Tak-Wah Lam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9420297/publications.pdf

Version: 2024-02-01

130 18,755 26 112
papers citations h-index g-index

151 151 151 26964 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	HKG: an open genetic variant database of 205 Hong Kong cantonese exomes. NAR Genomics and Bioinformatics, 2022, 4, Iqac005.	1.5	2
2	ECNano: A cost-effective workflow for target enrichment sequencing and accurate variant calling on 4800 clinically significant genes using a single MinION flowcell. BMC Medical Genomics, 2022, 15, 43.	0.7	7
3	Detecting structural variations with precise breakpoints using low-depth WGS data from a single oxford nanopore MinION flowcell. Scientific Reports, 2022, 12, 4519.	1.6	5
4	RENET2: high-performance full-text gene–disease relation extraction with iterative training data expansion. NAR Genomics and Bioinformatics, 2021, 3, lqab062.	1.5	4
5	Scheduling with gaps: new models and algorithms. Journal of Scheduling, 2021, 24, 381-403.	1.3	1
6	Building a Chinese pan-genome of 486 individuals. Communications Biology, 2021, 4, 1016.	2.0	13
7	Identification of Cooperative Gene Regulation Among Transcription Factors, LncRNAs, and MicroRNAs in Diabetic Nephropathy Progression. Frontiers in Genetics, 2020, 11, 1008.	1.1	8
8	CONNET: Accurate Genome Consensus in Assembling Nanopore Sequencing Data via Deep Learning. IScience, 2020, 23, 101128.	1.9	5
9	MegaPath: sensitive and rapid pathogen detection using metagenomic NGS data. BMC Genomics, 2020, 21, 500.	1.2	6
10	Exploring the limit of using a deep neural network on pileup data for germline variant calling. Nature Machine Intelligence, 2020, 2, 220-227.	8.3	87
11	Translocator., 2020, , .		O
12	RENET: A Deep Learning Approach for Extracting Gene-Disease Associations from Literature. Lecture Notes in Computer Science, 2019, , 272-284.	1.0	45
13	A multi-task convolutional deep neural network for variant calling in single molecule sequencing. Nature Communications, 2019, 10, 998.	5.8	102
14	Potential utility of metagenomic sequencing for improving etiologic diagnosis of infective endocarditis. Future Cardiology, 2019, 15, 411-424.	0.5	15
15	Dictionary Matching with a Bounded Gap in Pattern or in Text. Algorithmica, 2018, 80, 698-713.	1.0	6
16	Draft Genome Sequence of Helicobacter cinaedi, Compiled by Direct Whole-Genome Sequencing of a Blood Culture-Positive Isolate in Hong Kong. Microbiology Resource Announcements, 2018, 7, .	0.3	1
17	Transcriptome Analysis of Acute Phase Liver Graft Injury in Liver Transplantation. Biomedicines, 2018, 6, 41.	1.4	5
18	AC-DIAMOND v1: accelerating large-scale DNA–protein alignment. Bioinformatics, 2018, 34, 3744-3746.	1.8	8

#	Article	IF	Citations
19	Serine peptidase inhibitor Kazal type 1 (SPINK1) as novel downstream effector of the cadherin- $17\hat{l}^2$ -catenin axis in hepatocellular carcinoma. Cellular Oncology (Dordrecht), 2017, 40, 443-456.	2.1	13
20	A simple and economical method for improving whole genome alignment. BMC Genomics, 2017, 18, 362.	1.2	3
21	MegaGTA: a sensitive and accurate metagenomic gene-targeted assembler using iterative de Bruijn graphs. BMC Bioinformatics, 2017, 18, 408.	1.2	11
22	AC-DIAMOND: Accelerating Protein Alignment via Better SIMD Parallelization and Space-Efficient Indexing. Lecture Notes in Computer Science, 2016, , 426-433.	1.0	1
23	BASE: a practical de novo assembler for large genomes using long NGS reads. BMC Genomics, 2016, 17, 499.	1.2	6
24	PnpProbs: a better multiple sequence alignment tool by better handling of guide trees. BMC Bioinformatics, 2016, 17, 285.	1.2	3
25	MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods, 2016, 102, 3-11.	1.9	1,174
26	Guest Editors Foreword. Algorithmica, 2015, 73, 621-622.	1.0	0
27	MICA: A fast short-read aligner that takes full advantage of Many Integrated Core Architecture (MIC). BMC Bioinformatics, 2015, 16, S10.	1.2	14
28	Improving multiple sequence alignment by using better guide trees. BMC Bioinformatics, 2015, 16, S4.	1.2	5
29	A simple and economical method for improving whole-genome alignment. , $2015, \ldots$		0
30	MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct <i>de Bruijn</i> graph. Bioinformatics, 2015, 31, 1674-1676.	1.8	4,864
31	Scheduling with Gaps: New Models and Algorithms. Lecture Notes in Computer Science, 2015, , 114-126.	1.0	4
32	GLProbs: Aligning Multiple Sequences Adaptively. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12, 67-78.	1.9	23
33	database.bio: a web application for interpreting human variations. Bioinformatics, 2015, 31, 4035-4037.	1.8	9
34	Non-clairvoyant Weighted Flow Time Scheduling on Different Multi-processor Models. Theory of Computing Systems, 2015, 56, 82-95.	0.7	1
35	Compressing Dictionary Matching Index via Sparsification Technique. Algorithmica, 2015, 72, 515-538.	1.0	6
36	Dictionary Matching with Uneven Gaps. Lecture Notes in Computer Science, 2015, , 247-260.	1.0	1

#	Article	IF	Citations
37	From Peer-Reviewed to Peer-Reproduced in Scholarly Publishing: The Complementary Roles of Data Models and Workflows in Bioinformatics. PLoS ONE, 2015, 10, e0127612.	1.1	27
38	FaSD-somatic: a fast and accurate somatic SNV detection algorithm for cancer genome sequencing data. Bioinformatics, 2014, 30, 2498-2500.	1.8	18
39	SOAPdenovo-Trans: <i>de novo</i> transcriptome assembly with short RNA-Seq reads. Bioinformatics, 2014, 30, 1660-1666.	1.8	826
40	BALSA: integrated secondary analysis for whole-genome and whole-exome sequencing, accelerated by GPU. PeerJ, 2014, 2, e421.	0.9	16
41	Online Speed Scaling Based on Active Job Count to Minimize Flow Plus Energy. Algorithmica, 2013, 65, 605-633.	1.0	6
42	Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. GigaScience, 2013, 2, 10.	3.3	582
43	Scheduling for weighted flow time and energy with rejection penalty. Theoretical Computer Science, 2013, 470, 93-104.	0.5	5
44	SOAPfusion: a robust and effective computational fusion discovery tool for RNA-seq reads. Bioinformatics, 2013, 29, 2971-2978.	1.8	23
45	GLProbs., 2013,,.		1
46	Nonclairvoyant sleep management and flow-time scheduling on multiple processors. , 2013, , .		4
47	SOAP3-dp: Fast, Accurate and Sensitive GPU-Based Short Read Aligner. PLoS ONE, 2013, 8, e65632.	1.1	104
48	LCR_Finder: A de Novo Low Copy Repeat Finder for Human Genome. Lecture Notes in Computer Science, 2013, , 125-136.	1.0	0
49	Efficient SNP-sensitive alignment and database-assisted SNP calling for low coverage samples. , 2012, , .		0
50	Non-clairvoyant weighted flow time scheduling with rejection penalty. , 2012, , .		1
51	COPE: an accurate <i>k</i> -mer-based pair-end reads connection tool to facilitate genome assembly. Bioinformatics, 2012, 28, 2870-2874.	1.8	145
52	SOAP3: ultra-fast GPU-based parallel alignment tool for short reads. Bioinformatics, 2012, 28, 878-879.	1.8	200
53	SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience, 2012, 1, 18.	3.3	4,510
54	Improved multi-processor scheduling forÂflow time andÂenergy. Journal of Scheduling, 2012, 15, 105-116.	1.3	12

#	Article	IF	CITATIONS
55	Continuous Monitoring of Distributed Data Streams over a Time-Based Sliding Window. Algorithmica, 2012, 62, 1088-1111.	1.0	21
56	Online Flow Time Scheduling in the Presence of Preemption Overhead. Lecture Notes in Computer Science, 2012, , 85-97.	1.0	1
57	Non-clairvoyant Weighted Flow Time Scheduling on Different Multi-processor Models. Lecture Notes in Computer Science, 2012, , 137-149.	1.0	1
58	Structural Alignment of RNA with Complex Pseudoknot Structure. Journal of Computational Biology, 2011, 18, 97-108.	0.8	21
59	Next generation sequencing has lower sequence coverage and poorer SNP-detection capability in the regulatory regions. Scientific Reports, 2011, 1, 55.	1.6	67
60	Approximating Frequent Items in Asynchronous Data Stream over a Sliding Window. Algorithms, 2011, 4, 200-222.	1.2	3
61	SOAPsplice: Genome-Wide ab initio Detection of Splice Junctions from RNA-Seq Data. Frontiers in Genetics, 2011, 2, 46.	1.1	89
62	Tradeoff between energy and throughput for online deadline scheduling. Sustainable Computing: Informatics and Systems, 2011, 1, 189-195.	1.6	2
63	A linear size index for approximate pattern matching. Journal of Discrete Algorithms, 2011, 9, 358-364.	0.7	14
64	Nonclairvoyant Speed Scaling for Flow and Energy. Algorithmica, 2011, 61, 507-517.	1.0	19
65	Cache-oblivious index for approximate string matching. Theoretical Computer Science, 2011, 412, 3579-3588.	0.5	7
66	Detection of novel tandem duplication with next-generation sequencing. , $2011, \ldots$		1
67	Algorithms for pseudoknot classification. , 2011, , .		0
68	Sleep Management on Multiple Machines for Energy and Flow Time. Lecture Notes in Computer Science, 2011, , 219-231.	1.0	5
69	RNASAlign: RNA Structural Alignment System. Bioinformatics, 2011, 27, 2151-2152.	1.8	5
70	Energy-Efficient Due Date Scheduling. Lecture Notes in Computer Science, 2011, , 69-80.	1.0	1
71	Compressed Indexes forÂApproximate String Matching. Algorithmica, 2010, 58, 263-281.	1.0	22
72	Deadline scheduling and power management for speed bounded processors. Theoretical Computer Science, 2010, 411, 3587-3600.	0.5	27

#	Article	IF	Citations
73	The sequence and de novo assembly of the giant panda genome. Nature, 2010, 463, 311-317.	13.7	1,058
74	Approximating Frequent Items in Asynchronous Data Stream over a Sliding Window. Lecture Notes in Computer Science, 2010, , 49-61.	1.0	2
75	Non-clairvoyant Speed Scaling for Weighted Flow Time. Lecture Notes in Computer Science, 2010, , 23-35.	1.0	16
76	Adjacent Nucleotide Dependence in ncRNA and Order-1 SCFG for ncRNA Identification. PLoS ONE, 2010, 5, e12848.	1.1	2
77	Optimizing throughput and energy in online deadline scheduling. ACM Transactions on Algorithms, 2009, 6, 1-22.	0.9	27
78	SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 2009, 25, 1966-1967.	1.8	3,329
79	Succinct Text Indexing with Wildcards. Lecture Notes in Computer Science, 2009, , 39-50.	1.0	22
80	Succinct Index for Dynamic Dictionary Matching. Lecture Notes in Computer Science, 2009, , 1034-1043.	1.0	12
81	Improved Approximate String Matching UsingÂCompressed Suffix Data Structures. Algorithmica, 2008, 51, 298-314.	1.0	13
82	Compressed Index for Dictionary Matching. , 2008, , .		21
83	Extra Unit-Speed Machines Are Almost as Powerful as Speedy Machines for Flow Time Scheduling. SIAM Journal on Computing, 2008, 37, 1595-1612.	0.8	1
84	Nonmigratory Multiprocessor Scheduling for Response Time and Energy. IEEE Transactions on Parallel and Distributed Systems, 2008, 19, 1527-1539.	4.0	7
85	FINDING ALTERNATIVE SPLICING PATTERNS WITH STRONG SUPPORT FROM EXPRESSED SEQUENCES ON INDIVIDUAL EXONS/INTRONS. Journal of Bioinformatics and Computational Biology, 2008, 06, 1021-1033.	0.3	4
86	Competitive non-migratory scheduling for flow time and energy. , 2008, , .		23
87	Scheduling for Speed Bounded Processors. Lecture Notes in Computer Science, 2008, , 409-420.	1.0	65
88	Speed Scaling Functions for Flow Time Scheduling Based on Active Job Count. Lecture Notes in Computer Science, 2008, , 647-659.	1.0	49
89	Compressed indexes for dynamic text collections. ACM Transactions on Algorithms, 2007, 3, 21.	0.9	69
90	A Space and Time Efficient Algorithm for Constructing Compressed Suffix Arrays. Algorithmica, 2007, 48, 23-36.	1.0	59

#	Article	IF	Citations
91	Space Efficient Indexes for String Matching with Don't Cares. , 2007, , 846-857.		17
92	A MEMORY EFFICIENT ALGORITHM FOR STRUCTURAL ALIGNMENT OF RNAs WITH EMBEDDED SIMPLE PSEUDOKNOTS. , 2007, , .		2
93	RECONSTRUCTING AN ULTRAMETRIC GALLED PHYLOGENETIC NETWORK FROM A DISTANCE MATRIX. Journal of Bioinformatics and Computational Biology, 2006, 04, 807-832.	0.3	19
94	A Linear Size Index for Approximate Pattern Matching. Lecture Notes in Computer Science, 2006, , 49-59.	1.0	19
95	Compressed Indexes for Approximate String Matching. Lecture Notes in Computer Science, 2006, , 208-219.	1.0	3
96	Extra unit-speed machines are almost as powerful as speedy machines for competitive flow time scheduling., 2006,,.		0
97	On-line Stream Merging with Max Span and Min Coverage. Theory of Computing Systems, 2005, 38, 461-479.	0.7	1
98	A Tighter Extra-Resource Analysis of Online Deadline Scheduling. Journal of Combinatorial Optimization, 2005, 9, 157-165.	0.8	1
99	Nonmigratory Online Deadline Scheduling on Multiprocessors. SIAM Journal on Computing, 2005, 34, 669-682.	0.8	11
100	Improved Approximate String Matching Using Compressed Suffix Data Structures. Lecture Notes in Computer Science, 2005, , 339-348.	1.0	10
101	Approximate String Matching Using Compressed Suffix Arrays. Lecture Notes in Computer Science, 2004, , 434-444.	1.0	16
102	SUBTREE TRANSFER DISTANCE FOR DEGREE-D PHYLOGENIES. International Journal of Foundations of Computer Science, 2004, 15, 893-909.	0.8	4
103	Aggressive Online Deadline Scheduling. Electronic Notes in Theoretical Computer Science, 2004, 91, 148-157.	0.9	0
104	Extra Processors versus Future Information in Optimal Deadline Scheduling. Theory of Computing Systems, 2004, 37, 323-341.	0.7	4
105	Performance guarantee for edf under overload. Journal of Algorithms, 2004, 52, 193-206.	0.9	13
106	Non-shared edges and nearest neighbor interchanges revisited. Information Processing Letters, 2004, 91, 129-134.	0.4	5
107	Competitive Deadline Scheduling via Additional or Faster Processors. Journal of Scheduling, 2003, 6, 213-223.	1.3	1
108	Improving the efficiency of parallel minimum spanning tree algorithms. Discrete Applied Mathematics, 2003, 126, 33-54.	0.5	9

#	Article	IF	CITATIONS
109	On-line stream merging in a general setting. Theoretical Computer Science, 2003, 296, 27-46.	0.5	7
110	Predicting RNA Secondary Structures with Arbitrary Pseudoknots by Maximizing the Number of Stacking Pairs. Journal of Computational Biology, 2003, 10, 981-995.	0.8	48
111	Extra processors versus future information in optimal deadline scheduling. , 2002, , .		9
112	Automatic construction of online catalog topologies. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2002, 32, 382-391.	3.3	8
113	Optimal Edge Ranking of Trees in Linear Time. Algorithmica, 2001, 30, 12-33.	1.0	25
114	A Decomposition Theorem for Maximum Weight Bipartite Matchings. SIAM Journal on Computing, 2001, $31,18\text{-}26.$	0.8	42
115	Predicting RNA secondary structures with arbitrary pseudoknots by maximizing the number of stacking pairs. , 2001 , , .		7
116	An Even Faster and More Unifying Algorithm for Comparing Trees via Unbalanced Bipartite Matchings. Journal of Algorithms, 2001, 40, 212-233.	0.9	50
117	APPROXIMATING THE NEAREST NEIGHBOR INTERCHARGE DISTANCE FOR NON-UNIFORM-DEGREE EVOLUTIONARY TREES. International Journal of Foundations of Computer Science, 2001, 12, 533-550.	0.8	4
118	Cavity Matchings, Label Compressions, and Unrooted Evolutionary Trees. SIAM Journal on Computing, 2000, 30, 602-624.	0.8	9
119	Unbalanced and Hierarchical Bipartite Matchings with Applications to Labeled Tree Comparison. Lecture Notes in Computer Science, 2000, , 479-490.	1.0	0
120	Improved Phylogeny Comparisons: Non-shared Edges, Nearest Neighbor Interchanges, and Subtree Transfers. Lecture Notes in Computer Science, 2000, , 527-538.	1.0	0
121	A Decomposition Theorem for MaximumWeight Bipartite Matchings with Applications to Evolutionary Trees. Lecture Notes in Computer Science, 1999, , 438-449.	1.0	16
122	Approximating the Nearest Neighbor Interchange Distance for Evolutionary Trees with Non-uniform Degrees. Lecture Notes in Computer Science, 1999, , 61-70.	1.0	2
123	General techniques for comparing unrooted evolutionary trees. , 1997, , .		11
124	Finding Connected Components in O(log n log log n) Time on the EREW PRAM. Journal of Algorithms, 1995, 18, 378-402.	0.9	37
125	Results on communication complexity classes. Journal of Computer and System Sciences, 1992, 44, 324-342.	0.9	11
126	Trade-offs between communication and space. Journal of Computer and System Sciences, 1992, 45, 296-315.	0.9	8

#	ARTICLE	IF	CITATIONS
127	Construction of online catalog topologies using decision trees. , 0, , .		3
128	On the speed requirement for optimal deadline scheduling in overloaded systems. , 0, , .		1
129	A 5-competitive on-line scheduler for merging video streams. , 0, , .		1
130	Compressed index for dynamic text., 0,,.		0