
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9420012/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Community Climate System Model Version 4. Journal of Climate, 2011, 24, 4973-4991.	3.2	2,428
2	The Community Earth System Model (CESM) Large Ensemble Project: A Community Resource for Studying Climate Change in the Presence of Internal Climate Variability. Bulletin of the American Meteorological Society, 2015, 96, 1333-1349.	3.3	1,723
3	The Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001916.	3.8	935
4	Decadal Prediction. Bulletin of the American Meteorological Society, 2009, 90, 1467-1486.	3.3	662
5	Coordinated Ocean-ice Reference Experiments (COREs). Ocean Modelling, 2009, 26, 1-46.	2.4	573
6	The CCSM4 Ocean Component. Journal of Climate, 2012, 25, 1361-1389.	3.2	497
7	Decadal Climate Prediction: An Update from the Trenches. Bulletin of the American Meteorological Society, 2014, 95, 243-267.	3.3	454
8	Sensitivity to Surface Forcing and Boundary Layer Mixing in a Global Ocean Model: Annual-Mean Climatology. Journal of Physical Oceanography, 1997, 27, 2418-2447.	1.7	410
9	JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do). Ocean Modelling, 2018, 130, 79-139.	2.4	357
10	North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states. Ocean Modelling, 2014, 73, 76-107.	2.4	320
11	A Review of the Role of the Atlantic Meridional Overturning Circulation in Atlantic Multidecadal Variability and Associated Climate Impacts. Reviews of Geophysics, 2019, 57, 316-375.	23.0	298
12	The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geoscientific Model Development, 2016, 9, 3751-3777.	3.6	282
13	Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations. Ocean Modelling, 2011, 39, 61-78.	2.4	269
14	The Role of Mesoscale Tracer Transports in the Global Ocean Circulation. Science, 1994, 264, 1123-1126.	12.6	256
15	High Climate Sensitivity in the Community Earth System Model Version 2 (CESM2). Geophysical Research Letters, 2019, 46, 8329-8337.	4.0	249
16	Climate Process Team on Internal Wave–Driven Ocean Mixing. Bulletin of the American Meteorological Society, 2017, 98, 2429-2454.	3.3	235
17	Attribution and Impacts of Upper-Ocean Biases in CCSM3. Journal of Climate, 2006, 19, 2325-2346.	3.2	225
18	Sensitivity of the Global Ocean Circulation to Parameterizations of Mesoscale Tracer Transports. Journal of Climate, 1995, 8, 2967-2987.	3.2	223

#	Article	IF	CITATIONS
19	OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project. Geoscientific Model Development, 2016, 9, 3231-3296.	3.6	223
20	A Decadal Prediction Case Study: Late Twentieth-Century North Atlantic Ocean Heat Content. Journal of Climate, 2012, 25, 5173-5189.	3.2	212
21	Climate Sensitivity of the Community Climate System Model, Version 4. Journal of Climate, 2012, 25, 3053-3070.	3.2	190
22	The NCAR Climate System Model Global Ocean Component*. Journal of Climate, 1998, 11, 1287-1306.	3.2	188
23	Assessing the Climate Impacts of the Observed Atlantic Multidecadal Variability Using the GFDL CM2.1 and NCAR CESM1 Global Coupled Models. Journal of Climate, 2017, 30, 2785-2810.	3.2	170
24	Diurnal Coupling in the Tropical Oceans of CCSM3. Journal of Climate, 2006, 19, 2347-2365.	3.2	169
25	Predicting Near-Term Changes in the Earth System: A Large Ensemble of Initialized Decadal Prediction Simulations Using the Community Earth System Model. Bulletin of the American Meteorological Society, 2018, 99, 1867-1886.	3.3	166
26	North Atlantic climate far more predictable than models imply. Nature, 2020, 583, 796-800.	27.8	158
27	Improving Oceanic Overflow Representation in Climate Models: The Gravity Current Entrainment Climate Process Team. Bulletin of the American Meteorological Society, 2009, 90, 657-670.	3.3	153
28	Variability of the Atlantic Meridional Overturning Circulation in CCSM4. Journal of Climate, 2012, 25, 5153-5172.	3.2	147
29	The Impact of Oceanic Near-Inertial Waves on Climate. Journal of Climate, 2013, 26, 2833-2844.	3.2	141
30	Equatorial Circulation of a Global Ocean Climate Model with Anisotropic Horizontal Viscosity. Journal of Physical Oceanography, 2001, 31, 518-536.	1.7	137
31	Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP). Geoscientific Model Development, 2017, 10, 2169-2199.	3.6	137
32	Comment on "The Atlantic Multidecadal Oscillation without a role for ocean circulation― Science, 2016, 352, 1527-1527.	12.6	136
33	Robust skill of decadal climate predictions. Npj Climate and Atmospheric Science, 2019, 2, .	6.8	136
34	Challenges and Prospects in Ocean Circulation Models. Frontiers in Marine Science, 2019, 6, .	2.5	133
35	North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean Modelling, 2016, 97, 65-90.	2.4	131
36	Ubiquity of human-induced changes in climate variability. Earth System Dynamics, 2021, 12, 1393-1411.	7.1	131

#	Article	IF	CITATIONS
37	The Low-Resolution CCSM4. Journal of Climate, 2012, 25, 3993-4014.	3.2	125
38	Equilibrium Climate Sensitivity: Is It Accurate to Use a Slab Ocean Model?. Journal of Climate, 2009, 22, 2494-2499.	3.2	122
39	Atlantic Meridional Overturning Circulation: Observed Transport and Variability. Frontiers in Marine Science, 2019, 6, .	2.5	120
40	Climate impacts of parameterized Nordic Sea overflows. Journal of Geophysical Research, 2010, 115, .	3.3	119
41	Projected Future Changes in Tropical Cyclones Using the CMIP6 HighResMIP Multimodel Ensemble. Geophysical Research Letters, 2020, 47, e2020CL088662.	4.0	119
42	The Origins of Late-Twentieth-Century Variations in the Large-Scale North Atlantic Circulation. Journal of Climate, 2014, 27, 3222-3247.	3.2	118
43	Effects of vertical variations of thickness diffusivity in an ocean general circulation model. Ocean Modelling, 2007, 18, 122-141.	2.4	117
44	Current and Emerging Developments in Subseasonal to Decadal Prediction. Bulletin of the American Meteorological Society, 2020, 101, E869-E896.	3.3	116
45	Predicted slowdown in the rate of Atlantic sea ice loss. Geophysical Research Letters, 2015, 42, 10,704.	4.0	113
46	On Multidecadal Variability of the Atlantic Meridional Overturning Circulation in the Community Climate System Model Version 3. Journal of Climate, 2008, 21, 5524-5544.	3.2	109
47	An Overlooked Problem in Model Simulations of the Thermohaline Circulation and Heat Transport in the Atlantic Ocean. Journal of Climate, 1995, 8, 515-523.	3.2	108
48	Potential role of the ocean thermostat in determining regional differences in coral reef bleaching events. Geophysical Research Letters, 2008, 35, .	4.0	108
49	Response to Increasing Southern Hemisphere Winds in CCSM4. Journal of Climate, 2011, 24, 4992-4998.	3.2	108
50	An assessment of Antarctic Circumpolar Current and Southern Ocean meridional overturning circulation during 1958–2007 in a suite of interannual CORE-II simulations. Ocean Modelling, 2015, 93, 84-120.	2.4	107
51	Ocean general circulation model sensitivity to forcing from scatterometer winds. Journal of Geophysical Research, 1999, 104, 11337-11358.	3.3	106
52	An assessment of global and regional sea level for years 1993–2007 in a suite of interannual CORE-II simulations. Ocean Modelling, 2014, 78, 35-89.	2.4	106
53	CCSM–CAM3 Climate Simulation Sensitivity to Changes in Horizontal Resolution. Journal of Climate, 2006, 19, 2267-2289.	3.2	105
54	An Unprecedented Set of Highâ€Resolution Earth System Simulations for Understanding Multiscale Interactions in Climate Variability and Change. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002298.	3.8	104

#	Article	IF	CITATIONS
55	Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geoscientific Model Development, 2020, 13, 3643-3708.	3.6	99
56	Ocean viscosity and climate. Journal of Geophysical Research, 2008, 113, .	3.3	92
57	Langmuir mixing effects on global climate: WAVEWATCH III in CESM. Ocean Modelling, 2016, 103, 145-160.	2.4	91
58	Response of the North Atlantic Thermohaline Circulation and Ventilation to Increasing Carbon Dioxide in CCSM3. Journal of Climate, 2006, 19, 2382-2397.	3.2	89
59	Comparison of the Atlantic meridional overturning circulation between 1960 and 2007 in six ocean reanalysis products. Climate Dynamics, 2017, 49, 957-982.	3.8	89
60	Low-Frequency North Atlantic Climate Variability in the Community Earth System Model Large Ensemble. Journal of Climate, 2018, 31, 787-813.	3.2	86
61	Equilibrium Climate Sensitivity Estimated by Equilibrating Climate Models. Geophysical Research Letters, 2020, 47, e2019GL083898.	4.0	84
62	Mechanisms Governing Interannual Variability of Upper-Ocean Temperature in a Global Ocean Hindcast Simulation. Journal of Physical Oceanography, 2007, 37, 1918-1938.	1.7	83
63	An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part III: Hydrography and fluxes. Ocean Modelling, 2016, 100, 141-161.	2.4	81
64	Sensitivity of an Ocean General Circulation Model to a Parameterization of Near-Surface Eddy Fluxes. Journal of Climate, 2008, 21, 1192-1208.	3.2	79
65	Atlantic and Pacific tropics connected by mutually interactive decadal-timescale processes. Nature Geoscience, 2021, 14, 36-42.	12.9	76
66	Impact of horizontal resolution on global ocean–sea ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geoscientific Model Development, 2020, 13, 4595-4637.	3.6	75
67	Approach to Equilibrium in Accelerated Global Oceanic Models. Journal of Climate, 1996, 9, 1092-1110.	3.2	68
68	An assessment of Southern Ocean water masses and sea ice during 1988–2007 in a suite of interannual CORE-II simulations. Ocean Modelling, 2015, 94, 67-94.	2.4	68
69	The Atlantic Meridional Heat Transport at 26.5°N and Its Relationship with the MOC in the RAPID Array and the GFDL and NCAR Coupled Models. Journal of Climate, 2013, 26, 4335-4356.	3.2	67
70	LongRunMIP: Motivation and Design for a Large Collection of Millennial-Length AOGCM Simulations. Bulletin of the American Meteorological Society, 2019, 100, 2551-2570.	3.3	65
71	An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part I: Sea ice and solid freshwater. Ocean Modelling, 2016, 99, 110-132.	2.4	64
72	The KPP Boundary Layer Scheme for the Ocean: Revisiting Its Formulation and Benchmarking Oneâ€Đimensional Simulations Relative to LES. Journal of Advances in Modeling Earth Systems, 2018, 10, 2647-2685.	3.8	62

#	Article	IF	CITATIONS
73	Comparing Ocean Surface Boundary Vertical Mixing Schemes Including Langmuir Turbulence. Journal of Advances in Modeling Earth Systems, 2019, 11, 3545-3592.	3.8	62
74	Climate Feedbacks in CCSM3 under Changing CO2 Forcing. Part II: Variation of Climate Feedbacks and Sensitivity with Forcing. Journal of Climate, 2013, 26, 2784-2795.	3.2	59
75	An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part II: Liquid freshwater. Ocean Modelling, 2016, 99, 86-109.	2.4	58
76	Impacts of the Atlantic Multidecadal Variability on North American Summer Climate and Heat Waves. Journal of Climate, 2018, 31, 3679-3700.	3.2	57
77	Sensitivity of Atlantic Meridional Overturning Circulation Variability to Parameterized Nordic Sea Overflows in CCSM4. Journal of Climate, 2012, 25, 2077-2103.	3.2	55
78	Spatial simulation of instability control by periodic suction blowing. Physics of Fluids A, Fluid Dynamics, 1991, 3, 2138-2147.	1.6	54
79	Climate Feedbacks in CCSM3 under Changing CO2 Forcing. Part I: Adapting the Linear Radiative Kernel Technique to Feedback Calculations for a Broad Range of Forcings. Journal of Climate, 2012, 25, 5260-5272.	3.2	52
80	100 Years of Earth System Model Development. Meteorological Monographs, 2019, 59, 12.1-12.66.	5.0	48
81	Effects of different closures for thickness diffusivity. Ocean Modelling, 2009, 26, 47-59.	2.4	47
82	Computation of convective flow with gravity modulation in rectangular cavities. Journal of Thermophysics and Heat Transfer, 1990, 4, 357-365.	1.6	45
83	Transport of 137Cs to the Southern Hemisphere in an ocean general circulation model. Progress in Oceanography, 2011, 89, 38-48.	3.2	45
84	An Ensemble Adjustment Kalman Filter for the CCSM4 Ocean Component. Journal of Climate, 2013, 26, 7392-7413.	3.2	44
85	Ocean Chlorofluorocarbon and Heat Uptake during the Twentieth Century in the CCSM3. Journal of Climate, 2006, 19, 2366-2381.	3.2	42
86	Local and Downstream Relationships between Labrador Sea Water Volume and North Atlantic Meridional Overturning Circulation Variability. Journal of Climate, 2019, 32, 3883-3898.	3.2	41
87	An outsized role for the Labrador Sea in the multidecadal variability of the Atlantic overturning circulation. Science Advances, 2021, 7, eabh3592.	10.3	41
88	JRA55-do-based repeat year forcing datasets for driving ocean–sea-ice models. Ocean Modelling, 2020, 147, 101557.	2.4	40
89	Effects of Model Resolution, Physics, and Coupling on Southern Hemisphere Storm Tracks in CESM1.3. Geophysical Research Letters, 2019, 46, 12408-12416.	4.0	39
90	A 2 Year Forecast for a 60–80% Chance of La Niña in 2017–2018. Geophysical Research Letters, 2017, 44, 11,624.	4.0	37

#	Article	IF	CITATIONS
91	Decadal Variability and Predictability in the Midlatitude Ocean–Atmosphere System. Journal of Climate, 2000, 13, 1073-1097.	3.2	35
92	Key Role of Internal Ocean Dynamics in Atlantic Multidecadal Variability During the Last Half Century. Geophysical Research Letters, 2018, 45, 13,449.	4.0	35
93	An evaluation of experimental decadal predictions using CCSM4. Climate Dynamics, 2015, 44, 907-923.	3.8	34
94	North and equatorial Pacific Ocean circulation in the CORE-II hindcast simulations. Ocean Modelling, 2016, 104, 143-170.	2.4	32
95	Modulation of Arctic Sea Ice Loss by Atmospheric Teleconnections from Atlantic Multidecadal Variability. Journal of Climate, 2019, 32, 1419-1441.	3.2	32
96	Threat by marine heatwaves to adaptive large marine ecosystems in an eddy-resolving model. Nature Climate Change, 2022, 12, 179-186.	18.8	32
97	On the effects of parameterized Mediterranean overflow on North Atlantic ocean circulation and climate. Ocean Modelling, 2007, 19, 31-52.	2.4	31
98	Predicted Chance That Global Warming Will Temporarily Exceed 1.5°C. Geophysical Research Letters, 2018, 45, 11,895.	4.0	31
99	Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform. Geoscientific Model Development, 2020, 13, 4809-4829.	3.6	30
100	Quantification of the Arctic Sea Iceâ€Driven Atmospheric Circulation Variability in Coordinated Large Ensemble Simulations. Geophysical Research Letters, 2020, 47, e2019GL085397.	4.0	29
101	Impacts of Atlantic multidecadal variability on the tropical Pacific: a multi-model study. Npj Climate and Atmospheric Science, 2021, 4, .	6.8	29
102	A comparison of global ocean general circulation model solutions obtained with synchronous and accelerated integration methods. Ocean Modelling, 2004, 7, 323-341.	2.4	28
103	Numerical simulation of spatially-evolving instability control in plane channel flow. , 1990, , .		27
104	Skilful interannual climate prediction from two large initialised model ensembles. Environmental Research Letters, 2020, 15, 094083.	5.2	25
105	Circulation of the Turkish Straits System under interannual atmospheric forcing. Ocean Science, 2018, 14, 999-1019.	3.4	24
106	Spatial simulation of secondary instability in plane channel flow: comparison of K- and H-type disturbances. Journal of Fluid Mechanics, 1993, 253, 485.	3.4	23
107	On the Wind-Driven Circulation of the Uncoupled and Coupled NCAR Climate System Ocean Model*. Journal of Climate, 1998, 11, 1442-1454.	3.2	23
108	A global coupled ensemble data assimilation system using the Community Earth System Model and the Data Assimilation Research Testbed. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 2404-2430.	2.7	22

#	Article	IF	CITATIONS
109	North Atlantic Barotropic Vorticity Balances in Numerical Models. Journal of Physical Oceanography, 2016, 46, 289-303.	1.7	21
110	Heat Uptake and the Thermohaline Circulation in the Community Climate System Model, Version 2. Journal of Climate, 2004, 17, 4058-4069.	3.2	21
111	An assessment of the Indian Ocean mean state and seasonal cycle in a suite of interannual CORE-II simulations. Ocean Modelling, 2020, 145, 101503.	2.4	20
112	Atlantic Multidecadal Variability and Associated Climate Impacts Initiated by Ocean Thermohaline Dynamics. Journal of Climate, 2020, 33, 1317-1334.	3.2	20
113	Atlantic Multidecadal Variability and North Atlantic Jet: A Multimodel View from the Decadal Climate Prediction Project. Journal of Climate, 2021, 34, 347-360.	3.2	20
114	Coupled Climate Responses to Recent Australian Wildfire and COVIDâ€19 Emissions Anomalies Estimated in CESM2. Geophysical Research Letters, 2021, 48, e2021GL093841.	4.0	19
115	Oscillatory flow with heat transfer in a square cavity. Physics of Fluids A, Fluid Dynamics, 1989, 1, 1796-1812.	1.6	18
116	Subseasonal Earth System Prediction with CESM2. Weather and Forecasting, 2022, 37, 797-815.	1.4	18
117	Predictable Variations of the Carbon Sinks and Atmospheric CO ₂ Growth in a Multiâ€Model Framework. Geophysical Research Letters, 2021, 48, e2020GL090695.	4.0	17
118	Tracer budgets in the warm water sphere. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 48, 179.	1.7	16
119	Changes in ocean ventilation during the 21st Century in the CCSM3. Ocean Modelling, 2006, 15, 141-156.	2.4	16
120	Comparison of Equilibrium Climate Sensitivity Estimates From Slab Ocean, 150‥ear, and Longer Simulations. Geophysical Research Letters, 2020, 47, e2020GL088852.	4.0	16
121	Robust Multiyear Climate Impacts of Volcanic Eruptions in Decadal Prediction Systems. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031739.	3.3	15
122	Atlantic Meridional Overturning Circulation: Reviews of Observational and Modeling Advances—An Introduction. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016745.	2.6	15
123	Atmospheric Conditions Associated with Labrador Sea Deep Convection: New Insights from a Case Study of the 2006/07 and 2007/08 Winters. Journal of Climate, 2016, 29, 5281-5297.	3.2	14
124	Eulerian and Eddy-Induced Meridional Overturning Circulations in the Tropics. Journal of Physical Oceanography, 2002, 32, 2054-2071.	1.7	14
125	Skilful decadal-scale prediction of fish habitat and distribution shifts. Nature Communications, 2022, 13, 2660.	12.8	13
126	Application of the Spectral Multidomain Method to the Navier-Stokes Equations. Journal of Computational Physics, 1994, 113, 155-164.	3.8	12

#	Article	IF	CITATIONS
127	Ocean Climate Observing Requirements in Support of Climate Research and Climate Information. Frontiers in Marine Science, 2019, 6, .	2.5	12
128	A Chebyshev matrix method for the spatial modes of the Orr-Sommerfeld equation. International Journal for Numerical Methods in Fluids, 1990, 11, 1033-1037.	1.6	11
129	Impacts of Arctic Sea Ice on Cold Season Atmospheric Variability and Trends Estimated from Observations and a Multi-model Large Ensemble. Journal of Climate, 2021, , 1-64.	3.2	11
130	Sensitivity of CFC-11 uptake to physical initial conditions and interannually varying surface forcing in a global ocean model. Ocean Modelling, 2009, 29, 58-65.	2.4	10
131	Robust and Nonrobust Aspects of Atlantic Meridional Overturning Circulation Variability and Mechanisms in the Community Earth System Model. Journal of Climate, 2019, 32, 7349-7368.	3.2	10
132	Revisiting the Causal Connection between the Great Salinity Anomaly of the 1970s and the Shutdown of Labrador Sea Deep Convection. Journal of Climate, 2021, 34, 675-696.	3.2	9
133	An EnOlâ€Based Data Assimilation System With DART for a Highâ€Resolution Version of the CESM2 Ocean Component. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002176.	3.8	7
134	The Impact of Horizontal Resolution on Projected Sea‣evel Rise Along US East Continental Shelf With the Community Earth System Model. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	7
135	Tracer budgets in the warm water sphere. Tellus, Series A: Dynamic Meteorology and Oceanography, 1996, 48, 179-192.	1.7	6
136	Can the Salt-Advection Feedback Be Detected in Internal Variability of the Atlantic Meridional Overturning Circulation?. Journal of Climate, 2018, 31, 6649-6667.	3.2	6
137	Revisiting AMOC Transport Estimates From Observations and Models. Geophysical Research Letters, 2021, 48, e2021GL093045.	4.0	6
138	Role of Ocean and Atmosphere Variability in Scaleâ€Đependent Thermodynamic Airâ€5ea Interactions. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	6
139	An Upper-Ocean Model for Short-Term Climate Variability. Journal of Climate, 2000, 13, 3380-3411.	3.2	5
140	Role of Sea‧urface Salinity in Simulating Historical Decadal Variations of Atlantic Meridional Overturning Circulation in a Coupled Climate Model. Geophysical Research Letters, 2022, 49, .	4.0	5
141	Spatial simulation of boundary layer instability - Effects of surface roughness. , 1993, , .		3
142	Impact of Coherent Ocean Stratification on AMOC Reconstruction by Coupled Data Assimilation with a Biased Model. Journal of Climate, 2020, 33, 7319-7334.	3.2	3
143	Propagation of Thermohaline Anomalies and Their Predictive Potential along the Atlantic Water Pathway. Journal of Climate, 2022, 35, 2111-2131.	3.2	3
144	A Finite-Difference Method with Direct Solvers for Thermally-Driven Cavity Problems. , 1990, , 35-42.		2

A Finite-Difference Method with Direct Solvers for Thermally-Driven Cavity Problems. , 1990, , 35-42. 144

#	Article	IF	CITATIONS
145	On the Intermittent Occurrence of Openâ€Ocean Polynyas in a Multiâ€Century Highâ€Resolution Preindustrial Earth System Model Simulation. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	2
146	Numerical simulation of spatially-evolving instability in plane channel flow. , 1991, , .		1
147	Three-dimensional simulations of incompressible and compressible flow stability. Computer Physics Communications, 1991, 65, 76-83.	7.5	1
148	Was the 2015 North Atlantic subpolar cold anomaly predictable?. Journal of Climate, 2021, , 1-69.	3.2	1
149	Building a Better Model to View Earthâ \in Ms Interacting Processes. Eos, 2021, 102, .	0.1	1
150	Introducing the New Regional Community Earth System Model, R-CESM. Bulletin of the American Meteorological Society, 2021, 102, E1821-E1843.	3.3	1
151	Bringing the Future Into Focus: Benefits and Challenges of High-Resolution Global Climate Change Simulations. Computing in Science and Engineering, 2021, 23, 34-41.	1.2	1
152	A Spectral Multi-Domain Code for the Navier-Stokes Equations. , 1992, , 283-293.		0
153	Numerical simulation of spatially-evolving instability in three-dimensional plane channel flow. , 1990, , 190-191.		0