List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9419520/publications.pdf Version: 2024-02-01

ADDIANA FONTES

#	Article	IF	CITATIONS
1	Mannose-binding lectin conjugated to quantum dots as fluorescent nanotools for carbohydrate tracing. Methods and Applications in Fluorescence, 2022, 10, 025002.	2.3	1
2	New Insights into Hemolytic Anemias: Ultrastructural and Nanomechanical Investigation of Red Blood Cells Showed Early Morphological Changes. Journal of Biomedical Nanotechnology, 2022, 18, 405-421.	1.1	3
3	Photoinactivation of Yeast and Biofilm Communities of Candida albicans Mediated by ZnTnHex-2-PyP4+ Porphyrin. Journal of Fungi (Basel, Switzerland), 2022, 8, 556.	3.5	6
4	Aeromonas and Human Health Disorders: Clinical Approaches. Frontiers in Microbiology, 2022, 13, .	3.5	39
5	Quantum Dots and Gd3+ Chelates: Advances and Challenges Towards Bimodal Nanoprobes for Magnetic Resonance and Optical Imaging. Topics in Current Chemistry, 2021, 379, 12.	5.8	11
6	Toward Waveguide-Based Optical Chromatography. Frontiers in Physics, 2021, 8, .	2.1	2
7	Silver nanoprisms as plasmonic enhancers applied in the photodynamic inactivation of Staphylococcus aureus isolated from bubaline mastitis. Photodiagnosis and Photodynamic Therapy, 2021, 34, 102315.	2.6	7
8	Efficient photodynamic inactivation of Leishmania parasites mediated by lipophilic water-soluble Zn(II) porphyrin ZnTnHex-2-PyP4+. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129897.	2.4	10
9	Towards effective cutaneous leishmaniasis treatment with light-based technologies. A systematic review and meta-analysis of preclinical studies. Journal of Photochemistry and Photobiology B: Biology, 2021, 221, 112236.	3.8	5
10	Advances on antimicrobial photodynamic inactivation mediated by Zn(II) porphyrins. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 49, 100454.	11.6	23
11	Quantum dot-based fluoroassays for Zika. , 2021, , 283-292.		0
12	Methods for Intracellular Delivery of Quantum Dots. Topics in Current Chemistry, 2021, 379, 1.	5.8	51
13	A facile route toward hydrophilic plasmonic copper selenide nanocrystals: new perspectives for SEIRA applications. New Journal of Chemistry, 2021, 45, 15753-15760.	2.8	3
14	Quantum dots conjugated to lectins from Schinus terebinthifolia leaves (SteLL) and Punica granatum sarcotesta (PgTeL) as potential fluorescent nanotools for investigating Cryptococcus neoformans. International Journal of Biological Macromolecules, 2021, 192, 232-240.	7.5	9
15	Analyses of the response of carbapenem-resistant Pseudomonas aeruginosa against monotherapy and combined therapy using quantum dots and proteomics. Anais Da Academia Brasileira De Ciencias, 2021, 93, e20210823.	0.8	1
16	Evaluating glucose and mannose profiles in Candida species using quantum dots conjugated with Cramoll lectin as fluorescent nanoprobes. Microbiological Research, 2020, 230, 126330.	5.3	14
17	Lippia sidoides and Lippia origanoides essential oils affect the viability, motility and ultrastructure of Trypanosoma cruzi. Micron, 2020, 129, 102781.	2.2	10
18	Evaluating viscoelastic properties and membrane electrical charges of red blood cells with optical tweezers and cationic quantum dots – applications to β-thalassemia intermedia hemoglobinopathy. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110671.	5.0	8

#	Article	IF	CITATIONS
19	Activity of carbonyl cyanide-3-chlorophenylhydrazone on biofilm formation and antimicrobial resistance in Pseudomonas aeruginosa using quantum dots-meropenem conjugates as nanotools. Methods and Applications in Fluorescence, 2020, 8, 045005.	2.3	1
20	<i>Bauhinia monandra</i> leaf lectin (BmoLL) conjugated with quantum dots as fluorescent nanoprobes for biological studies: application to red blood cells. Methods and Applications in Fluorescence, 2020, 8, 035009.	2.3	5
21	Quantum dots functionalized with 3-mercaptophenylboronic acids as novel nanoplatforms to evaluate sialic acid content on cell membranes. Colloids and Surfaces B: Biointerfaces, 2020, 193, 111142.	5.0	8
22	Anionic Quantum Dots reveal actin-microridges in zebrafish epidermis. Methods and Applications in Fluorescence, 2020, 8, 035007.	2.3	0
23	CdTe quantum dots in a glassy carbon electrochemical platform modified by N-substituted polypyrrole: Increasing the functional active surface for conjugation. Surfaces and Interfaces, 2020, 19, 100532.	3.0	2
24	Evaluating internalization and recycling of folate receptors in breast cancer cells using quantum dots. Journal of Photochemistry and Photobiology B: Biology, 2020, 209, 111918.	3.8	22
25	Resazurin-Based Assay to Evaluate Cell Viability After Quantum Dot Interaction. Methods in Molecular Biology, 2020, 2135, 213-221.	0.9	6
26	Biomechanical and biochemical investigation of erythrocytes in late stage human leptospirosis. Brazilian Journal of Medical and Biological Research, 2020, 53, e9268.	1.5	2
27	The effects of endoplasmic reticulum stressors, tunicamycin and dithiothreitol on Trypanosoma cruzi. Experimental Cell Research, 2019, 383, 111560.	2.6	10
28	Evaluating the glycophenotype on breast cancer tissues with quantum dots-Cramoll lectin conjugates. International Journal of Biological Macromolecules, 2019, 138, 302-308.	7.5	15
29	Studies on Toxicity of Suspensions of CdTe Quantum Dots to <i>Biomphalaria glabrata</i> Mollusks. Environmental Toxicology and Chemistry, 2019, 38, 2128-2136.	4.3	21
30	Multivariate optimization of optical properties of CdSe quantum dots obtained by a facile one-pot aqueous synthesis. Inorganic Chemistry Frontiers, 2019, 6, 1350-1360.	6.0	18
31	Quantum dots-based fluoroimmunoassay for anti-Zika virus IgG antibodies detection. Journal of Photochemistry and Photobiology B: Biology, 2019, 194, 135-139.	3.8	18
32	Hydrophilic Quantum Dots Functionalized with Gd(III)-DO3A Monoamide Chelates as Bright and Effective T1-weighted Bimodal Nanoprobes. Scientific Reports, 2019, 9, 2341.	3.3	13
33	Interactions of mannose binding-lectin with red blood cells by employing cationic quantum dots. International Journal of Biological Macromolecules, 2019, 125, 1168-1174.	7.5	6
34	CdSe quantum dots as fluorescent nanomarkers for diesel oil. Fuel, 2019, 239, 1055-1060.	6.4	10
35	Titanium dioxide nanotubes functionalized with Cratylia mollis seed lectin, Cramoll, enhanced osteoblast-like cells adhesion and proliferation. Materials Science and Engineering C, 2018, 90, 664-672.	7.3	13
36	Highly fluorescent positively charged ZnSe quantum dots for bioimaging. Journal of Luminescence, 2018, 201, 284-289.	3.1	21

#	Article	IF	CITATIONS
37	Photodynamic effect of zinc porphyrin on the promastigote and amastigote forms of Leishmania braziliensis. Photochemical and Photobiological Sciences, 2018, 17, 482-490.	2.9	37
38	Quantum dot–Cramoll lectin as novel conjugates to glycobiology. Journal of Photochemistry and Photobiology B: Biology, 2018, 178, 85-91.	3.8	16
39	Biomedical applications of glyconanoparticles based on quantum dots. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 427-439.	2.4	30
40	Short chain polyphosphates as a strategic colloidal source of phosphate for parenteral admixtures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558, 242-249.	4.7	3
41	Multimodal highly fluorescent-magnetic nanoplatform to target transferrin receptors in cancer cells. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2788-2796.	2.4	12
42	Vitamin E nanoemulsion activity on stored red blood cells. Transfusion Medicine, 2017, 27, 213-217.	1.1	12
43	Delivery of cationic quantum dots using fusogenic liposomes in living cells. Journal of Photochemistry and Photobiology B: Biology, 2017, 171, 43-49.	3.8	8
44	Highly fluorescent and superparamagnetic nanosystem for biomedical applications. Nanotechnology, 2017, 28, 285704.	2.6	12
45	ZnSe:Mn aqueous colloidal quantum dots for optical and biomedical applications. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 530-533.	0.8	11
46	Quantum Dots. , 2016, , 131-158.		7
47	Damage induced in red blood cells by infrared optical trapping: an evaluation based on elasticity measurements. Journal of Biomedical Optics, 2016, 21, 075012.	2.6	10
48	Quantum Dots in Photodynamic Therapy. Oxidative Stress in Applied Basic Research and Clinical Practice, 2016, , 525-539.	0.4	5
49	Effects of alkali and ammonium ions in the detection of poly(ethyleneglycol) by alpha-hemolysin nanopore sensor. RSC Advances, 2016, 6, 56647-56655.	3.6	11
50	A pH dependence study of CdTe quantum dots fluorescence quantum yields using eclipsing thermal lens spectroscopy. Journal of Luminescence, 2016, 174, 17-21.	3.1	14
51	CdTe quantum dots as fluorescent probes to study transferrin receptors in glioblastoma cells. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 28-35.	2.4	41
52	Blood group antigen studies using CdTe quantum dots and flow cytometry. International Journal of Nanomedicine, 2015, 10, 4393.	6.7	14
53	Biological Activity and Photostability of Biflorin Micellar Nanostructures. Molecules, 2015, 20, 8595-8604.	3.8	1
54	Comparative Study on the Efficiency of the Photodynamic Inactivation of Candida albicans Using CdTe Quantum Dots, Zn(II) Porphyrin and Their Conjugates as Photosensitizers. Molecules, 2015, 20, 8893-8912	3.8	30

#	Article	IF	CITATIONS
55	Automatic real time evaluation of red blood cell elasticity by optical tweezers. Review of Scientific Instruments, 2015, 86, 053702.	1.3	14
56	Fluorescent liposomes to probe how DOTAP lipid concentrations can change red blood cells homeostasis. , 2015, , .		1
57	CdTe quantum dots conjugated to concanavalin A as potential fluorescent molecular probes for saccharides detection in Candida albicans. Journal of Photochemistry and Photobiology B: Biology, 2015, 142, 237-243.	3.8	47
58	Fluorescence Plate Reader for Quantum Dot-Protein Bioconjugation Analysis. Journal of Nanoscience and Nanotechnology, 2014, 14, 3320-3327.	0.9	18
59	Quantum Dots Fluorescence Quantum Yield Measured by Thermal Lens Spectroscopy. Methods in Molecular Biology, 2014, 1199, 93-101.	0.9	3
60	Trypanosoma cruzi Cell Death Induced by the Morita-Baylis-Hillman Adduct 3-Hydroxy-2-Methylene-3-(4-Nitrophenylpropanenitrile). PLoS ONE, 2014, 9, e93936.	2.5	35
61	Semiquantitative Fluorescence Method for Bioconjugation Analysis. Methods in Molecular Biology, 2014, 1199, 103-110.	0.9	0
62	Luminescence Enhancement of Carboxyl-Coated CdTe Quantum Dots by Silver Nanoparticles. Plasmonics, 2013, 8, 1147-1153.	3.4	6
63	Electrochemical synthetic route for preparation of CdTe quantum-dots stabilized by positively or negatively charged ligands. Green Chemistry, 2013, 15, 1061.	9.0	29
64	Measuring red blood cell aggregation forces using double optical tweezers. Scandinavian Journal of Clinical and Laboratory Investigation, 2013, 73, 262-264.	1.2	11
65	Studies on intracellular delivery of carboxyl-coated CdTe quantum dots mediated by fusogenic liposomes. Journal of Materials Chemistry B, 2013, 1, 4297.	5.8	26
66	Evaluation of glycophenotype in breast cancer by quantum dot-lectin histochemistry. International Journal of Nanomedicine, 2013, 8, 4623.	6.7	24
67	Quantum Dots in Biomedical Research. , 2012, , .		10
68	Short term inhalation toxicity of a liquid aerosol of CdS/Cd(OH)2 core shell quantum dots in male Wistar rats. Toxicology Letters, 2012, 208, 115-124.	0.8	52
69	CdTe/CdS-MPA quantum dots as fluorescent probes to label yeast cells: synthesis, characterization and conjugation with Concanavalin A. , 2012, , .		2
70	Non-specific interactions of CdTe/Cds Quantum Dots with human blood mononuclear cells. Micron, 2012, 43, 621-626.	2.2	13
71	Optical Tweezers as a New Biomedical Tool to Measure Zeta Potential of Stored Red Blood Cells. PLoS ONE, 2012, 7, e31778.	2.5	29
72	Mechanical and electrical properties of red blood cells using optical tweezers. Journal of Optics (United Kingdom), 2011, 13, 044012.	2.2	18

#	Article	IF	CITATIONS
73	Optical tweezers for studying taxis in parasites. Journal of Optics (United Kingdom), 2011, 13, 044015.	2.2	8
74	Studying nanotoxic effects of CdTe quantum dots in Trypanosoma cruzi. Proceedings of SPIE, 2010, , .	0.8	0
75	Biocompatible water soluble quantum dots as new biophotonic tools for hematologic cells: applications for flow cell cytometry. Proceedings of SPIE, 2010, , .	0.8	1
76	Shifted-excitation Raman difference spectroscopy for in vitro and in vivo biological samples analysis. Biomedical Optics Express, 2010, 1, 617.	2.9	35
77	Optical tweezers force measurements to study parasites chemotaxis. , 2009, , .		1
78	Impaired red cell deformability in iron deficient subjects. Clinical Hemorheology and Microcirculation, 2009, 43, 217-221.	1.7	30
79	In vitro and in vivo documentation of quantum dots labeled Trypanosoma cruzi–Rhodnius prolixus interaction using confocal microscopy. Parasitology Research, 2009, 106, 85-93.	1.6	10
80	Studying taxis in real time using optical tweezers: Applications for Leishmania amazonensis parasites. Micron, 2009, 40, 617-620.	2.2	23
81	Synthesis and characterization of blue emitting ZnSe quantum dots. Microelectronics Journal, 2009, 40, 641-643.	2.0	52
82	Semiconductor Fluorescent Quantum Dots: Efficient Biolabels in Cancer Diagnostics. Methods in Molecular Biology, 2009, 544, 407-419.	0.9	16
83	New highly fluorescent biolabels based on II–VI semiconductor hybrid organic–inorganic nanostructures for bioimaging. Applied Surface Science, 2008, 255, 790-792.	6.1	9
84	Semiconductor nanocrystals obtained by colloidal chemistry for biological applications. Applied Surface Science, 2008, 255, 796-798.	6.1	12
85	Application of core–shell PEGylated CdS/Cd(OH)2 quantum dots as biolabels of Trypanosoma cruzi parasites. Applied Surface Science, 2008, 255, 728-730.	6.1	16
86	Colloidal semiconductor quantum dots: Potential tools for new diagnostic methods. Applied Surface Science, 2008, 255, 691-693.	6.1	7
87	Semiconductor Quantum Dots for Biological Applications. , 2008, , 773-798.		11
88	Measuring electrical and mechanical properties of red blood cells with double optical tweezers. Journal of Biomedical Optics, 2008, 13, 014001.	2.6	47
89	Fluorescent Ilâ^'VI Semiconductor Quantum Dots in Living Cells:  Nonlinear Microspectroscopy in an Optical Tweezers System. Journal of Physical Chemistry B, 2008, 112, 2734-2737.	2.6	12
90	Fluorescent II-VI semiconductor Quantum Dots: potential tools for biolabeling and diagnostic. Journal of the Brazilian Chemical Society, 2008, 19, 352-356.	0.6	5

#	Article	IF	CITATIONS
91	Exact theory of optical forces of Mie scatterers exposed to high numerical aperture beams examined with 3D photonic force measurements. , 2007, , .		0
92	Axial optical trapping efficiency through a dielectric interface. Physical Review E, 2007, 76, 061917.	2.1	29
93	Highly fluorescent semiconductor core–shell CdTe–CdS nanocrystals for monitoring living yeast cells activity. Applied Physics A: Materials Science and Processing, 2007, 89, 957-961.	2.3	27
94	Exact partial wave expansion of optical beams with respect to an arbitrary origin. Optics Letters, 2006, 31, 2477.	3.3	53
95	Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric. Optics Express, 2006, 14, 13101.	3.4	74
96	Quantum dots as fluorescent bio-labels in cancer diagnostic. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 4001-4008.	0.8	12
97	Analytical results for a Bessel function times Legendre polynomials class integrals. Journal of Physics A, 2006, 39, L293-L296.	1.6	53
98	Determination of femto Newton forces and fluid viscosity using optical tweezers: application to Leishmania amazonensis. , 2005, , .		6
99	Core-shell CdS/Cd(OH)2 quantum dots: synthesis and bioconjugation to target red cells antigens. Journal of Microscopy, 2005, 219, 103-108.	1.8	26
100	Mechanical properties of stored red blood cells using optical tweezers. , 2005, , .		0
101	Double optical tweezers for ultrasensitive force spectroscopy in microsphere Mie scattering. Applied Physics Letters, 2005, 87, 221109.	3.3	22
102	Investigation of red blood cell antigens with highly fluorescent and stable semiconductor quantum dots. Journal of Biomedical Optics, 2005, 10, 044023.	2.6	15
103	Raman, hyper-Raman, hyper-Rayleigh, two-photon luminescence and morphology-dependent resonance modes in a single optical tweezers system. Physical Review E, 2005, 72, 012903.	2.1	17
104	Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease. European Journal of Haematology, 2003, 70, 207-211.	2.2	203
105	Elastic properties of stored red blood cells from sickle trait donor units. Vox Sanguinis, 2003, 85, 213-215.	1.5	21
106	Elastic properties of irradiated RBCs measured by opticalâ€∫tweezers. Transfusion, 2002, 42, 1196-1199.	1.6	25
107	Mechanical Properties of Stored Red Blood Cells Using Optical Tweezers. Blood, 1998, 92, 2975-2977.	1.4	55
108	Mechanical Properties of Stored Red Blood Cells Using Optical Tweezers. Blood, 1998, 92, 2975-2977.	1.4	0

7

#	Article	IF	CITATIONS
109	II-VI Quantum Dots as Fluorescent Probes for Studying Trypanosomatides. , 0, , .		0
110	(Bio)conjugation Strategies Applied to Fluorescent Semiconductor Quantum Dots. Journal of the Brazilian Chemical Society, 0, , .	0.6	9