
Noah E Petro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9419925/publications.pdf Version: 2024-02-01

NOAH E DETRO

#	Article	IF	CITATIONS
1	The Lunar Geophysical Network Landing Sites Science Rationale. Planetary Science Journal, 2022, 3, 40.	3.6	7
2	Volatile interactions with the lunar surface. Chemie Der Erde, 2022, 82, 125858.	2.0	26
3	Evidence for a Stratified Upper Mantle Preserved Within the South Poleâ€Aitken Basin. Journal of Geophysical Research E: Planets, 2021, 126, .	3.6	26
4	The search for lunar mantle rocks exposed on the surface of the Moon. Nature Communications, 2021, 12, 4659.	12.8	26
5	Scaling Relationship Between the Wavelength of Longitudinal Ridges and the Thickness of Long Runout Landslides on the Moon. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006922.	3.6	2
6	Identification of Potential Mantle Rocks Around the Lunar Imbrium Basin. Geophysical Research Letters, 2020, 47, e2020GL090334.	4.0	8
7	Was the Sun a Slow Rotator? Sodium and Potassium Constraints from the Lunar Regolith. Astrophysical Journal Letters, 2019, 876, L16.	8.3	22
8	Update on the Worsening Particle Radiation Environment Observed by CRaTER and Implications for Future Human Deep‧pace Exploration. Space Weather, 2018, 16, 289-303.	3.7	44
9	Using proton radiation from the moon to search for diurnal variation of regolith hydrogenation. Planetary and Space Science, 2018, 162, 113-132.	1.7	9
10	Crater age and hydrogen content in lunar regolith from LEND neutron data. Planetary and Space Science, 2018, 162, 105-112.	1.7	2
11	Remotely distinguishing and mapping endogenic water on the Moon. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20150391.	3.4	14
12	Revisiting the field geology of Taurus–Littrow. Icarus, 2017, 298, 2-33.	2.5	50
13	A model of the primordial lunar atmosphere. Earth and Planetary Science Letters, 2017, 474, 198-205.	4.4	38
14	Signatures of volatiles in the lunar proton albedo. Icarus, 2016, 273, 25-35.	2.5	22
15	Global variations in regolith properties on asteroid Vesta from Dawn's lowâ€∎ltitude mapping orbit. Meteoritics and Planetary Science, 2016, 51, 2366-2386.	1.6	11
16	Tethered lunar subsatellites for multipoint and low altitude measurements. Acta Astronautica, 2016, 128, 464-472.	3.2	2
17	Origin of the anomalously rocky appearance of Tsiolkovskiy crater. Icarus, 2016, 273, 237-247.	2.5	23
18	The Lunar Reconnaissance Orbiter Mission – Six years of science and exploration at the Moon. Icarus, 2016, 273, 2-24.	2.5	38

Noah E Petro

#	Article	IF	CITATIONS
19	Origin of the lunar highlands Mg-suite: An integrated petrology, geochemistry, chronology, and remote sensing perspective. American Mineralogist, 2015, 100, 294-325.	1.9	110
20	Does the worsening galactic cosmic radiation environment observed by CRaTER preclude future manned deep space exploration?. Space Weather, 2014, 12, 622-632.	3.7	55
21	Development, importance, and effect of a ground truth correction for the Moon Mineralogy Mapper reflectance data set. Journal of Geophysical Research E: Planets, 2013, 118, 369-381.	3.6	36
22	Pitted Terrain on Vesta and Implications for the Presence of Volatiles. Science, 2012, 338, 246-249.	12.6	91
23	Goldschmidt crater and the Moon's north polar region: Results from the Moon Mineralogy Mapper (M ³). Journal of Geophysical Research, 2011, 116, .	3.3	28
24	New insights into lunar petrology: Distribution and composition of prominent low-Ca pyroxene exposures as observed by the Moon Mineralogy Mapper (M ³). Journal of Geophysical Research, 2011, 116, .	3.3	80
25	Compositional variability of the Marius Hills volcanic complex from the Moon Mineralogy Mapper (M ³). Journal of Geophysical Research, 2011, 116, .	3.3	52
26	Compositional diversity and geologic insights of the Aristarchus crater from Moon Mineralogy Mapper data. Journal of Geophysical Research, 2011, 116, .	3.3	83
27	Mg-spinel lithology: A new rock type on the lunar farside. Journal of Geophysical Research, 2011, 116, .	3.3	115
28	Measuring moonlight: An overview of the spatial properties, lunar coverage, selenolocation, and related Level 1B products of the Moon Mineralogy Mapper. Journal of Geophysical Research, 2011, 116, .	3.3	111
29	Remote compositional analysis of lunar olivine-rich lithologies with Moon Mineralogy Mapper (M ³) spectra. Journal of Geophysical Research, 2011, 116, .	3.3	73
30	Geology of the Moscoviense Basin. Journal of Geophysical Research, 2011, 116, .	3.3	20
31	Thermal removal from near-infrared imaging spectroscopy data of the Moon. Journal of Geophysical Research, 2011, 116, .	3.3	100
32	The Moon Mineralogy Mapper (M ³) imaging spectrometer for lunar science: Instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation. Journal of Geophysical Research, 2011, 116, .	3.3	173
33	Geomorphic terrains and evidence for ancient volcanism within northeastern South Pole-Aitken basin. , 2011, , .		7
34	More surprises from the Moon. Nature Geoscience, 2011, 4, 499-501.	12.9	2
35	Advanced regional-scale scenarios for lunar surface exploration. , 2011, , .		0
36	Plan for a human expedition to Marius Hills and its implications for viable surface exploration		0

architecture., 2011, , .

Noah E Petro

#	Article	IF	CITATIONS
37	Character and Spatial Distribution of OH/H ₂ O on the Surface of the Moon Seen by M ³ on Chandrayaan-1. Science, 2009, 326, 568-572.	12.6	622
38	Lunar international science coordination/calibration targets (L-ISCT). Advances in Space Research, 2008, 42, 248-258.	2.6	24
39	The lunarâ€wide effects of basin ejecta distribution on the early megaregolith. Meteoritics and Planetary Science, 2008, 43, 1517-1529.	1.6	58
40	Modeling the provenance of the Apollo 16 regolith. Journal of Geophysical Research, 2006, 111, .	3.3	51
41	Surviving the heavy bombardment: Ancient material at the surface of South Pole-Aitken Basin. Journal of Geophysical Research, 2004, 109, .	3.3	54
42	Compositional analyses of lunar pyroclastic deposits. Icarus, 2003, 161, 262-280.	2.5	205