Vittal Ramamurthy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9418415/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transparent Cobalt Selenide/Graphene Counter Electrode for Efficient Dye-Sensitized Solar Cells with Co ²⁺ / ³⁺ -Based Redox Couple. ACS Applied Materials & Interfaces, 2020, 12, 44597-44607.	8.0	25
2	Double-Wall TiO ₂ Nanotubes for Dye-Sensitized Solar Cells: A Study of Growth Mechanism. ACS Sustainable Chemistry and Engineering, 2018, 6, 3907-3915.	6.7	29
3	Hierarchical TiO _{1.1} Se _{0.9} -wrapped carbon cloth as the TCO-free and Pt-free counter electrode for iodide-based and cobalt-based dye-sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 14079-14091.	10.3	28
4	Hierarchically assembled microspheres consisting of nanosheets of highly exposed (001)-facets TiO ₂ for dye-sensitized solar cells. RSC Advances, 2016, 6, 14178-14191.	3.6	26
5	Mesoporous anatase-TiO 2 spheres consisting of nanosheets of exposed (001)-facets for [Co(byp) 3] 2+/3+ based dye-sensitized solar cells. Nano Energy, 2016, 22, 136-148.	16.0	17
6	Electrocatalytic Zinc Composites as the Efficient Counter Electrodes of Dye-Sensitized Solar Cells: Study on the Electrochemical Performances and Density Functional Theory Calculations. ACS Applied Materials & Interfaces, 2015, 7, 28254-28263.	8.0	44
7	Efficient titanium nitride/titanium oxide composite photoanodes for dye-sensitized solar cells and water splitting. Journal of Materials Chemistry A, 2015, 3, 4695-4705.	10.3	50
8	Cobalt Oxide Electrodes-Problem and a Solution Through a Novel Approach using Cetyltrimethylammonium Bromide (CTAB). Catalysis Reviews - Science and Engineering, 2015, 57, 145-191.	12.9	12
9	Electrocatalytic SiC Nanoparticles/PEDOT:PSS Composite Thin Films as the Counter Electrodes of Dye-Sensitized Solar Cells. ChemElectroChem, 2014, 1, 961-961.	3.4	0
10	Multifunctional TiO ₂ Microflowers with Nanopetals as Scattering Layer for Enhanced Quasiâ€Solidâ€State Dyeâ€Sensitized Solar Cell Performance. ChemElectroChem, 2014, 1, 532-535.	3.4	16
11	Electrochemical synthesis of a doubleâ€layer film of ZnO nanosheets/nanoparticles and its application for dyeâ€sensitized solar cells. Progress in Photovoltaics: Research and Applications, 2014, 22, 440-451.	8.1	22
12	Transparent graphene–platinum nanohybrid films for counter electrodes in high efficiency dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 8742.	10.3	28
13	Surface modification of TiO ₂ nanotube arrays with Y ₂ O ₃ barrier layer: controlling charge recombination dynamics in dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 8281-8287.	10.3	18
14	A coral-like film of Ni@NiS with core–shell particles for the counter electrode of an efficient dye-sensitized solar cell. Journal of Materials Chemistry A, 2014, 2, 5816-5824.	10.3	70
15	Nanocomposite Graphene/Pt Electrocatalyst as Economical Counter Electrode for Dyeâ€ S ensitized Solar Cells. ChemElectroChem, 2014, 1, 416-425.	3.4	35
16	TiO 2 nanosheets with highly exposed (001)-facets for enhanced photovoltaic performance of dye-sensitized solar cells. Nano Energy, 2014, 10, 212-221.	16.0	30
17	Multiwalled Carbon Nanotube@Reduced Graphene Oxide Nanoribbon as the Counter Electrode for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16626-16634.	3.1	76
18	Hollow microflower arrays of PEDOT and their application for the counter electrode of a dve-sensitized solar cell Journal of Materials Chemistry A 2013 1 10693	10.3	26

VITTAL RAMAMURTHY

#	Article	IF	CITATIONS
19	Enhanced performance of a dye-sensitized solar cell with an amphiphilic polymer-gelled ionic liquid electrolyte. Journal of Materials Chemistry A, 2013, 1, 3055.	10.3	25
20	A novel polymer gel electrolyte for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 8471.	10.3	79
21	Dye-sensitized solar cells with low-cost catalytic films of polymer-loaded carbon black on their counter electrode. RSC Advances, 2013, 3, 5871.	3.6	29
22	Control of morphology and size of platinum crystals through amphiphilic polymer-assisted microemulsions and their uses in dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 12305.	6.7	19
23	A counter electrode based on hollow spherical particles of polyaniline for a dye-sensitized solar cell. Journal of Materials Chemistry, 2012, 22, 14727.	6.7	46
24	A dual-functional Pt/CNT TCO-free counter electrode for dye-sensitized solar cell. Journal of Materials Chemistry, 2012, 22, 25311.	6.7	27
25	A highly efficient dye-sensitized solar cell with a platinum nanoflowers counter electrode. Journal of Materials Chemistry, 2012, 22, 5550.	6.7	76
26	Lowâ€ŧemperature flexible Ti/TiO ₂ photoanode for dyeâ€sensitized solar cells with binderâ€free TiO ₂ paste. Progress in Photovoltaics: Research and Applications, 2012, 20, 181-190.	8.1	35
27	Improved exchange reaction in an ionic liquid electrolyte of a quasi-solid-state dye-sensitized solar cell by using 15-crown-5-functionalized MWCNT. Journal of Materials Chemistry, 2011, 21, 18467.	6.7	32
28	A composite catalytic film of PEDOT:PSS/TiN–NPs on a flexible counter-electrode substrate for a dye-sensitized solar cell. Journal of Materials Chemistry, 2011, 21, 19021.	6.7	73
29	Highly efficient dye-sensitized solar cell with a ZnO nanosheet-based photoanode. Energy and Environmental Science, 2011, 4, 3448.	30.8	196
30	TiO <inf>2</inf> compact layer with photonic crystals: Application to back-illuminated dye-sensitized solar cells. , 2011, , .		0
31	Solid-state dye-sensitized solar cell with a charge transfer layer comprising two ionic liquids and a carbon material. Journal of Materials Chemistry, 2011, 21, 15471.	6.7	28
32	A high performance dye-sensitized solar cell with a novel nanocomposite film of PtNP/MWCNT on the counter electrode. Journal of Materials Chemistry, 2010, 20, 4067.	6.7	131
33	An efficient flexible dye-sensitized solar cell with a photoanode consisting of TiO2 nanoparticle-filled and SrO-coated TiO2 nanotube arrays. Journal of Materials Chemistry, 2010, 20, 7201.	6.7	48
34	All-solid-state dye-sensitized solar cells incorporating SWCNTs and crystal growth inhibitor. Journal of Materials Chemistry, 2010, 20, 3619.	6.7	63
35	lodine-free high efficient quasi solid-state dye-sensitized solar cell containing ionic liquid and polyaniline-loaded carbon black. Journal of Materials Chemistry, 2010, 20, 2356.	6.7	114
36	Fabrication of a ZnO film with a mosaic structure for a high efficient dye-sensitized solar cell. Journal of Materials Chemistry, 2010, 20, 9379.	6.7	85