Steven L Wagner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9419389/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modulation of Î ³ -Secretase Reduces Î ² -Amyloid Deposition in a Transgenic Mouse Model of Alzheimer's Disease. Neuron, 2010, 67, 769-780.	8.1	236
2	Cholesterol Metabolism Is a Druggable Axis that Independently Regulates Tau and Amyloid-β in iPSC-Derived Alzheimer's Disease Neurons. Cell Stem Cell, 2019, 24, 363-375.e9.	11.1	220
3	Effect of Potent γ-Secretase Modulator in Human Neurons Derived From Multiple Presenilin 1–Induced Pluripotent Stem Cell Mutant Carriers. JAMA Neurology, 2014, 71, 1481.	9.0	84
4	Localization of protease nexinâ€1 on the fibroblast extracellular matrix. Journal of Cellular Physiology, 1988, 134, 179-188.	4.1	68
5	Soluble γ-Secretase Modulators Selectively Inhibit the Production of the 42-Amino Acid Amyloid β Peptide Variant and Augment the Production of Multiple Carboxy-Truncated Amyloid β Species. Biochemistry, 2014, 53, 702-713.	2.5	49
6	Dedifferentiation and neuronal repression define familial Alzheimer's disease. Science Advances, 2020, 6, .	10.3	44
7	Preclinical validation of a potent γ-secretase modulator for Alzheimer's disease prevention. Journal of Experimental Medicine, 2021, 218, .	8.5	39
8	Pharmacological and Toxicological Properties of the Potent Oral <i>γ</i> -Secretase Modulator BPN-15606. Journal of Pharmacology and Experimental Therapeutics, 2017, 362, 31-44.	2.5	36
9	Potential Use of Î ³ -Secretase Modulators in the Treatment of Alzheimer Disease. Archives of Neurology, 2012, 69, 1255.	4.5	22
10	Design and synthesis of aminothiazole modulators of the gamma-secretase enzyme. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3928-3937.	2.2	16
11	γ-Secretase modulators reduce endogenous amyloid β ₄₂ levels in human neural progenitor cells without altering neuronal differentiation. FASEB Journal, 2015, 29, 3335-3341.	0.5	10
12	Endotype reversal as a novel strategy for screening drugs targeting familial Alzheimer's disease. Alzheimer's and Dementia, 2022, 18, 2117-2130.	0.8	9
13	Design and synthesis of novel methoxypyridine-derived gamma-secretase modulators. Bioorganic and Medicinal Chemistry, 2020, 28, 115734.	3.0	8
14	The GSM BPN-15606 as a Potential Candidate for Preventative Therapy in Alzheimer's Disease. Journal of Alzheimer's Disease, 2020, 73, 1541-1554.	2.6	7
15	A Synthetic Antibody Fragment Targeting Nicastrin Affects Assembly and Trafficking of γ-Secretase. Journal of Biological Chemistry, 2014, 289, 34851-34861.	3.4	6
16	Use of Induced Pluripotent Stem Cell-Derived Neuronal Disease Models from Patients with Familial Early-Onset Alzheimer's Disease in Drug Discovery. , 2022, , 95-105.		0