology, 1998, 10, 513-522.	2.6	164
165	Down regulation of yeast G protein-coupled receptors. Seminars in Cell and Developmental Biology, 1998, 9, 129-134.	2.3	12
166	A Yeast t-SNARE Involved in Endocytosis. Molecular Biology of the Cell, 1998, 9, 2873-2889.	0.9	83
167	Cytoplasmic Tail Phosphorylation of the α-Factor Receptor Is Required for Its Ubiquitination and Internalization. Journal of Cell Biology, 1998, 141, 349-358.	2.3	271
168	Morphology of the Yeast Endocytic Pathway. Molecular Biology of the Cell, 1998, 9, 173-189.	0.9	112
169	Saccharomyces cerevisiae GPI10, the functional homologue of human PIG-B, is required for glycosylphosphatidylinositol-anchor synthesis. Biochemical Journal, 1998, 332, 153-159.	1.7	84
170	The Ins and Outs of Protein Translocation. Science, 1997, 278, 1728-1729.	6.0	23
171	Linking cargo to vesicle formation: receptor tail interactions with coat proteins. Current Opinion in Cell Biology, 1997, 9, 488-495.	2.6	379
172	Identification of a species-specific inhibitor of glycosylphosphatidylinositol synthesis. EMBO Journal, 1997, 16, 6374-6383.	3.5	92
173	Ubiquitination of a Yeast Plasma Membrane Receptor Signals Its Ligand-Stimulated Endocytosis. Cell, 1996, 84, 277-287.	13.5	753
174	Actin-, myosin- and ubiquitin-dependent endocytosis. Experientia, 1996, 52, 1033-1041.	1.2	87
175	Transcriptional studies on yeastSEC genes provide no evidence for regulation at the transcriptional level. Yeast, 1995, 11, 901-911.	0.8	8
176	The Golgi-localization of yeast Emp47p depends on its di-lysine motif but is not affected by the ret1-1 mutation in alpha-COP Journal of Cell Biology, 1995, 131, 895-912.	2.3	174
177	The END3 gene encodes a protein that is required for the internalization step of endocytosis and for actin cytoskeleton organization in yeast. Biology of the Cell, 1995, 84, 119-119.	0.7	1
178	Endocytosis is required for the growth of vacuolar H(+)-ATPase-defective yeast: identification of six new END genes Journal of Cell Biology, 1994, 127, 373-386.	2.3	260
179	Rapid protein extraction fromSaccharomyces cerevisiae. Yeast, 1994, 10, 1305-1310.	0.8	154
180	Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell, 1994, 79, 1199-1207.	13.5	761

#	Article	IF	CITATIONS
181	Yeast endocytosis. Trends in Cell Biology, 1993, 3, 273-277.	3.6	77
182	Three clathrin-dependent budding steps and cell polarity. Trends in Cell Biology, 1993, 3, 330-332.	3.6	14
183	end3 and end4: two mutants defective in receptor-mediated and fluid-phase endocytosis in Saccharomyces cerevisiae Journal of Cell Biology, 1993, 120, 55-65.	2.3	377
184	Yeast pheromone receptor endocytosis and hyperphosphorylation are independent of G protein-mediated signal transduction. Cell, 1992, 71, 755-763.	13.5	73
185	Receptor-Mediated Endocytosis of α-Factor by S. Cerevisiae a Cells. , 1992, , 467-473.		0
186	[48] Yeast endocytosis assays. Methods in Enzymology, 1991, 194, 697-710.	0.4	194
187	Detection of an intermediate compartment involved in transport of alpha-factor from the plasma membrane to the vacuole in yeast Journal of Cell Biology, 1990, 110, 1911-1922.	2.3	117
188	Endocytosis in yeast. Trends in Biochemical Sciences, 1986, 11, 325-328.	3.7	32
189	Two yeast mutants defective in endocytosis are defective in pheromone response. Cell, 1986, 46, 355-364.	13.5	186
190	Biosynthesis of the Torpedo californica acetylcholine receptor alpha subunit in yeast. Science, 1986, 231, 1284-1287.	6.0	60
191	Endocytosis in yeast: Several of the yeast secretory mutants are defective in endocytosis. Cell, 1985, 40, 1001-1009.	13.5	290
192	Chapter 12 Biogenesis of energy-transducing systems. New Comprehensive Biochemistry, 1984, 9, 351-377.	0.1	2
193	Use of Immunological Techniques to Study Membrane Proteins. Current Topics in Bioenergetics, 1984, , 257-280.	2.7	2
194	Isolation, characterization and regulation of expression of the nuclear genes for the core II and Rieske iron-sulphur proteins of the yeast ubiquinol-cytochrome c reductase. Gene, 1983, 26, 261-272.	1.0	43
195	The outer membrane of yeast mitochondria: isolation of outside-out sealed vesicles. EMBO Journal, 1983, 2, 1105-1111.	3.5	125
196	Yeast mitochondrial outer membrane specifically binds cytoplasmically-synthesized precursors of mitochondrial proteins. EMBO Journal, 1983, 2, 1113-1118.	3.5	143
197	Regulation of Glyoxysomal Enzymes during Germination of Cucumber. Plant Physiology, 1980, 65, 40-46.	2.3	94
198	Regulation of Glyoxysomal Enzymes during Germination of Cucumber. FEBS Journal, 1980, 112, 469-477.	0.2	65

#	Article	IF	CITATIONS
199	Regulation of Glyoxysomal Enzymes during Germination of Cucumber. Plant Physiology, 1978, 62, 754-760.	2.3	69
200	Regulation of Glyoxysomal Enzymes during Germination of Cucumber. Plant Physiology, 1978, 62, 542-549.	2.3	101
201	Transcription and translation initiation frequencies of the Escherichia coli lac operon. Journal of Molecular Biology, 1977, 114, 1-21.	2.0	314