
S Jamal Mustafa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9420669/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adenosine and adenosine receptor-mediated action in coronary microcirculation. Basic Research in Cardiology, 2021, 116, 22.	2.5	27
2	Limonene-induced activation of A2A adenosine receptors reduces airway inflammation and reactivity in a mouse model of asthma. Purinergic Signalling, 2020, 16, 415-426.	1.1	13
3	Alteration of purinergic signaling in diabetes: Focus on vascular function. Journal of Molecular and Cellular Cardiology, 2020, 140, 1-9.	0.9	31
4	Activation of adenosine A2A but not A2B receptors is involved in uridine adenosine tetraphosphate-induced porcine coronary smooth muscle relaxation. Journal of Pharmacological Sciences, 2019, 141, 64-69.	1.1	9
5	Role of angiotensin II type 1 (AT1) and type 2 (AT2) receptors in airway reactivity and inflammation in an allergic mouse model of asthma. Immunopharmacology and Immunotoxicology, 2019, 41, 428-437.	1.1	8
6	Uridine adenosine tetraphosphate and purinergic signaling in cardiovascular system: An update. Pharmacological Research, 2019, 141, 32-45.	3.1	26
7	Enhanced A1 adenosine receptor-induced vascular contractions in mesenteric artery and aorta of in L-NAME mouse model of hypertension. European Journal of Pharmacology, 2019, 842, 111-117.	1.7	13
8	Differential Effects of Limonene on Inflammation via Activation of A 2A and A 2B Adenosine Receptors in Asthma. FASEB Journal, 2019, 33, 681.5.	0.2	0
9	Functional changes in vascular reactivity to adenosine receptor activation in type I diabetic mice. European Journal of Pharmacology, 2018, 820, 191-197.	1.7	9
10	Limoneneâ€induced Activation of A 2A Adenosine Receptors Reduces Airway Inflammation and Reactivity in a Mouse Model of Asthma. FASEB Journal, 2018, 32, 701.2.	0.2	0
11	Impaired Aortic Contractility to Uridine Adenosine Tetraphosphate in Angiotensin II-Induced Hypertensive Mice: Receptor Desensitization?. American Journal of Hypertension, 2017, 30, 304-312.	1.0	10
12	Divergent coronary flow responses to uridine adenosine tetraphosphate in atherosclerotic ApoE knockout mice. Purinergic Signalling, 2017, 13, 591-600.	1.1	5
13	Transcriptomic effects of adenosine 2A receptor deletion in healthy and endotoxemic murine myocardium. Purinergic Signalling, 2017, 13, 27-49.	1.1	10
14	In vivo assessment of coronary flow and cardiac function after bolus adenosine injection in adenosine receptor knockout mice. Physiological Reports, 2016, 4, e12818.	0.7	20
15	Enhanced A2A adenosine receptor-mediated increase in coronary flow in type I diabetic mice. Journal of Molecular and Cellular Cardiology, 2016, 90, 30-37.	0.9	13
16	Role of Adenosine Receptor(s) in the Control of Vascular Tone in the Mouse Pudendal Artery. Journal of Pharmacology and Experimental Therapeutics, 2016, 356, 673-680.	1.3	9
17	Angiotensin II stimulation alters vasomotor response to adenosine in mouse mesenteric artery: role for A ₁ and A _{2B} adenosine receptors. British Journal of Pharmacology, 2015, 172, 4959-4969.	2.7	21
18	Mechanisms underlying uridine adenosine tetraphosphate-induced vascular contraction in mouse aorta: Role of thromboxane and purinergic receptors. Vascular Pharmacology, 2015, 73, 78-85.	1.0	26

S JAMAL MUSTAFA

#	Article	IF	CITATIONS
19	The Contribution of Adenosine Receptor Subtypes to Vascular Tone in Mouse Pudendal Artery. FASEB Journal, 2015, 29, 627.1.	0.2	0
20	Hydrogen Sulfide (H 2 S): A Novel Mediator in Adenosine A 2A Receptorâ€induced Vasorelaxation. FASEB Journal, 2015, 29, 640.7.	0.2	0
21	Cytochrome Pâ€450 epoxygenase 2J2 modulates adenosine receptorâ€mediated vascular response in mouse mesenteric arteries. FASEB Journal, 2015, 29, 627.11.	0.2	Ο
22	Metabolic hyperemia requires ATP-sensitive K ⁺ channels and H ₂ O ₂ but not adenosine in isolated mouse hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1046-H1055.	1.5	9
23	Increased basal and adenosineâ€mediated coronary flow in ex vivo hearts from type I diabetic mice (1051.16). FASEB Journal, 2014, 28, 1051.16.	0.2	Ο
24	NADPH oxidase mediates altered vascular responses in allergic mice (1065.10). FASEB Journal, 2014, 28, 1065.10.	0.2	0
25	Losartan improves impaired vascular and endothelial responses in mice with allergic asthma. FASEB Journal, 2013, 27, 1107.19.	0.2	Ο
26	Modulation of vascular response by high salt intake depends on the presence or absence of adenosine A2A receptor using A2A ARâ€null mice. FASEB Journal, 2013, 27, 1092.4.	0.2	0
27	Adenosine A 1 receptor signaling inhibits BK channels. FASEB Journal, 2013, 27, 877.1.	0.2	Ο
28	Adenosine A2A receptor modulates vascular response in soluble epoxide hydrolaseâ€null mice through cyp2jâ€epoxygenases and PPARγ. FASEB Journal, 2013, 27, 1090.2.	0.2	0
29	A 1 Adenosine Receptor Negatively Modulates Coronary Reactive Hyperemia via Counteracting A 2A â€mediated H 2 O 2 Production and Opening of K ATP Channel in Isolated Mice Hearts. FASEB Journal, 2013, 27, 1185.1.	0.2	0
30	Salt modulates vascular response through cypâ€epoxygenases in the presence of A 2A AR. FASEB Journal, 2012, 26, 1115.6.	0.2	0
31	Cypâ€epoxygenases mediate adenosine A 2A receptor induced vascular relaxation via K ATP channels. FASEB Journal, 2012, 26, 670.1.	0.2	Ο
32	Role of Lâ€ŧype voltage dependent calcium and large conductance potassium channels in adenosine A 1 receptor mediated vasoconstriction through Cyp4a. FASEB Journal, 2012, 26, 870.17.	0.2	0
33	Interactions between A 2A adenosine receptor, hydrogen peroxide, and K ATP channel in coronary reactive hyperemia. FASEB Journal, 2012, 26, 863.6.	0.2	Ο
34	Disruption of soluble epoxide hydrolase modulates adenosineâ€induced response: role of adenosine A2A receptor and cypâ€epoxygenases. FASEB Journal, 2012, 26, 684.1.	0.2	0
35	Involvement of CYP4Aâ€mediated MAPK pathway in vascular contraction in A 2A adenosine receptor knockout mice. FASEB Journal, 2011, 25, 1021.6.	0.2	0
36	Selective activation of NADPH oxidase subunit 2 (NOX2) by A3 adenosine receptor in mouse aorta. FASEB Journal, 2011, 25, lb366.	0.2	0

S JAMAL MUSTAFA

#	Article	IF	CITATIONS
37	A 2A Adenosine Receptorâ€Mediated Coronary Flow Increase Is Enhanced in Hyperlipidemic Mice. FASEB Journal, 2010, 24, 1034.1.	0.2	0
38	Evidence for the role of A 2B adenosine receptor in the regulation of vascular tone using A 2B KO mice. FASEB Journal, 2010, 24, 958.2.	0.2	0
39	Role of A 1 adenosine receptors in vascular reactivity and inflammation in a murine model of allergic asthma. FASEB Journal, 2010, 24, 958.1.	0.2	Ο
40	Adenosine Receptors and the Heart: Role in Regulation of Coronary Blood Flow and Cardiac Electrophysiology. Handbook of Experimental Pharmacology, 2009, , 161-188.	0.9	203
41	Enhanced vascular relaxation through epoxygenase depends on ATPâ€sensitive K+ channels via adenosine A2A receptor: Role of high salt diet. FASEB Journal, 2009, 23, .	0.2	Ο
42	Understanding the role of A2B adenosine receptor using knockout in the regulation of coronary flow. FASEB Journal, 2009, 23, 1032.2.	0.2	0
43	Role of NADPH oxidase in A 3 adenosine receptorâ€mediated contraction using knockout mouse aorta. FASEB Journal, 2009, 23, 937.5.	0.2	Ο
44	Role of CYP2C generated metabolites in adenosineâ€mediated relaxation using A2A ARâ^'/â^' mice. FASEB Journal, 2008, 22, 964.23.	0.2	0
45	A1 adenosine receptorâ€activated protein kinase C signaling in A1 knockâ€out mice coronary artery smooth muscle cells. FASEB Journal, 2008, 22, 1152.11.	0.2	1
46	Adenosine A 2A receptor knockâ€out mice have impaired vasorelaxation and endothelial function. FASEB Journal, 2008, 22, 1128.12.	0.2	0
47	Involvement of COX-1 in A3 adenosine receptor-mediated contraction through endothelium in mice aorta. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H3448-H3455.	1.5	47
48	Effect of a Specific and Selective A2B Adenosine Receptor Antagonist on Adenosine Agonist AMP and Allergen-Induced Airway Responsiveness and Cellular Influx in a Mouse Model of Asthma. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 1246-1251.	1.3	94
49	A _{2A} Adenosine Receptorâ€Mediated Nitric Oxide Release Was Blunted in Knockout Mouse Heart. FASEB Journal, 2007, 21, A1381.	0.2	0
50	Adenosine A2A receptor mediated aortic relaxation in mice fed high salt: role of CYP epoxygenase. FASEB Journal, 2007, 21, A899.	0.2	0
51	Endotheliumâ€mediated contraction by A3 adenosine receptor agonist and its relationship to COXâ€1/COXâ€2 in A3KO mouse aorta. FASEB Journal, 2007, 21, A1381.	0.2	0
52	Effects of adenosine on vascular reactivity and inflammation in a murine model of allergic asthma. FASEB Journal, 2007, 21, A805.	0.2	0
53	Attenuation of adenosine receptorâ€mediated vasorelaxation by Lâ€NAME in mouse aorta. FASEB Journal, 2006, 20, LB17.	0.2	0
54	Role of A1 adenosine receptors in regulation of vascular tone. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H1411-H1416.	1.5	86

S JAMAL MUSTAFA

#	Article	IF	CITATIONS
55	Targeted deletion of adenosine A ₃ receptors augments adenosine-induced coronary flow in isolated mouse heart. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H2183-H2189.	1.5	67
56	Role of endothelium in adenosine receptor-mediated vasorelaxation in hypertensive rats. Fundamental and Clinical Pharmacology, 2001, 15, 325-334.	1.0	15
57	Chronic Salt Loading and the Expression of Adenosine Receptor Subtypes. Hypertension, 1999, 34, e18-9.	1.3	3
58	MODULATION OF A2AADENOSINE RECEPTOR(S) BY K+ATPCHANNELS IN BOVINE BRAIN STRIATAL MEMBRANES. Cell Biology International, 1999, 23, 519-522.	1.4	2
59	Coronary vasodilation by adenosine: Receptor subtypes and mechanism(s) of action. Drug Development Research, 1996, 39, 308-313.	1.4	17
60	Binding of A 1 Adenosine Receptor Ligand [3 H]8-Cyclopentyl-1,3-Dipropylxanthine in Coronary Smooth Muscle. Circulation Research, 1995, 77, 194-198.	2.0	29