Xiao Cheng Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9418396/publications.pdf

Version: 2024-02-01

627 papers

45,833 citations

103 h-index 181 g-index

645 all docs

645 docs citations

645 times ranked

37443 citing authors

#	Article	IF	CITATIONS
1	Atomically Resolved Electrically Active Intragrain Interfaces in Perovskite Semiconductors. Journal of the American Chemical Society, 2022, 144, 1910-1920.	13.7	37
2	Large-Sized Au _{<i>n</i>} ^{â€"} Coreâ€"Shell Clusters (<i>n</i> = 61â€"66): Enduring Structure of the Icosahedral Au ₁₃ Core. Journal of Physical Chemistry Letters, 2022, 13, 1389-1397.	4.6	3
3	Generation and Release of OH Radicals from the Reaction of H ₂ O with O ₂ over Soot. Angewandte Chemie - International Edition, 2022, 61, .	13.8	12
4	Anomalous Phase Behaviors of Monolayer NaCl Aqueous Solutions Induced by Effective Coulombic Interactions within Angstrom-Scale Slits. Journal of Physical Chemistry Letters, 2022, 13, 2704-2710.	4.6	2
5	Solvation and Hydrolysis Reaction of Isocyanic Acid at the Air–Water Interface: A Computational Study. Journal of the American Chemical Society, 2022, 144, 5315-5322.	13.7	7
6	Innentitelbild: Generation and Release of OH Radicals from the Reaction of H ₂ O with O ₂ over Soot (Angew. Chem. 21/2022). Angewandte Chemie, 2022, 134, .	2.0	1
7	Van der Waals Magnetic Heterojunctions with Giant Zeroâ€Bias Tunneling Magnetoresistance and Photoâ€Assisted Magnetic Memory. Advanced Functional Materials, 2022, 32, .	14.9	4
8	Gas hydrates in confined space of nanoporous materials: new frontier in gas storage technology. Nanoscale, 2021, 13, 7447-7470.	5.6	28
9	Metallic surface doping of metal halide perovskites. Nature Communications, 2021, 12, 7.	12.8	66
10	Molecular Design of Three-Dimensional Metal-Free A(NH ₄)X ₃ Perovskites for Photovoltaic Applications. Jacs Au, 2021, 1, 475-483.	7.9	19
11	Peroxo Species Formed in the Bulk of Silicate Cathodes. Angewandte Chemie, 2021, 133, 10144-10151.	2.0	2
12	Peroxo Species Formed in the Bulk of Silicate Cathodes. Angewandte Chemie - International Edition, 2021, 60, 10056-10063.	13.8	5
13	Directional Proton Transfer in the Reaction of the Simplest Criegee Intermediate with Water Involving the Formation of Transient H ₃ O ⁺ . Journal of Physical Chemistry Letters, 2021, 12, 3379-3386.	4.6	16
14	Ring Model for Understanding How Interfacial Interaction Dictates the Structures of Protection Motifs and Gold Cores in Thiolate-Protected Gold Nanoclusters. Journal of Physical Chemistry Letters, 2021, 12, 3006-3013.	4.6	17
15	Innentitelbild: Peroxo Species Formed in the Bulk of Silicate Cathodes (Angew. Chem. 18/2021). Angewandte Chemie, 2021, 133, 9814-9814.	2.0	0
16	How O ₂ -Binding Affects Structural Evolution of Medium Even-Sized Gold Clusters Au _{<i>n</i>} [–] (<i>n</i> = 20–34). Journal of Physical Chemistry Letters, 2021, 12, 3560-3570.	4.6	9
17	First-Principles Molecular Dynamics Simulations of the Spontaneous Freezing Transition of 2D Water in a Nanoslit. Journal of the American Chemical Society, 2021, 143, 8177-8183.	13.7	27
18	Multiple Wetting–Dewetting States of a Water Droplet on Dual-Scale Hierarchical Structured Surfaces. Jacs Au, 2021, 1, 955-966.	7.9	3

#	Article	IF	CITATIONS
19	Formation of porous ice frameworks at room temperature. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	7
20	Mechanistic Study of the Aqueous Reaction of Organic Peroxides with HSO 3 \hat{a} on the Surface of a Water Droplet. Angewandte Chemie, 2021, 133, 20362-20365.	2.0	2
21	Mechanistic Study of the Aqueous Reaction of Organic Peroxides with HSO ₃ ^{â^'} on the Surface of a Water Droplet. Angewandte Chemie - International Edition, 2021, 60, 20200-20203.	13.8	9
22	Anisotropic Properties of Quasiâ€1D In ₄ Se ₃ : Mechanical Exfoliation, Electronic Transport, and Polarizationâ€Dependent Photoresponse. Advanced Functional Materials, 2021, 31, 2106459.	14.9	11
23	Two-dimensional monolayer salt nanostructures can spontaneously aggregate rather than dissolve in dilute aqueous solutions. Nature Communications, 2021, 12, 5602.	12.8	12
24	Two-Dimensional IV–V Monolayers with Highly Anisotropic Carrier Mobility and Electric Transport Properties. Journal of Physical Chemistry Letters, 2021, 12, 1058-1065.	4.6	23
25	Formation of dimethyl carbonate <i>via</i> direct esterification of CO ₂ with methanol on reduced or stoichiometric CeO ₂ (111) and (110) surfaces. Physical Chemistry Chemical Physics, 2021, 23, 16150-16156.	2.8	5
26	Towards complete assignment of the infrared spectrum of the protonated water cluster H+(H2O)21. Nature Communications, 2021, 12, 6141.	12.8	35
27	Two-Dimensional GeC ₂ with Tunable Electronic and Carrier Transport Properties and a High Current ON/OFF Ratio. Journal of Physical Chemistry Letters, 2021, 12, 11488-11496.	4.6	6
28	AgBiS ₂ as a low-cost and eco-friendly all-inorganic photovoltaic material: nanoscale morphology–property relationship. Nanoscale Advances, 2020, 2, 770-776.	4.6	15
29	Rich topologies of monolayer ices <i>via</i> unconventional electrowetting. Nanoscale Horizons, 2020, 5, 514-522.	8.0	7
30	Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice. Nature, 2020, 577, 60-63.	27.8	149
31	Highly efficient N ₂ fixation catalysts: transition-metal carbides M ₂ C (MXenes). Nanoscale, 2020, 12, 538-547.	5.6	71
32	Direct synthesis of bifunctional nanorods from a Co–adenine–MoO ₃ hybrid for overall water splitting. Materials Chemistry Frontiers, 2020, 4, 546-554.	5.9	17
33	Influence of atmospheric conditions on sulfuric acid-dimethylamine-ammonia-based new particle formation. Chemosphere, 2020, 245, 125554.	8.2	30
34	Reversing Interfacial Catalysis of Ambipolar WSe ₂ Single Crystal. Advanced Science, 2020, 7, 1901382.	11.2	100
35	Modulation of the Double-Helical Cores: A New Strategy for Structural Predictions of Thiolate-Protected Gold Nanoclusters. Journal of Physical Chemistry Letters, 2020, 11, 536-540.	4.6	16
36	Use of Ion Exchange To Regulate the Heterogeneous Ice Nucleation Efficiency of Mica. Journal of the American Chemical Society, 2020, 142, 17956-17965.	13.7	26

#	Article	IF	Citations
37	Turning a Superhydrophilic Surface Weakly Hydrophilic: Topological Wetting States. Journal of the American Chemical Society, 2020, 142, 18491-18502.	13.7	25
38	Unraveling Molecular Mechanism on Dilute Surfactant Solution Controlled Ice Recrystallization. Langmuir, 2020, 36, 1691-1698.	3.5	8
39	Exploration of Formation and Sizeâ€Evolution Pathways of Thiolateâ€Gold Nanoclusters in the COâ€Directed [Au 25 (SR) 18] â^' Synthesis. Small, 2020, 17, 2000627.	10.0	9
40	Computational Prediction of Novel Ice Phases: A Perspective. Journal of Physical Chemistry Letters, 2020, 11, 7449-7461.	4.6	17
41	Multiturn Hollow Helices: Synthesis and Folding of Long Aromatic Oligoamides. Organic Letters, 2020, 22, 6938-6942.	4.6	10
42	Unraveling nucleation pathway in methane clathrate formation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24701-24708.	7.1	49
43	Quantitative Prediction of Aggregationâ€Induced Emission: A Full Quantum Mechanical Approach to the Optical Spectra. Angewandte Chemie, 2020, 132, 11647-11652.	2.0	3
44	New Insights into the Stability of Anhydrous 2 <i>H</i> -Imidazolium Fluoride and its High Dissolution Capability toward a Strongly Hydrogen-Bonded Compound. Journal of the American Chemical Society, 2020, 142, 10314-10318.	13.7	8
45	A possible unaccounted source of atmospheric sulfate formation: amine-promoted hydrolysis and non-radical oxidation of sulfur dioxide. Chemical Science, 2020, 11, 2093-2102.	7.4	11
46	Quantitative Prediction of Aggregationâ€Induced Emission: A Full Quantum Mechanical Approach to the Optical Spectra. Angewandte Chemie - International Edition, 2020, 59, 11550-11555.	13.8	23
47	Pt ₅ Se ₄ Monolayer: A Highly Efficient Electrocatalyst toward Hydrogen and Oxygen Electrode Reactions. ACS Applied Materials & Samp; Interfaces, 2020, 12, 13896-13903.	8.0	26
48	PtCoNi Alloy Nanoclusters for Synergistic Catalytic Oxygen Reduction Reaction. ACS Applied Nano Materials, 2020, 3, 2536-2544.	5.0	18
49	Hydration, Solvation, and Isomerization of Methylglyoxal at the Air/Water Interface: New Mechanistic Pathways. Journal of the American Chemical Society, 2020, 142, 5574-5582.	13.7	26
50	Heterogeneous Reactions of SO3 on Ice: An Overlooked Sink for SO3 Depletion. Journal of the American Chemical Society, 2020, 142, 2150-2154.	13.7	8
51	Resolving the puzzle of single-atom silver dispersion on nanosized \hat{I}^3 -Al2O3 surface for high catalytic performance. Nature Communications, 2020, 11, 529.	12.8	111
52	High ZT 2D Thermoelectrics by Design: Strong Interlayer Vibration and Complete Bandâ€Extrema Alignment. Advanced Functional Materials, 2020, 30, 2001200.	14.9	32
53	Domain Wall Conduction in Calcium-Modified Lead Titanate for Polarization Tunable Photovoltaic Devices. Cell Reports Physical Science, 2020, 1, 100043.	5.6	4
54	Descriptor-Based Design Principle for Two-Dimensional Single-Atom Catalysts: Carbon Dioxide Electroreduction. Journal of Physical Chemistry Letters, 2020, 11, 3481-3487.	4.6	65

#	Article	IF	CITATIONS
55	A droplet-based electricity generator with high instantaneous power density. Nature, 2020, 578, 392-396.	27.8	871
56	Directly predicting limiting potentials from easily obtainable physical properties of graphene-supported single-atom electrocatalysts by machine learning. Journal of Materials Chemistry A, 2020, 8, 5663-5670.	10.3	112
57	Chiral Au ₂₂ (SR) ₁₇ ^{â^'} : a new ligand-binding strategy for structural prediction of thiolate-protected gold nanocluster. Chemical Communications, 2020, 56, 2995-2998.	4.1	10
58	Constructing Stable and Potentially High-Performance Hybrid Organic-Inorganic Perovskites with "Unstable―Cations. Research, 2020, 2020, 1986576.	5.7	4
59	Theoretical studies on tunable electronic structures and potential applications of twoâ€dimensional arseneneâ€based materials. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1387.	14.6	33
60	Direct observation of 2-dimensional ices on different surfaces near room temperature without confinement. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16723-16728.	7.1	33
61	Graphene/antimonene/graphene heterostructure: A potential anode for sodium-ion batteries. Carbon, 2019, 153, 767-775.	10.3	45
62	Carbon fragments as highly active metal-free catalysts for the oxygen reduction reaction: a mechanistic study. Nanoscale, 2019, 11, 19422-19428.	5.6	20
63	Magnetism in bimetallic PtxNiNâ^'x clusters via cross-atomic coupling. Journal of Materials Chemistry C, 2019, 7, 9293-9300.	5.5	1
64	B-Doped MnN ₄ -G Nanosheets as Bifunctional Electrocatalysts for Both Oxygen Reduction and Oxygen Evolution Reactions. ACS Sustainable Chemistry and Engineering, 2019, 7, 18711-18717.	6.7	48
65	Diisopropylammonium Bromide Based Two-Dimensional Ferroelectric Monolayer Molecular Crystal with Large In-Plane Spontaneous Polarization. Journal of the American Chemical Society, 2019, 141, 1452-1456.	13.7	10
66	Unraveling a New Chemical Mechanism of Missing Sulfate Formation in Aerosol Haze: Gaseous NO ₂ with Aqueous HSO ₃ ^{â€"} /SO ₃ ^{2â€"} . Journal of the American Chemical Society, 2019, 141, 19312-19320.	13.7	36
67	Markedly Enhanced Oxygen Reduction Activity of Single-Atom Fe Catalysts via Integration with Fe Nanoclusters. ACS Nano, 2019, 13, 11853-11862.	14.6	340
68	Facile and Versatile Functionalization of Twoâ€Dimensional Carbon Nitrides by Design: Magnetism/Multiferroicity, Valleytronics, and Photovoltaics. Advanced Functional Materials, 2019, 29, 1905752.	14.9	19
69	Water desalination through rim functionalized carbon nanotubes. Journal of Materials Chemistry A, 2019, 7, 3583-3591.	10.3	56
70	Reconciling the Debate on the Existence of Pentazole HN ₅ in the Pentazolate Salt of (N ₅) ₆ (H ₃ O) ₃ (NH ₄) ₄ Cl. Journal of the American Chemical Society, 2019, 141, 2984-2989.	13.7	21
71	Reaction mechanism between small-sized Ce clusters and water molecules: an <i>ab initio</i> investigation on Ce _n + H ₂ O. Physical Chemistry Chemical Physics, 2019, 21, 4006-4014.	2.8	8
72	Eighteen functional monolayer metal oxides: wide bandgap semiconductors with superior oxidation resistance and ultrahigh carrier mobility. Nanoscale Horizons, 2019, 4, 592-600.	8.0	78

#	Article	IF	Citations
73	Tuning electronic structure of monolayer InP ₃ in contact with graphene or Ni: effect of a buffer layer and intrinsic In and P-vacancy. Physical Chemistry Chemical Physics, 2019, 21, 1285-1293.	2.8	7
74	Lead-free low-dimensional tin halide perovskites with functional organic spacers: breaking the charge-transport bottleneck. Journal of Materials Chemistry A, 2019, 7, 16742-16747.	10.3	24
75	Two-Dimensional Gold Sulfide Monolayers with Direct Band Gap and Ultrahigh Electron Mobility. Journal of Physical Chemistry Letters, 2019, 10, 3773-3778.	4.6	34
76	Unraveling Oxygen Evolution in Li-Rich Oxides: A Unified Modeling of the Intermediate Peroxo/Superoxo-like Dimers. Journal of the American Chemical Society, 2019, 141, 10751-10759.	13.7	82
77	Monolayer triphosphates MP $<$ sub $>3sub>(M = Sn, Ge) with excellent basal catalytic activity for hydrogen evolution reaction. Nanoscale, 2019, 11, 12210-12219.$	5.6	76
78	A New Class of Bifunctional Perovskites BaMX $<$ sub $>$ 4 $<$ /sub $>$ (M = Co, Ni, Fe, Mn; X = F, Cl, Br, I): An n-Type Semiconductor with Combined Multiferroic and Photovoltaic Properties. Journal of Physical Chemistry C, 2019, 123, 14303-14311.	3.1	1
79	An ultralow-density porous ice with the largest internal cavity identified in the water phase diagram. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12684-12691.	7.1	16
80	Method To Implement Interaction Surfaces with Virtual Companion Particles for Molecular Dynamics Simulations. Journal of Chemical & Engineering Data, 2019, 64, 3693-3700.	1.9	1
81	Niobium oxide dihalides NbOX ₂ : a new family of two-dimensional van der Waals layered materials with intrinsic ferroelectricity and antiferroelectricity. Nanoscale Horizons, 2019, 4, 1113-1123.	8.0	43
82	Phase transitions and ferroelasticity–multiferroicity in bulk and two-dimensional silver and copper monohalides. Nanoscale Horizons, 2019, 4, 1106-1112.	8.0	32
83	Mechanistic Insight into the Reaction of Organic Acids with SO ₃ at the Air–Water Interface. Angewandte Chemie, 2019, 131, 8439-8443.	2.0	9
84	Unraveling the high-activity nature of Fe–N–C electrocatalysts for the oxygen reduction reaction: the extraordinary synergy between Fe–N ₄ and Fe ₄ N. Journal of Materials Chemistry A, 2019, 7, 11792-11801.	10.3	84
85	Room temperature electrofreezing of water yields a missing dense ice phase in the phase diagram. Nature Communications, 2019, 10, 1925.	12.8	20
86	Tailoring Passivation Molecular Structures for Extremely Small Open-Circuit Voltage Loss in Perovskite Solar Cells. Journal of the American Chemical Society, 2019, 141, 5781-5787.	13.7	585
87	SLIPS-TENG: robust triboelectric nanogenerator with optical and charge transparency using a slippery interface. National Science Review, 2019, 6, 540-550.	9.5	110
88	Rational design of one-dimensional hybrid organic–inorganic perovskites with room-temperature ferroelectricity and strong piezoelectricity. Materials Horizons, 2019, 6, 1463-1473.	12.2	16
89	Mechanistic Insight into the Reaction of Organic Acids with SO ₃ at the Air–Water Interface. Angewandte Chemie - International Edition, 2019, 58, 8351-8355.	13.8	30
90	Au ₆₀ [–] : The Smallest Gold Cluster with the High-Symmetry Icosahedral Core Au ₁₃ . Journal of Physical Chemistry Letters, 2019, 10, 1820-1827.	4.6	17

#	Article	IF	Citations
91	Reaction mechanism between small-sized Ce clusters and water molecules II: an <i>ab initio</i> initio <ii>initioinitioinitio<ii>initioinitio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>initio<ii>in</ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii>	2.8	8
92	Simultaneously Dual Modification of Niâ€Rich Layered Oxide Cathode for Highâ€Energy Lithiumâ€Ion Batteries. Advanced Functional Materials, 2019, 29, 1808825.	14.9	430
93	Bi(Sb)NCa ₃ : Expansion of Perovskite Photovoltaics into All-Inorganic Anti-Perovskite Materials. Journal of Physical Chemistry C, 2019, 123, 6363-6369.	3.1	10
94	Understanding Hygroscopic Nucleation of Sulfate Aerosols: Combination of Molecular Dynamics Simulation with Classical Nucleation Theory. Journal of Physical Chemistry Letters, 2019, 10, 1126-1132.	4.6	13
95	Structural and Electronic Properties of Binary Clusters Si _{<i>m</i>} Ge _{<i>n</i>} (<i>m</i> + <i>n</i> = 6–13). Journal of Nanoscience and Nanotechnology, 2019, 19, 7879-7885.	0.9	1
96	Two-dimensional MgX $<$ sub $>$ 2 $<$ /sub $>$ Se $<$ sub $>$ 4 $<$ /sub $>$ (X = Al, Ga) monolayers with tunable electronic properties for optoelectronic and photocatalytic applications. Nanoscale, 2019, 11, 19806-19813.	5.6	21
97	Unexpected quenching effect on new particle formation from the atmospheric reaction of methanol with SO ₃ . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24966-24971.	7.1	32
98	Copper(<scp>i</scp>) sulfide: a two-dimensional semiconductor with superior oxidation resistance and high carrier mobility. Nanoscale Horizons, 2019, 4, 223-230.	8.0	51
99	Iron Clusters Embedded in Graphene Nanocavities: Heat-Induced Structural Evolution and Catalytic C–C Bond Breaking. ACS Applied Nano Materials, 2019, 2, 535-545.	5.0	5
100	Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation. Nature Communications, 2019, 10, 16.	12.8	430
101	Design of Singleâ€Molecule Multiferroics for Efficient Ultrahighâ€Density Nonvolatile Memories. Advanced Science, 2019, 6, 1801572.	11.2	41
102	PbTiO ₃ as Electronâ€Selective Layer for Highâ€Efficiency Perovskite Solar Cells: Enhanced Electron Extraction via Tunable Ferroelectric Polarization. Advanced Functional Materials, 2019, 29, 1806427.	14.9	23
103	Lead-Free Dion–Jacobson Tin Halide Perovskites for Photovoltaics. ACS Energy Letters, 2019, 4, 276-277.	17.4	101
104	Water transport through subnanopores in the ultimate size limit: Mechanism from molecular dynamics. Nano Research, 2019, 12, 587-592.	10.4	25
105	Hydrogen Production via Efficient Formic Acid Decomposition: Engineering the Surface Structure of Pd-Based Alloy Catalysts by Design. ACS Catalysis, 2019, 9, 781-790.	11.2	62
106	Aluminum and Nitrogen Codoped Graphene: Highly Active and Durable Electrocatalyst for Oxygen Reduction Reaction. ACS Catalysis, 2019, 9, 610-619.	11.2	56
107	Water Confined in Nanocapillaries: Two-Dimensional Bilayer Squarelike Ice and Associated Solid–Liquid–Solid Transition. Journal of Physical Chemistry C, 2018, 122, 6704-6712.	3.1	27
108	Structural Evolution of Gold-Doped Bismuth Clusters AuBi _{<i>n</i>} ^{â€"} (<i>n</i> = 4â€"8). Journal of Physical Chemistry C, 2018, 122, 6947-6954.	3.1	16

#	Article	IF	CITATIONS
109	Hybrid nanobud-array structures (C ₂₄) _n /MoS ₂ and (C ₂₄ V) _n /MoS ₂ : two-dimensional half metallic and ferromagnetic materials. Journal of Materials Chemistry C, 2018, 6, 3373-3386.	5.5	1
110	Continuous Grain-Boundary Functionalization for High-Efficiency Perovskite Solar Cells with Exceptional Stability. CheM, 2018, 4, 1404-1415.	11.7	165
111	Nitric Acid–Amine Chemistry in the Gas Phase and at the Air–Water Interface. Journal of the American Chemical Society, 2018, 140, 6456-6466.	13.7	51
112	Two-Dimensional AuMX2 (M = Al, Ga, In; X = S, Se) Monolayers Featuring Intracrystalline Aurophilic Interactions with Novel Electronic and Optical Properties. ACS Applied Materials & amp; Interfaces, 2018, 10, 16739-16746.	8.0	11
113	Phase behaviors of deeply supercooled bilayer water unseen in bulk water. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4839-4844.	7.1	13
114	Tuning the Stereoselectivity and Solvation Selectivity at Interfacial and Bulk Environments by Changing Solvent Polarity: Isomerization of Glyoxal in Different Solvent Environments. Journal of the American Chemical Society, 2018, 140, 5535-5543.	13.7	23
115	Insight into Chemistry on Cloud/Aerosol Water Surfaces. Accounts of Chemical Research, 2018, 51, 1229-1237.	15.6	96
116	Suppressed Ion Migration along the In-Plane Direction in Layered Perovskites. ACS Energy Letters, 2018, 3, 684-688.	17.4	240
117	Cesium Titanium(IV) Bromide Thin Films Based Stable Lead-free Perovskite Solar Cells. Joule, 2018, 2, 558-570.	24.0	403
118	Monolayer and bilayer polyaniline C ₃ N: two-dimensional semiconductors with high thermal conductivity. Nanoscale, 2018, 10, 4301-4310.	5.6	87
119	Abnormal phase transition between two-dimensional high-density liquid crystal and low-density crystalline solid phases. Nature Communications, 2018, 9, 198.	12.8	9
120	Earth-Abundant Nontoxic Titanium(IV)-based Vacancy-Ordered Double Perovskite Halides with Tunable 1.0 to 1.8 eV Bandgaps for Photovoltaic Applications. ACS Energy Letters, 2018, 3, 297-304.	17.4	314
121	Phonon thermal transport in a graphene/MoSe ₂ van der Waals heterobilayer. Physical Chemistry Chemical Physics, 2018, 20, 2637-2645.	2.8	32
122	Anatase (101) Reconstructed Surface with Novel Functionalities: Desired Bandgap for Visible Light Absorption and High Chemical Reactivity. Advanced Functional Materials, 2018, 28, 1705529.	14.9	9
123	Formation of aqueous-phase sulfate during the haze period in China: Kinetics and atmospheric implications. Atmospheric Environment, 2018, 177, 93-99.	4.1	23
124	Argon Plasma Treatment to Tune Perovskite Surface Composition for High Efficiency Solar Cells and Fast Photodetectors. Advanced Materials, 2018, 30, 1705176.	21.0	81
125	A universal principle for a rational design of single-atom electrocatalysts. Nature Catalysis, 2018, 1, 339-348.	34.4	1,214
126	Thermal transport in phosphorene and phosphorene-based materials: A review on numerical studies. Chinese Physics B, 2018, 27, 036501.	1.4	23

#	Article	IF	Citations
127	CaP ₃ : A New Two-Dimensional Functional Material with Desirable Band Gap and Ultrahigh Carrier Mobility. Journal of Physical Chemistry Letters, 2018, 9, 1728-1733.	4.6	112
128	Reaction of Criegee Intermediate with Nitric Acid at the Air–Water Interface. Journal of the American Chemical Society, 2018, 140, 4913-4921.	13.7	53
129	The structural isomerism in gold nanoclusters. Nanoscale, 2018, 10, 9476-9483.	5 . 6	37
130	Co-mixing hydrogen and methane may double the energy storage capacity. Journal of Materials Chemistry A, 2018, 6, 8916-8922.	10.3	22
131	Formation of CO ₂ Hydrates within Single-Walled Carbon Nanotubes at Ambient Pressure: CO ₂ Capture and Selective Separation of a CO ₂ /H ₂ Mixture in Water. Journal of Physical Chemistry C, 2018, 122, 7951-7958.	3.1	21
132	PtPd(111) Surface versus PtAu(111) Surface: Which One Is More Active for Methanol Oxidation?. ACS Catalysis, 2018, 8, 132-143.	11.2	56
133	Unravelling the Role of Topological Defects on Catalytic Unzipping of Single-Walled Carbon Nanotubes by Single Transition Metal Atom. Journal of Physical Chemistry Letters, 2018, 9, 6801-6807.	4.6	7
134	Insights into High Conductivity of the Two-Dimensional Iodine-Oxidized sp ² -c-COF. ACS Applied Materials & Dimensional Iodine-Oxidized sp ² -c-COF. ACS Applied Materials & Dimensional Iodine-Oxidized sp ² -c-COF. ACS Applied Materials & Dimensional Iodine-Oxidized sp ³ -c-COF. ACS Applied Materials & Dimensional Iodine-Oxidized sp ³ -c-COF. ACS Applied Materials & Dimensional Iodine-Oxidized sp ⁵ -c-COF. ACS Applied Materials & Dimensional Iodine-Oxidized sp ⁵ -c-COF. ACS Applied Materials & Dimensional Iodine-Oxidized sp ⁵ -c-COF. ACS Applied Materials & Dimensional Iodine-Oxidized sp ⁵ -c-COF. ACS Applied Materials & Dimensional Iodine-Oxidized sp ⁶ -c-COF. ACS Applied Materials & Dimensional Iodine-Oxidized sp ⁷ -c-COF. ACS Applied Materials & Dimensional Iodine-Oxidized sp ⁷ -c-COF. ACS Applied Materials & Dimensional Iodine-Oxidized sp ⁷ -c-COF. ACS Applied Materials & Dimensional Iodine-Oxidized sp ⁷ -c-COF. ACS Applied Sp ⁷ -c-COF. ACC Applied Sp ⁷ -c-COF. ACC Applied Sp ⁷ -c-COF. ACC A	8.0	37
135	Large magnetic anisotropy in chemically engineered iridium dimer. Communications Physics, 2018, $1, \dots$	5.3	11
136	Mechanistic Origin of the High Performance of Yolk@Shell Bi ₂ S ₃ @N-Doped Carbon Nanowire Electrodes. ACS Nano, 2018, 12, 12597-12611.	14.6	213
137	Quasi-1D TiS ₃ Nanoribbons: Mechanical Exfoliation and Thickness-Dependent Raman Spectroscopy. ACS Nano, 2018, 12, 12713-12720.	14.6	77
138	Application of Electronic Counting Rules for Ligand-Protected Gold Nanoclusters. Accounts of Chemical Research, 2018, 51, 2739-2747.	15.6	105
139	Two-dimensional dry ices with rich polymorphic and polyamorphic phase behavior. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10263-10268.	7.1	6
140	P3Cl2: A Unique Post-Phosphorene 2D Material with Superior Properties against Oxidation. Journal of Physical Chemistry Letters, 2018, 9, 6568-6575.	4.6	16
141	Determination of CO Adsorption Sites on Gold Clusters Au _{<i>n</i>} ^{â€"} (<i>n</i>) Tj ETCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	Qq1 1 0.7 4.6	84314 rgBT 9
142	Fabrication and understanding of Cu ₃ Si-Si@carbon@graphene nanocomposites as high-performance anodes for lithium-ion batteries. Nanoscale, 2018, 10, 22203-22214.	5.6	103
143	Inch-Scale Grain Boundary Free Organic Crystals Developed by Nucleation Seed-Controlled Shearing Method. ACS Applied Materials & Developed by Nucleation Seed-Controlled Shearing Method. ACS Applied Materials & Developed by Nucleation Seed-Controlled Shearing Method.	8.0	48
144	Assessment of Catalytic Activities of Gold Nanoclusters with Simple Structure Descriptors. ACS Catalysis, 2018, 8, 9702-9710.	11.2	38

#	Article	IF	Citations
145	Machine learning and artificial neural network prediction of interfacial thermal resistance between graphene and hexagonal boron nitride. Nanoscale, 2018, 10, 19092-19099.	5.6	75
146	Self-scrolling MoS ₂ metallic wires. Nanoscale, 2018, 10, 18178-18185.	5.6	83
147	A type-I van der Waals heterobilayer of WSe ₂ /MoTe ₂ . Nanotechnology, 2018, 29, 335203.	2.6	24
148	Multifunctional Binary Monolayers Ge _{<i>x</i>} P _{<i>y</i>} : Tunable Band Gap, Ferromagnetism, and Photocatalyst for Water Splitting. ACS Applied Materials & Samp; Interfaces, 2018, 10, 19897-19905.	8.0	48
149	Understanding the quenching nature of Mn ⁴⁺ in wide band gap inorganic compounds: design principles for Mn ⁴⁺ phosphors with higher efficiency. Physical Chemistry Chemical Physics, 2018, 20, 16992-16999.	2.8	30
150	Stable Formamidiniumâ€Based Perovskite Solar Cells via In Situ Grain Encapsulation. Advanced Energy Materials, 2018, 8, 1800232.	19.5	78
151	A molecular perspective for global modeling of upper atmospheric NH ₃ from freezing clouds. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6147-6152.	7.1	27
152	Criegee intermediate inside fullerene cage: Evidence for size-dependent reactivity. Journal of Chemical Physics, 2018, 148, 244301.	3.0	2
153	Formation of HONO from the NH ₃ -promoted hydrolysis of NO ₂ dimers in the atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7236-7241.	7.1	67
154	Perovskite Solar Cells: Stable Formamidinium-Based Perovskite Solar Cells via In Situ Grain Encapsulation (Adv. Energy Mater. 22/2018). Advanced Energy Materials, 2018, 8, 1870101.	19.5	1
155	Zero-Dimensional Organic–Inorganic Perovskite Variant: Transition between Molecular and Solid Crystal. Journal of the American Chemical Society, 2018, 140, 10456-10463.	13.7	79
156	Transition-Metal Dihydride Monolayers: A New Family of Two-Dimensional Ferromagnetic Materials with Intrinsic Room-Temperature Half-Metallicity. Journal of Physical Chemistry Letters, 2018, 9, 4260-4266.	4.6	118
157	Monolayered semiconducting GeAsSe and SnSbTe with ultrahigh hole mobility. Frontiers of Physics, 2018, 13, 1.	5.0	11
158	Structural evolution and magnetic properties of anionic clusters Cr ₂ Ge _{<i>n</i>} (<i>n</i> =  3–14): photoelectron spectroscopy and density functional theory compu Journal of Physics Condensed Matter, 2018, 30, 335501.	ut ats on.	20
159	Toward Eco-friendly and Stable Perovskite Materials for Photovoltaics. Joule, 2018, 2, 1231-1241.	24.0	224
160	Self-Catalytic Reaction of SO ₃ and NH ₃ To Produce Sulfamic Acid and Its Implication to Atmospheric Particle Formation. Journal of the American Chemical Society, 2018, 140, 11020-11028.	13.7	86
161	Tin and germanium based two-dimensional Ruddlesden–Popper hybrid perovskites for potential lead-free photovoltaic and photoelectronic applications. Nanoscale, 2018, 10, 11314-11319.	5.6	73
162	Integration of a functionalized graphene nano-network into a planar perovskite absorber for high-efficiency large-area solar cells. Materials Horizons, 2018, 5, 868-873.	12.2	25

#	Article	IF	Citations
163	Prediction of a new ice clathrate with record low density: A potential candidate as ice XIX in guest-free form. Chemical Physics Letters, 2017, 671, 186-191.	2.6	36
164	Lateral and flexural phonon thermal transport in graphene and stanene bilayers. Physical Chemistry Chemical Physics, 2017, 19, 6554-6562.	2.8	42
165	Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors. Nano Letters, 2017, 17, 1623-1628.	9.1	78
166	Effects of line defects on the electronic properties of ZnO nanoribbons and sheets. Journal of Materials Chemistry C, 2017, 5, 3121-3129.	5.5	16
167	Probing Structural, Electronic, and Magnetic Properties of Iron-Doped Semiconductor Clusters Fe $<$ sub $<$ 2 $<$ /sub $<$ Ge $<$ sub $<$ i $>n<$ /i $<$ /sub $<$ 6sub $>$ 6e $<$ sub >6 0 $<$ 1sub $<$ 6sub >6 0 $<$ 1sub $>$ 9 ($<$ 1sub $<$ 1sub $>$ 9 ($<$ 1sub $<$ 1sub $<$ 2sub $>$ 9 ($<$ 1sub $<$ 1sub $<$ 2sub $<$ 3sub $<$ 3sub $<$ 4sub $<$ 5sub $<$ 5sub $<$ 5sub $<$ 6sub $<$ 6sub $<$ 6sub $<$ 7sub $<$ 6sub $<$ 7sub $<$ 8sub $<$ 8sub $<$ 8sub $<$ 9sub $<$	3.1	42
168	Double Perovskite Cs ₂ BBiX ₆ (B = Ag, Cu; X = Br, Cl)/TiO ₂ Heterojunction: An Efficient Pb-Free Perovskite Interface for Charge Extraction. Journal of Physical Chemistry C, 2017, 121, 4471-4480.	3.1	87
169	Two-Dimensional Metal-Free Organic Multiferroic Material for Design of Multifunctional Integrated Circuits. Journal of Physical Chemistry Letters, 2017, 8, 1973-1978.	4.6	64
170	Perovskite Chalcogenides with Optimal Bandgap and Desired Optical Absorption for Photovoltaic Devices. Advanced Energy Materials, 2017, 7, 1700216.	19.5	128
171	Criegee intermediate-hydrogen sulfide chemistry at the air/water interface. Chemical Science, 2017, 8, 5385-5391.	7.4	39
172	lon-specific ice recrystallization provides a facile approach for the fabrication of porous materials. Nature Communications, 2017, 8, 15154.	12.8	71
173	Surprising Stability of Larger Criegee Intermediates on Aqueous Interfaces. Angewandte Chemie - International Edition, 2017, 56, 7740-7744.	13.8	80
174	Catalytic Directional Cutting of Hexagonal Boron Nitride: The Roles of Interface and Etching Agents. Nano Letters, 2017, 17, 3208-3214.	9.1	26
175	Half-Metallicity in One-Dimensional Metal Trihydride Molecular Nanowires. Journal of the American Chemical Society, 2017, 139, 6290-6293.	13.7	54
176	Multiscale simulation on shearing transitions of thin-film lubrication with multi-layer molecules. Chemical Physics Letters, 2017, 679, 6-14.	2.6	3
177	Mechanistic insights into tunable luminescence and persistent luminescence of the full-color-emitting BCNO phosphors. Carbon, 2017, 122, 176-184.	10.3	18
178	Au ₃ ($\hat{1}^{1}/4$ ₃ -S)(0e) elementary block: new insights into ligated gold clusters with $\hat{1}^{1}/4$ ₃ -sulfido motifs. Nanoscale, 2017, 9, 8990-8996.	5.6	15
179	Lead-Free Mixed Tin and Germanium Perovskites for Photovoltaic Application. Journal of the American Chemical Society, 2017, 139, 8038-8043.	13.7	217
180	Evidence of low-density and high-density liquid phases and isochore end point for water confined to carbon nanotube. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4066-4071.	7.1	42

#	Article	IF	Citations
181	Embedded silicene nanostructures in partly-dehydrogenated polysilane. Physical Chemistry Chemical Physics, 2017, 19, 10401-10405.	2.8	1
182	Structural Evolution of Gold Clusters Aun– (n = 21–25) Revisited. Journal of Physical Chemistry A, 2017, 121, 2466-2474.	2.5	19
183	Interaction between Iron and Graphene Nanocavity: Formation of Iron Membranes, Iron Clusters, or Iron Carbides. ACS Applied Materials & Samp; Interfaces, 2017, 9, 12100-12108.	8.0	9
184	Au13(8e): A secondary block for describing a special group of liganded gold clusters containing icosahedral Au13 motifs. Chemical Physics Letters, 2017, 675, 35-39.	2.6	25
185	Structural, electronic and mechanical properties of sp ³ -hybridized BN phases. Physical Chemistry Chemical Physics, 2017, 19, 9923-9933.	2.8	9
186	π onjugated Lewis Base: Efficient Trapâ€Passivation and Chargeâ€Extraction for Hybrid Perovskite Solar Cells. Advanced Materials, 2017, 29, 1604545.	21.0	543
187	Twoâ€Dimensional Single‣ayer Organic–Inorganic Hybrid Perovskite Semiconductors. Advanced Energy Materials, 2017, 7, 1601731.	19.5	93
188	Controlling states of water droplets on nanostructured surfaces by design. Nanoscale, 2017, 9, 18240-18245.	5.6	38
189	Cadmium Modified HZSM-5: A Highly Efficient Catalyst for Selective Transformation of Methanol to Aromatics. Industrial & Description of Methanol to Aromatics.	3.7	34
190	Interaction of SO ₂ with the Surface of a Water Nanodroplet. Journal of the American Chemical Society, 2017, 139, 17168-17174.	13.7	46
191	Distinct ice patterns on solid surfaces with various wettabilities. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11285-11290.	7.1	132
192	Enforced Tubular Assembly of Electronically Different Hexakis(<i>m</i> -Phenylene Ethynylene) Macrocycles: Persistent Columnar Stacking Driven by Multiple Hydrogen-Bonding Interactions. Journal of the American Chemical Society, 2017, 139, 15950-15957.	13.7	39
193	Au ₆ S ₂ monolayer sheets: metallic and semiconducting polymorphs. Materials Horizons, 2017, 4, 1085-1091.	12.2	26
194	New phases of 3d-transition metal–cerium binary compounds: an extensive structural search. RSC Advances, 2017, 7, 40486-40498.	3.6	10
195	Halfâ€Metallic Behavior in 2D Transition Metal Dichalcogenides Nanosheets by Dualâ€Nativeâ€Defects Engineering. Advanced Materials, 2017, 29, 1703123.	21.0	65
196	RÃ⅓cktitelbild: Homogenous Alloys of Formamidinium Lead Triiodide and Cesium Tin Triiodide for Efficient Idealâ€Bandgap Perovskite Solar Cells (Angew. Chem. 41/2017). Angewandte Chemie, 2017, 129, 12966-12966.	2.0	0
197	Bismuth Oxychalcogenides: A New Class of Ferroelectric/Ferroelastic Materials with Ultra High Mobility. Nano Letters, 2017, 17, 6309-6314.	9.1	208
198	Molecular Dynamics Simulation of Water Nanodroplet Bounce Back from Flat and Nanopillared Surface. Langmuir, 2017, 33, 10184-10192.	3.5	40

#	Article	IF	Citations
199	In- and Ga-based inorganic double perovskites with direct bandgaps for photovoltaic applications. Physical Chemistry Chemical Physics, 2017, 19, 21691-21695.	2.8	37
200	Homogenous Alloys of Formamidinium Lead Triiodide and Cesium Tin Triiodide for Efficient Idealâ€Bandgap Perovskite Solar Cells. Angewandte Chemie - International Edition, 2017, 56, 12658-12662.	13.8	69
201	Homogenous Alloys of Formamidinium Lead Triiodide and Cesium Tin Triiodide for Efficient Idealâ€Bandgap Perovskite Solar Cells. Angewandte Chemie, 2017, 129, 12832-12836.	2.0	3
202	Nanosheet Supported Single-Metal Atom Bifunctional Catalyst for Overall Water Splitting. Nano Letters, 2017, 17, 5133-5139.	9.1	395
203	Dense monolayer films of atomically precise graphene nanoribbons on metallic substrates enabled by direct contact transfer of molecular precursors. Nanoscale, 2017, 9, 18835-18844.	5.6	21
204	Correspondence: Reply to â€~On the bonding in ligand-protected gold clusters'. Nature Communications, 2017, 8, 1351.	12.8	7
205	Twisted MX ₂ /MoS ₂ heterobilayers: effect of van der Waals interaction on the electronic structure. Nanoscale, 2017, 9, 19131-19138.	5.6	43
206	Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions andÂcations. Nature Energy, 2017, 2, .	39.5	1,694
207	Interfaces Select Specific Stereochemical Conformations: The Isomerization of Glyoxal at the Liquid Water Interface. Journal of the American Chemical Society, 2017, 139, 27-30.	13.7	38
208	Type-I van der Waals heterostructure formed by MoS ₂ and ReS ₂ monolayers. Nanoscale Horizons, 2017, 2, 31-36.	8.0	179
209	Probing the Structural Evolution of Gold–Aluminum Bimetallic Clusters (Au ₂ Al _{<i>n</i>} [–] , <i>n</i> > = 3–11) Using Photoelectron Spectroscopy and Theoretical Calculations. Journal of Physical Chemistry C, 2017, 121, 18234-18243.	3.1	18
210	Group <scp>IVB</scp> transition metal trichalcogenides: a new class of <scp>2D</scp> layered materials beyond graphene. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2016, 6, 211-222.	14.6	100
211	A grand unified model for liganded gold clusters. Nature Communications, 2016, 7, 13574.	12.8	148
212	Hydrogen bonding and orientation effects on the accommodation of methylamine at the air-water interface. Journal of Chemical Physics, 2016, 144, 214701.	3.0	34
213	Communication: Interaction of BrO radical with the surface of water. Journal of Chemical Physics, 2016, 145, 241102.	3.0	2
214	Probing the structures of gold–aluminum alloy clusters Au _x Al _y ^{â~'} : a joint experimental and theoretical study. Nanoscale, 2016, 8, 9805-9814.	5.6	24
215	Polysilane-Wrapped Carbon and Boron-Nitride Nanotubes: Effects of B or P Doping on Electron Transport. Journal of Physical Chemistry C, 2016, 120, 5741-5754.	3.1	2
216	Formation of Trilayer Ices in Graphene Nanocapillaries under High Lateral Pressure. Journal of Physical Chemistry C, 2016, 120, 8109-8115.	3.1	25

#	Article	IF	CITATIONS
217	An <i>ab initio</i> study of the nickel-catalyzed transformation of amorphous carbon into graphene in rapid thermal processing. Nanoscale, 2016, 8, 9746-9755.	5.6	25
218	Resolving the HONO formation mechanism in the ionosphere via ab initio molecular dynamic simulations. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4629-4633.	7.1	4
219	Controlling Catalytic Properties of Pd Nanoclusters through Their Chemical Environment at the Atomic Level Using Isoreticular Metal–Organic Frameworks. ACS Catalysis, 2016, 6, 3461-3468.	11.2	152
220	Intrinsic Ferroelasticity and/or Multiferroicity in Two-Dimensional Phosphorene and Phosphorene Analogues. Nano Letters, 2016, 16, 3236-3241.	9.1	491
221	Point defects in lines in single crystalline phosphorene: directional migration and tunable band gaps. Nanoscale, 2016, 8, 17801-17808.	5.6	30
222	Rutile TiO < sub > 2 < /sub > (011)-2 \tilde{A} — 1 Reconstructed Surfaces with Optical Absorption over the Visible Light Spectrum. ACS Applied Materials & amp; Interfaces, 2016, 8, 27403-27410.	8.0	18
223	New Mechanistic Pathways for Criegee–Water Chemistry at the Air/Water Interface. Journal of the American Chemical Society, 2016, 138, 11164-11169.	13.7	111
224	Thermal contact resistance across a linear heterojunction within a hybrid graphene/hexagonal boron nitride sheet. Physical Chemistry Chemical Physics, 2016, 18, 24164-24170.	2.8	55
225	Self-Assembly of Janus Oligomers into Onion-like Vesicles with Layer-by-Layer Water Discharging Capability: A Minimalist Model. ACS Nano, 2016, 10, 8026-8037.	14.6	43
226	Metallic Nickel Hydroxide Nanosheets Give Superior Electrocatalytic Oxidation of Urea for Fuel Cells. Angewandte Chemie, 2016, 128, 12653-12657.	2.0	233
227	Metallic Nickel Hydroxide Nanosheets Give Superior Electrocatalytic Oxidation of Urea for Fuel Cells. Angewandte Chemie - International Edition, 2016, 55, 12465-12469.	13.8	356
228	Heterojunctionâ€Depleted Leadâ€Free Perovskite Solar Cells with Coarseâ€Grained Bâ€Ĵ³â€CsSnI ₃ TFilms. Advanced Energy Materials, 2016, 6, 1601130.	hin 19.5	247
229	Differential Permeability of Proton Isotopes through Graphene and Graphene Analogue Monolayer. Journal of Physical Chemistry Letters, 2016, 7, 3395-3400.	4.6	40
230	"π-Holeâ~π―Interaction Promoted Photocatalytic Hydrodefluorination via Inner-Sphere Electron Transfer. Journal of the American Chemical Society, 2016, 138, 15805-15808.	13.7	61
231	Signature of coexistence of superconductivity and ferromagnetism in two-dimensional NbSe2 triggered by surface molecular adsorption. Nature Communications, 2016, 7, 11210.	12.8	85
232	Monopolar Magnetic MOF-74 with Hybrid Node Ni–Fe. Journal of Physical Chemistry C, 2016, 120, 26908-26914.	3.1	5
233	AB-stacked square-like bilayer ice in graphene nanocapillaries. Physical Chemistry Chemical Physics, 2016, 18, 22039-22046.	2.8	20
234	Photovoltaic Diode Effect Induced by Positive Bias Poling of Organic Layerâ€Mediated Interface in Perovskite Heterostructure αâ€HC(NH ₂) ₂ Pbl ₃ /TiO ₂ . Advanced Materials Interfaces, 2016, 3, 1600267.	3.7	9

#	Article	IF	Citations
235	Highâ€Performance Ru ₁ /CeO ₂ Singleâ€Atom Catalyst for CO Oxidation: A Computational Exploration. ChemPhysChem, 2016, 17, 3170-3175.	2.1	47
236	Ferroelectricity in Covalently functionalized Two-dimensional Materials: Integration of High-mobility Semiconductors and Nonvolatile Memory. Nano Letters, 2016, 16, 7309-7315.	9.1	99
237	CO Separation from H ₂ via Hydrate Formation in Single-Walled Carbon Nanotubes. Journal of Physical Chemistry Letters, 2016, 7, 4911-4915.	4.6	20
238	Thermal Conductivity of Monolayer MoSe ₂ and MoS ₂ . Journal of Physical Chemistry C, 2016, 120, 26067-26075.	3.1	99
239	Thinâ€Film Transformation of NH ₄ Pbl ₃ to CH ₃ NH ₃ Pbl ₃ Perovskite: A Methylamineâ€Induced Conversionâ€"Healing Process. Angewandte Chemie - International Edition, 2016, 55, 14723-14727.	13.8	83
240	Thinâ€Film Transformation of NH ₄ Pbl ₃ to CH ₃ NH ₃ Pbl ₃ Perovskite: A Methylamineâ€Induced Conversionâ€"Healing Process. Angewandte Chemie, 2016, 128, 14943-14947.	2.0	17
241	Structural Evolution of Core–Shell Gold Nanoclusters: Au _{<i>n</i>} [–] (<i>n</i> = 42–50). ACS Nano, 2016, 10, 10013-10022.	14.6	36
242	Interlayer thermal conductance within a phosphorene and graphene bilayer. Nanoscale, 2016, 8, 19211-19218.	5.6	60
243	Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12946-12951.	7.1	87
244	Kinetic and mechanistic investigations of the direct synthesis of dimethyl carbonate from carbon dioxide over ceria nanorod catalysts. Journal of Catalysis, 2016, 340, 295-301.	6.2	50
245	Free-Standing Two-Dimensional Ru Nanosheets with High Activity toward Water Splitting. ACS Catalysis, 2016, 6, 1487-1492.	11.2	276
246	Unraveling the hidden function of a stabilizer in a precursor in improving hybrid perovskite film morphology for high efficiency solar cells. Energy and Environmental Science, 2016, 9, 867-872.	30.8	62
247	Two-dimensional interlocked pentagonal bilayer ice: how do water molecules form a hydrogen bonding network?. Physical Chemistry Chemical Physics, 2016, 18, 14216-14221.	2.8	26
248	Surprising impact of remote groups on the folding–unfolding and dimer-chain equilibria of bifunctional H-bonding unimers. Chemical Communications, 2016, 52, 3773-3776.	4.1	3
249	A new phase diagram of water under negative pressure: The rise of the lowest-density clathrate s-III. Science Advances, 2016, 2, e1501010.	10.3	92
250	Persistent Luminescence Hole-Type Materials by Design: Transition-Metal-Doped Carbon Allotrope and Carbides. ACS Applied Materials & Design: Transition-Metal-Doped Carbon Allotrope and Carbides. ACS Applied Materials & Design: Transition-Metal-Doped Carbon Allotrope and Carbides. ACS Applied Materials & Design: Transition-Metal-Doped Carbon Allotrope and Carbides. ACS Applied Materials & Design: Transition-Metal-Doped Carbon Allotrope and Carbides. ACS Applied Materials & Design: Transition-Metal-Doped Carbon Allotrope and Carbides. ACS Applied Materials & Design: Transition-Metal-Doped Carbon Allotrope and Carbides. ACS Applied Materials & Design: Transition-Metal-Doped Carbon Allotrope and Carbides. ACS Applied Materials & Design: Transition-Metal-Doped Carbon Allotrope and Carbides. ACS Applied Materials & Design: Transition-Metal-Doped Carbon Allotrope and Carbides. ACS Applied Materials & Design: Transition-Metal-Doped Carbon Allotrope and Carbides. ACS Applied Materials & Design: Transition-Metal-Doped Carbon Allotrope and Carbides. ACS Applied Materials & Design: Transition-Metal-Doped Carbon Allotrope and Carbides. ACS Applied Materials & Design: Transition-Metal-Doped Carbon Allotrope and Carbides. ACS Applied Materials & Design: Transition-Metal-Doped Carbon Allotrope and Carbides. ACS Applied Materials & Design: Transition-Metal-Doped Carbon Allotrope and Carbides. ACS Applied Materials & Design: Transition-Metal-Doped Carbon Allotrope and Carbides According to the Carbon Allotrope and	8.0	14
251	Near-Barrierless Ammonium Bisulfate Formation via a Loop-Structure Promoted Proton-Transfer Mechanism on the Surface of Water. Journal of the American Chemical Society, 2016, 138, 1816-1819.	13.7	93
252	Why Is MP2-Water "Cooler―and "Denser―than DFT-Water?. Journal of Physical Chemistry Letters, 2016 7, 680-684.	' 4.6	47

#	Article	IF	Citations
253	Tuning the electronic properties of monolayer and bilayer PtSe ₂ via strain engineering. Journal of Materials Chemistry C, 2016, 4, 3106-3112.	5 . 5	96
254	Unraveling a generic growth pattern in structure evolution of thiolate-protected gold nanoclusters. Nanoscale, 2016, 8, 7396-7401.	5.6	51
255	Mechanistic study of pressure and temperature dependent structural changes in reactive formation of silicon carbonate. RSC Advances, 2016, 6, 26650-26657.	3.6	10
256	Medium-sized Au ₄₀ (SR) ₂₄ and Au ₅₂ (SR) ₃₂ nanoclusters with distinct gold-kernel structures and spectroscopic features. Nanoscale, 2016, 8, 1299-1304.	5.6	16
257	Al ₂ C Monolayer Sheet and Nanoribbons with Unique Direction-Dependent Acoustic-Phonon-Limited Carrier Mobility and Carrier Polarity. Journal of Physical Chemistry Letters, 2016, 7, 302-307.	4.6	30
258	Time-Resolved Measurements of Photocarrier Dynamics in TiS ₃ Nanoribbons. ACS Applied Materials & Samp; Interfaces, 2016, 8, 18334-18338.	8.0	35
259	Simulation Evidence of Hexagonalâ€toâ€Tetragonal ZnSe Structure Transition: A Monolayer Material with a Wideâ€Range Tunable Direct Bandgap. Advanced Science, 2015, 2, 1500290.	11.2	44
260	A Nearâ€Infraredâ€Emissive Alkynylâ€Protected Au ₂₄ Nanocluster. Angewandte Chemie - International Edition, 2015, 54, 9683-9686.	13.8	152
261	Titanium Trisulfide Monolayer: Theoretical Prediction of a New Directâ€Gap Semiconductor with High and Anisotropic Carrier Mobility. Angewandte Chemie - International Edition, 2015, 54, 7572-7576.	13.8	239
262	B27â^': Appearance of the smallest planar boron cluster containing a hexagonal vacancy. Journal of Chemical Physics, 2015, 142, 204305.	3.0	60
263	Mechanistic Study of the Persistent Luminescence of CaAl ₂ O ₄ :Eu,Nd. Chemistry of Materials, 2015, 27, 2195-2202.	6.7	186
264	Tunable Optical Properties and Charge Separation in CH ₃ NH ₃ Sn _{<i>x</i>>} Pb _{1â€"<i>x</i>} I _{I₃/TiO_{Planar Perovskites Cells. Journal of the American Chemical Society, 2015, 137, 8227-8236.}}	2 4/s.u b>-E	Ba seo
265	The electronic and transport properties of (VBz) _n @CNT and (VBz) _n @BNNT nanocables. Journal of Materials Chemistry C, 2015, 3, 4039-4049.	5. 5	11
266	Tunable Bandgaps: Simulation Evidence of Hexagonal-to-Tetragonal ZnSe Structure Transition: A Monolayer Material with a Wide-Range Tunable Direct Bandgap (Adv. Sci. 12/2015). Advanced Science, 2015, 2, .	11.2	1
267	Enantioselective Desymmetrization via Carbonyl-Directed Catalytic Asymmetric Hydroboration and Suzuki–Miyaura Cross-Coupling. Organic Letters, 2015, 17, 940-943.	4.6	45
268	Electronic structures and electronic spectra of all-boron fullerene B ₄₀ . Chemical Communications, 2015, 51, 3185-3188.	4.1	65
269	Metal–organic Kagome lattices M ₃ (2,3,6,7,10,11-hexaiminotriphenylene) ₂ (M =) Tj l Physics, 2015, 17, 5954-5958.	ETQq1 1 0 2.8).784314 rgE 108
270	Formation of bilayer clathrate hydrates. Journal of Materials Chemistry A, 2015, 3, 5547-5555.	10.3	17

#	Article	IF	Citations
271	Highâ€Gain and Lowâ€Drivingâ€Voltage Photodetectors Based on Organolead Triiodide Perovskites. Advanced Materials, 2015, 27, 1912-1918.	21.0	560
272	Photodetectors: High-Gain and Low-Driving-Voltage Photodetectors Based on Organolead Triiodide Perovskites (Adv. Mater. 11/2015). Advanced Materials, 2015, 27, 1967-1967.	21.0	3
273	Tuning thermal contact conductance at graphene–copper interface <i>via</i> surface nanoengineering. Nanoscale, 2015, 7, 6286-6294.	5.6	85
274	Understanding the origin of phase segregation of nano-crystalline in a BexZn1â^'xO random alloy: a novel phase of Be1/3Zn2/3O. Nanoscale, 2015, 7, 9852-9858.	5.6	7
275	Influence of Structural Fluctuations, Proton Transfer, and Electric Field on Polarization Switching of Supported Two-Dimensional Hydrogen-Bonded Oxocarbon Monolayers. Chemistry of Materials, 2015, 27, 4839-4847.	6.7	13
276	Computational Analysis of Stable Hard Structures in the Ti–B System. ACS Applied Materials & Computational Analysis of Stable Hard Structures in the Ti–B System. ACS Applied Materials & Computational Analysis of Stable Hard Structures in the Ti–B System. ACS Applied Materials & Computational Analysis of Stable Hard Structures in the Ti–B System. ACS Applied Materials & Computational Analysis of Stable Hard Structures in the Ti–B System. ACS Applied Materials & Computational Analysis of Stable Hard Structures in the Ti–B System. ACS Applied Materials & Computational Analysis of Stable Hard Structures in the Ti–B System. ACS Applied Materials & Computational Analysis of Stable Hard Structures in the Ti–B System. ACS Applied Materials & Computational Analysis of Stable Hard Structures in the Ti–B System. ACS Applied Materials & Computational Analysis of Stable Hard Structures in the Ti–B System. ACS Applied Materials & Computational Analysis of Stable Hard Structures in the Ti–B System. ACS Applied Materials & Computational Analysis of Stable Hard Structures in the Ti–B System. ACS Applied Materials & Computational Analysis of Stable Hard Structures in the Ti–B System. ACS Applied Materials & Computational Analysis of Stable Hard Structures in the Tiâf & Computational Analysis of Stable Hard Structures in the Tiâf & Computational Analysis of Stable Hard Structures in the Tiâf & Computational Analysis of Stable Hard Structures in the Tiâf & Computational Analysis of Stable Hard Structures in the Tiâf & Computational Analysis of Stable Hard Structures in the Tiâf & Computational Analysis of Stable Hard Structures in the Tiâf & Computational Analysis of Stable Hard Structures in the Tiâf & Computational Analysis of Stable Hard Structures in the Tiâf & Computational Analysis of Stable Hard Structures in the Tiâf & Computational Analysis of Stable Hard Structures in the Tiâf & Computational Analysis of Stable Hard Structures in the Tiâf & Computational Analysis of Stable Hard Structures in th	8.0	48
277	Covalent nitrophenyl diazonium functionalized silicene for spintronics: a first-principles study. Physical Chemistry Chemical Physics, 2015, 17, 17957-17961.	2.8	13
278	Molecular dynamics simulation of heterogeneous nucleation on nanotubes. RSC Advances, 2015, 5, 40953-40963.	3.6	5
279	New Structure Model of Au ₂₂ (SR) ₁₈ : Bitetrahederon Golden Kernel Enclosed by [Au ₆ (SR) ₆] Au(I) Complex. Journal of Physical Chemistry Letters, 2015, 6, 1390-1395.	4.6	71
280	Unraveling structures of protection ligands on gold nanoparticle Au ₆₈ (SH) ₃₂ . Science Advances, 2015, 1, e1400211.	10.3	41
281	Electron-Transport Properties of Few-Layer Black Phosphorus. Journal of Physical Chemistry Letters, 2015, 6, 1996-2002.	4.6	76
282	Structure transition of Au \cdot sub \cdot 18 \cdot /sub \cdot from pyramidal to a hollow-cage during soft-landing onto a TiO \cdot sub \cdot 2 \cdot /sub \cdot (110) surface. Chemical Communications, 2015, 51, 9535-9538.	4.1	7
283	CO ₂ Capture on <i>h</i> -BN Sheet with High Selectivity Controlled by External Electric Field. Journal of Physical Chemistry C, 2015, 119, 6912-6917.	3.1	183
284	Nine New Phosphorene Polymorphs with Non-Honeycomb Structures: A Much Extended Family. Nano Letters, 2015, 15, 3557-3562.	9.1	275
285	Oxygen Intercalation of Graphene on Transition Metal Substrate: An Edge-Limited Mechanism. Journal of Physical Chemistry Letters, 2015, 6, 4099-4105.	4.6	35
286	Stability of Metal-Encapsulating Boron Fullerene B ₄₀ . Journal of Physical Chemistry A, 2015, 119, 11208-11214.	2.5	68
287	The freezing tendency towards 4-coordinated amorphous networks causes an increase in the heat capacity of supercooled Stillinger–Weber silicon. RSC Advances, 2015, 5, 44679-44686.	3.6	6
288	Thermal conductivity of a two-dimensional phosphorene sheet: a comparative study with graphene. Nanoscale, 2015, 7, 18716-18724.	5.6	132

#	Article	IF	Citations
289	Unraveling the mechanism of selective ion transport in hydrophobic subnanometer channels. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10851-10856.	7.1	53
290	Electronic and transport properties of porous graphene sheets and nanoribbons: benzo-CMPs and BN codoped derivatives. Journal of Materials Chemistry C, 2015, 3, 9637-9649.	5.5	11
291	Tuning the electronic properties of transition-metal trichalcogenides <i>via</i> tensile strain. Nanoscale, 2015, 7, 15385-15391.	5.6	79
292	Interaction of the NH ₂ Radical with the Surface of a Water Droplet. Journal of the American Chemical Society, 2015, 137, 12070-12078.	13.7	52
293	Water in Inhomogeneous Nanoconfinement: Coexistence of Multilayered Liquid and Transition to Ice Nanoribbons. ACS Nano, 2015, 9, 9877-9884.	14.6	54
294	Compression Limit of Two-Dimensional Water Constrained in Graphene Nanocapillaries. ACS Nano, 2015, 9, 12197-12204.	14.6	92
295	Exploration of High-Performance Single-Atom Catalysts on Support M ₁ /FeO _{<i>x</i>} for CO Oxidation via Computational Study. ACS Catalysis, 2015, 5, 544-552.	11.2	217
296	Extremely strong tubular stacking of aromatic oligoamide macrocycles. Chemical Science, 2015, 6, 152-157.	7.4	31
297	Magic-Number Gold Nanoclusters with Diameters from $1\ \rm to\ 3.5\ nm$: Relative Stability and Catalytic Activity for CO Oxidation. Nano Letters, 2015, 15, 682-688.	9.1	92
298	Liquid-solid and solid-solid phase transition of monolayer water: High-density rhombic monolayer ice. Journal of Chemical Physics, 2014, 140, 184507.	3.0	25
299	Unraveling Crystalline Structure of High-Pressure Phase of Silicon Carbonate. Physical Review X, 2014, 4, .	8.9	7
300	Electronic and transport properties of carbon and boron-nitride ferrocene nanopeapods. Journal of Materials Chemistry C, 2014, 2, 10017-10030.	5.5	9
301	van der Waals trilayers and superlattices: modification of electronic structures of MoS ₂ by intercalation. Nanoscale, 2014, 6, 4566-4571.	5.6	111
302	Electronic structure engineering in chemically modified ultrathin ZnO nanofilms via a built-in heterointerface. RSC Advances, 2014, 4, 18718-18723.	3.6	7
303	Designs of fullerene-based frameworks for hydrogen storage. Journal of Materials Chemistry A, 2014, 2, 5910-5914.	10.3	64
304	Boron-nitride and aluminum-nitride "Pringles―and flapping motion. Chemical Communications, 2014, 50, 7444-7446.	4.1	2
305	Direct Xâ€ray Observation of Trapped CO ₂ in a Predesigned Porphyrinic Metal–Organic Framework. Chemistry - A European Journal, 2014, 20, 7632-7637.	3.3	39
306	Interaction between O2 and neutral/charged Au (n= 1–3) clusters: A comparative study between density-functional theory and coupled cluster calculations. Chemical Physics Letters, 2014, 592, 127-131.	2.6	15

#	Article	IF	CITATIONS
307	MoS ₂ /MX ₂ heterobilayers: bandgap engineering <i>via</i> tensile strain or external electrical field. Nanoscale, 2014, 6, 2879-2886.	5.6	326
308	Direct Simulation Evidence of Generation of Oxygen Vacancies at the Golden Cage Au ₁₆ and TiO ₂ (110) Interface for CO Oxidation. Journal of the American Chemical Society, 2014, 136, 15857-15860.	13.7	48
309	Porphyrinic porous organic frameworks: preparation and post-synthetic modification via demetallation–remetallation. Journal of Materials Chemistry A, 2014, 2, 14876-14882.	10.3	34
310	Polygermanes: bandgap engineering <i>via</i> tensile strain and side-chain substitution. Chemical Communications, 2014, 50, 9126-9129.	4.1	24
311	Structural and Magnetic Evolution of Bimetallic MnAu Clusters Driven by Asymmetric Atomic Migration. Nano Letters, 2014, 14, 1362-1368.	9.1	20
312	Electronic and transport properties of porous graphenes: two-dimensional benzo- and aza-fused l̃€-conjugated-microporous-polymer sheets and boron–nitrogen co-doped derivatives. Journal of Materials Chemistry C, 2014, 2, 2902-2907.	5.5	43
313	Role of vacancies to p-type semiconducting properties of SiGe nanowires. Journal of Materials Chemistry C, 2014, 2, 6536-6546.	5.5	5
314	Highly Confined Water: Two-Dimensional Ice, Amorphous Ice, and Clathrate Hydrates. Accounts of Chemical Research, 2014, 47, 2505-2513.	15.6	113
315	Bilayer Phosphorene: Effect of Stacking Order on Bandgap and Its Potential Applications in Thin-Film Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 1289-1293.	4.6	762
316	The search for the most stable structures of silicon–carbon monolayer compounds. Nanoscale, 2014, 6, 11685-11691.	5.6	68
317	Large Negative Magnetoresistance Induced by Anionic Solid Solutions in Two-Dimensional Spin-Frustrated Transition Metal Chalcogenides. Physical Review Letters, 2014, 113, 157202.	7.8	39
318	A photoelectron spectroscopy and ab initio study of the structures and chemical bonding of the B25â^' cluster. Journal of Chemical Physics, 2014, 141, 034303.	3.0	65
319	Al _{<i>x</i>} C Monolayer Sheets: Two-Dimensional Networks with Planar Tetracoordinate Carbon and Potential Applications as Donor Materials in Solar Cell. Journal of Physical Chemistry Letters, 2014, 5, 2058-2065.	4.6	95
320	Tuning Electronic and Magnetic Properties of Early Transition-Metal Dichalcogenides via Tensile Strain. Journal of Physical Chemistry C, 2014, 118, 7242-7249.	3.1	216
321	Ferroelectric hexagonal and rhombic monolayer ice phases. Chemical Science, 2014, 5, 1757-1764.	7.4	94
322	Mechanistic Insights into Carbonyl-Directed Rhodium-Catalyzed Hydroboration: ab Initio Study of a Cyclic \hat{l}^3 , \hat{l} -Unsaturated Amide. ACS Catalysis, 2014, 4, 763-773.	11.2	32
323	Structure and stability of two dimensional phosphorene with î€O or î€NH functionalization. RSC Advances, 2014, 4, 48017-48021.	3.6	68
324	Isomerism and Structural Fluxionality in the Au ₂₆ and Au ₂₆ [–] Nanoclusters. ACS Nano, 2014, 8, 7413-7422.	14.6	42

#	Article	IF	CITATIONS
325	Semimetallic molybdenum disulfide ultrathin nanosheets as an efficient electrocatalyst for hydrogen evolution. Nanoscale, 2014, 6, 8359-8367.	5.6	248
326	Porous Boron Nitride with Tunable Pore Size. Journal of Physical Chemistry Letters, 2014, 5, 393-398.	4.6	81
327	Phosphorene Nanoribbons, Phosphorus Nanotubes, and van der Waals Multilayers. Journal of Physical Chemistry C, 2014, 118, 14051-14059.	3.1	544
328	Spontaneous Formation of One-Dimensional Hydrogen Gas Hydrate in Carbon Nanotubes. Journal of the American Chemical Society, 2014, 136, 10661-10668.	13.7	44
329	Design of Ferroelectric Organic Molecular Crystals with Ultrahigh Polarization. Journal of the American Chemical Society, 2014, 136, 6428-6436.	13.7	44
330	Structural Evolution of Medium-Sized Gold Clusters Au _{<i>n</i>} ^{â€"} (<i>n</i> =) Tj ETQc 118, 6887-6892.	q0 0 0 rgB1 3.1	「/Overlock 1 39
331	Control of crystallographic orientation in diamond synthesis through laser resonant vibrational excitation of precursor molecules. Scientific Reports, 2014, 4, 4581.	3.3	12
332	A Theoretical Study of Single-Atom Catalysis of CO Oxidation Using Au Embedded 2D h-BN Monolayer: A CO-Promoted O2 Activation. Scientific Reports, 2014, 4, 5441.	3.3	211
333	Edge decorated SiC nanoribbons with metal: Coexistence of planar tetracoordinate carbon and silicon. Chemical Physics Letters, 2013, 580, 78-81.	2.6	10
334	Unusual Magnetic Properties of Functionalized Graphene Nanoribbons. Journal of Physical Chemistry Letters, 2013, 4, 2482-2488.	4.6	22
335	Phase diagrams of confined solutions of dimyristoylphosphatidylcholine (DMPC) lipid and cholesterol in nanotubes. Microfluidics and Nanofluidics, 2013, 14, 995-1010.	2.2	11
336	New Computational Approach to Determine Liquid–Solid Phase Equilibria of Water Confined to Slit Nanopores. Journal of Chemical Theory and Computation, 2013, 9, 3299-3310.	5.3	25
337	Fundamental measure density functional theory study of liquid-vapor interface of dipolar and quadrupolar fluids. Journal of Chemical Physics, 2013, 139, 134502.	3.0	6
338	Unusual Metallic Microporous Boron Nitride Networks. Journal of Physical Chemistry Letters, 2013, 4, 3484-3488.	4.6	80
339	Carbon nanotube and boron nitride nanotube hosted C60–V nanopeapods. Journal of Materials Chemistry C, 2013, 1, 4518.	5.5	14
340	Intrinsic electronic and transport properties of graphyne sheets and nanoribbons. Nanoscale, 2013, 5, 9264.	5.6	163
341	Resonant Photoemission Observations and DFT Study of s–d Hybridization in Catalytically Active Gold Clusters on Ceria Nanorods. Angewandte Chemie - International Edition, 2013, 52, 6936-6939.	13.8	15
342	Freezing point and solid-liquid interfacial free energy of Stockmayer dipolar fluids: A molecular dynamics simulation study. Journal of Chemical Physics, 2013, 139, 114705.	3.0	11

#	Article	IF	Citations
343	Organometallic Hexahapto-Functionalized Graphene: Band Gap Engineering with Minute Distortion to the Planar Structure. Journal of Physical Chemistry C, 2013, 117, 22156-22161.	3.1	31
344	A vesicle cell under collision with a Janus or homogeneous nanoparticle: translocation dynamics and late-stage morphology. Nanoscale, 2013, 5, 9089.	5.6	50
345	Self-Assembly of Triblock Janus Nanoparticle in Nanotube. Journal of Chemical Theory and Computation, 2013, 9, 179-187.	5.3	34
346	CO Self-Promoting Oxidation on Nanosized Gold Clusters: Triangular Au ₃ Active Site and CO Induced O–O Scission. Journal of the American Chemical Society, 2013, 135, 2583-2595.	13.7	178
347	Microscopic Insight into Surface Wetting: Relations between Interfacial Water Structure and the Underlying Lattice Constant. Physical Review Letters, 2013, 110, 126101.	7.8	67
348	Efficient electron and hole doping in compositionally abrupt Si/Ge nanowires. Nanoscale, 2013, 5, 3880.	5.6	1
349	Reply to "Comment on â€~Two-Dimensional Boron Monolayer Sheets'― ACS Nano, 2013, 7, 880-881.	14.6	10
350	Exploration of Structures of Two-Dimensional Boron–Silicon Compounds with sp ² Silicon. Journal of Physical Chemistry Letters, 2013, 4, 561-567.	4.6	75
351	Understanding Molecular Motor Walking along a Microtubule: A Themosensitive Asymmetric Brownian Motor Driven by Bubble Formation. Journal of the American Chemical Society, 2013, 135, 8616-8624.	13.7	18
352	CO Oxidation on TiO ₂ (110) Supported Subnanometer Gold Clusters: Size and Shape Effects. Journal of the American Chemical Society, 2013, 135, 19336-19346.	13.7	127
353	Quantized Water Transport: Ideal Desalination through Graphyne-4 Membrane. Scientific Reports, 2013, 3, 3163.	3.3	113
354	Molecular Insight into Different Denaturing Efficiency of Urea, Guanidinium, and Methanol: A Comparative Simulation Study. Journal of Chemical Theory and Computation, 2013, 9, 2540-2551.	5.3	18
355	Hydroxyl-decorated graphene systems as candidates for organic metal-free ferroelectrics, multiferroics, and high-performance proton battery cathode materials. Physical Review B, 2013, 87, .	3.2	100
356	Semiring Chemistry of Au ₂₅ (SR) ₁₈ : Fragmentation Pathway and Catalytic Active site. Journal of the American Chemical Society, 2013, 135, 18067-18079.	13.7	60
357	First-Principles Molecular Dynamics Simulation of Atmospherically Relevant Anion Solvation in Supercooled Water Droplet. Journal of the American Chemical Society, 2013, 135, 15549-15558.	13.7	32
358	Understanding Liquid–Solid-Like Behavior of Tetrahydrofuran Adlayers at Room Temperature between Graphene and Mica: A Born–Oppenheimer Molecular Dynamics Study. Journal of Physical Chemistry C, 2013, 117, 21894-21900.	3.1	3
359	Homogeneous connectivity of potential energy network in a solidlike state of water cluster. Journal of Chemical Physics, 2013, 138, 244301.	3.0	0
360	Molecular dynamics simulation of heterogeneous nucleation on nanorods., 2013,,.		2

#	Article	IF	Citations
361	Metal–Organic Frameworks Capable of Healing at Low Temperatures. Advanced Materials, 2013, 25, 6106-6111.	21.0	8
362	Metal–Organic Frameworks: Metal–Organic Frameworks Capable of Healing at Low Temperatures (Adv. Mater. 42/2013). Advanced Materials, 2013, 25, 6148-6148.	21.0	0
363	Molecular Dynamics Simulation of Vapor Condensation on Nanotubes. , 2013, , .		0
364	Highly selective adsorption of methanol in carbon nanotubes immersed in methanol-water solution. Journal of Chemical Physics, 2012, 137, 034501.	3.0	44
365	Liquid–solid phase transitions of Lennard-Jones particles confined to slit pores: towards the construction of temperature–pressure-slit width phase diagram. Molecular Simulation, 2012, 38, 373-377.	2.0	11
366	Band-Gap Engineering <i>via</i> Tailored Line Defects in Boron-Nitride Nanoribbons, Sheets, and Nanotubes. ACS Nano, 2012, 6, 4104-4112.	14.6	121
367	Polymorphism and polyamorphism in bilayer water confined to slit nanopore under high pressure. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21240-21245.	7.1	120
368	Amide Functionalization of Graphene and Carbon Nanotubes: Coverage- and Pattern-Dependent Electronic and Magnetic Properties. Journal of Physical Chemistry C, 2012, 116, 13722-13730.	3.1	20
369	Tri-Wing Graphene Nano-Paddle-Wheel with a Single-File Metal Joint: Formation of Multi-Planar Tetracoordinated-Carbon (ptC) Strips. Journal of Physical Chemistry C, 2012, 116, 11378-11385.	3.1	24
370	Water-Promoted O2 Dissociation on Small-Sized Anionic Gold Clusters. ACS Catalysis, 2012, 2, 2614-2621.	11.2	46
371	Experimental and theoretical studies of hydroxyl-induced magnetism in TiO nanoclusters. Nanoscale, 2012, 4, 7704.	5.6	3
372	Silicon-Containing Multidecker Organometallic Complexes and Nanowires: A Density Functional Theory Study. Journal of Physical Chemistry Letters, 2012, 3, 151-156.	4.6	8
373	Interlocked Catenane-Like Structure Predicted in Au ₂₄ (SR) ₂₀ : Implication to Structural Evolution of Thiolated Gold Clusters from Homoleptic Gold(I) Thiolates to Core-Stacked Nanoparticles. Journal of the American Chemical Society, 2012, 134, 3015-3024.	13.7	123
374	Long-Range Ordered Carbon Clusters: A Crystalline Material with Amorphous Building Blocks. Science, 2012, 337, 825-828.	12.6	173
375	Two-Dimensional Boron Monolayer Sheets. ACS Nano, 2012, 6, 7443-7453.	14.6	690
376	[CTi72+]: Heptacoordinate Carbon Motif?. Journal of Physical Chemistry Letters, 2012, 3, 2264-2268.	4.6	23
377	Mn monolayer modified Rh for syngas-to-ethanol conversion: a first-principles study. Nanoscale, 2012, 4, 1123-1129.	5.6	32
378	\hat{I}^3 -Selective directed catalytic asymmetric hydroboration of 1,1-disubstituted alkenes. Chemical Communications, 2012, 48, 12180.	4.1	46

#	Article	IF	Citations
379	Nanochannel with Uniform and Janus Surfaces: Shear Thinning and Thickening in Surfactant Solution. Langmuir, 2012, 28, 2866-2872.	3.5	23
380	Polymorphic Phases of sp ³ -Hybridized Carbon under Cold Compression. Journal of the American Chemical Society, 2012, 134, 7530-7538.	13.7	69
381	Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes. Physical Chemistry Chemical Physics, 2012, 14, 13035.	2.8	435
382	Two-Dimensional Crystallization of Hexagonal Bilayer with Moir \tilde{A} © Patterns. Journal of Physical Chemistry B, 2012, 116, 4363-4369.	2.6	10
383	Edge-decorated graphene nanoribbons by scandium as hydrogen storage media. Nanoscale, 2012, 4, 915.	5.6	71
384	Wetting and Interfacial Properties of Water Nanodroplets in Contact with Graphene and Monolayer Boron–Nitride Sheets. ACS Nano, 2012, 6, 2401-2409.	14.6	235
385	Unraveling the Mechanisms of O ₂ Activation by Size-Selected Gold Clusters: Transition from Superoxo to Peroxo Chemisorption. Journal of the American Chemical Society, 2012, 134, 9438-9445.	13.7	149
386	Multiferroic Materials Based on Organic Transition-Metal Molecular Nanowires. Journal of the American Chemical Society, 2012, 134, 14423-14429.	13.7	49
387	Two Dimensional Epitaxial Water Adlayer on Mica with Graphene Coating: An <i>ab Initio</i> Molecular Dynamics Study. Journal of Chemical Theory and Computation, 2012, 8, 3034-3043.	5.3	34
388	Investigating the structural evolution of thiolate protected gold clusters from first-principles. Nanoscale, 2012, 4, 4054.	5.6	219
389	Oxidation of a two-dimensional hexagonal boron nitride monolayer: a first-principles study. Physical Chemistry Chemical Physics, 2012, 14, 5545.	2.8	90
390	Self-assembling subnanometer pores with unusual mass-transport properties. Nature Communications, 2012, 3, 949.	12.8	174
391	Tunable Magnetism in a Nonmetal-Substituted ZnO Monolayer: A First-Principles Study. Journal of Physical Chemistry C, 2012, 116, 11336-11342.	3.1	180
392	Transition from one-dimensional water to ferroelectric ice within a supramolecular architecture. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3481-3486.	7.1	94
393	Supramolecular Nanolayer Reconfiguration after Molecular Intercalation. Journal of Physical Chemistry C, 2011, 115, 10351-10356.	3.1	9
394	Covalent Reinforcement of Hydrogen-Bonded Discs into Stably Folded Helical Structures. Organic Letters, 2011, 13, 4008-4011.	4.6	7
395	Theoretical and Experimental Characterization of Structures of MnAu Nanoclusters in the Size Range of 1–3 nm. ACS Nano, 2011, 5, 9966-9976.	14.6	16
396	Size-Dependent Phase Changes in Water Clusters. Journal of Chemical Theory and Computation, 2011, 7, 3083-3087.	5. 3	19

#	Article	IF	CITATIONS
397	Chemisorption-Induced 2Dâ \in "3Dâ \in "2D Structural Transitions in Gold Heptamer: (CO) \sub>\(i) \n<\ i>\(i)\) Journal of Physical Chemistry Letters, 2011, 2, 2288-2293.	4.6	29
398	Density-Functional Theory Studies of Step-Kinked Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 4235-4239.	3.1	11
399	Ab initio theoretical study of non-covalent adsorption of aromatic molecules on boron nitride nanotubes. Physical Chemistry Chemical Physics, 2011, 13, 11766.	2.8	41
400	Strong Aggregation and Directional Assembly of Aromatic Oligoamide Macrocycles. Journal of the American Chemical Society, 2011, 133, 18590-18593.	13.7	94
401	Hollow Polyhedral Structures in Small Goldâ^'Sulfide Clusters. ACS Nano, 2011, 5, 1441-1449.	14.6	35
402	Elastic properties of poly(vinyldene fluoride) (PVDF) crystals: A density functional theory study. Journal of Applied Physics, 2011, 109, .	2.5	35
403	Measurement of Contact-Angle Hysteresis for Droplets on Nanopillared Surface and in the Cassie and Wenzel States: A Molecular Dynamics Simulation Study. ACS Nano, 2011, 5, 6834-6842.	14.6	152
404	Fluorinating Hexagonal Boron Nitride into Diamond-Like Nanofilms with Tunable Band Gap and Ferromagnetism. Journal of the American Chemical Society, 2011, 133, 14831-14838.	13.7	79
405	Carbon Nanotube Superarchitectures: An Ab Initio Study. Journal of Physical Chemistry C, 2011, 115, 18174-18185.	3.1	25
406	Half-Metallicity in Hybrid Graphene/Boron Nitride Nanoribbons with Dihydrogenated Edges. Journal of Physical Chemistry C, 2011, 115, 9442-9450.	3.1	96
407	Fluorinating Hexagonal Boron Nitride/Graphene Multilayers into Hybrid Diamondlike Nanofilms with Tunable Energy Gap. Journal of Physical Chemistry C, 2011, 115, 21678-21684.	3.1	25
408	Catalytic Activities of Subnanometer Gold Clusters (Au ₁₆ –Au ₁₈ ,) Tj ETQq0 0 0 rgBT / 7818-7829.	Overlock 1	10 Tf 50 30: 182
409	Three-dimensional network model of carbon containing only sp2-carbon bonds and boron nitride analogues. Chemical Communications, 2011, 47, 4406.	4.1	45
410	Exohedral Silicon Fullerenes: Si60Pn60 and Si80Pn60 (PnÂ=ÂP, As, Sb and Bi). Journal of Cluster Science, 2011, 22, 343-354.	3.3	1
411	Inorganic nanoribbons with unpassivated zigzag edges: Half metallicity and edge reconstruction. Nano Research, 2011, 4, 233-239.	10.4	62
412	Structure evolution of gold cluster anions between the planar and cage structures by isoelectronic substitution: $Au < i > n < i > a^2 < i > n < i > a^2 < i > n < i > a^2 < i < i > n < i > a^2 < i < i > n < i > a^2 < i < i > n < i > a^2 < i < i > a^2 < a < a < a < a < a < a < a < a < a < $	3.0	45
413	Transition-metal-molecular sandwich nanowires as magnetic on/off switch. Applied Physics Letters, 2011, 99, .	3.3	18
414	Graphene-like bilayer hexagonal silicon polymorph. Nano Research, 2010, 3, 694-700.	10.4	46

#	Article	IF	CITATIONS
415	Molecularly Intercalated Nanoflakes: A Supramolecular Composite for Strong Energy Absorption. Advanced Materials, 2010, 22, 4457-4461.	21.0	13
416	Efficient synthesis and conformational investigations of cis-pentacenediols. Tetrahedron Letters, 2010, 51, 5732-5735.	1.4	0
417	Tunable magnetism on <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mtext> Si </mml:mtext> <mml:mrow> <mml:mo> (</mml:mo> <mml:mrow> <mcchemisorption .<="" 2010,="" 82,="" b,="" graphene="" nanoribbons.="" of="" physical="" review="" td=""><td>ım8æn>11</td><td>l 1 s/mml:mn></td></mcchemisorption></mml:mrow></mml:mrow></mml:mrow></mml:math>	ım8æn>11	l 1 s/mml:mn>
418	Homogeneous nanocables from double-walled boron-nitride nanotubes using first-principles calculations. Physical Review B, 2010, 82, .	3.2	10
419	Tuning the magnetic and electronic properties of bilayer graphene nanoribbons on Si(001) by bias voltage. Physical Review B, 2010, 81, .	3.2	28
420	Guest-free monolayer clathrate and its coexistence with two-dimensional high-density ice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5718-5722.	7.1	93
421	Isomer identification and resolution in small gold clusters. Journal of Chemical Physics, 2010, 132, 054305.	3.0	86
422	Two-dimensional to three-dimensional structural transition of gold cluster Au10 during soft landing on TiO2 surface and its effect on CO oxidation. Journal of Chemical Physics, 2010, 133, 134707.	3.0	20
423	Investigating Active Site of Gold Nanoparticle Au ₅₅ (PPh ₃) ₁₂ Cl ₆ in Selective Oxidation. ACS Nano, 2010, 4, 2009-2020.	14.6	76
424	High-Level Ab Initio Electronic Structure Calculations of Water Clusters $(H20)16 and (H20)17: A New Global Minimum for (H20)16. Journal of Physical Chemistry Letters, 2010, 1, 3122-3127.$	4.6	152
425	Mechanically Robust Tri-Wing Graphene Nanoribbons with Tunable Electronic and Magnetic Properties. Nano Letters, 2010, 10, 494-498.	9.1	71
426	Charge-injection induced magnetism and half metallicity in single-layer hexagonal group III/V (BN, BP,) Tj ETQq0 () O ₃ rgBT /C)verlock 10 T
427	Probing the Structural Evolution of Medium-Sized Gold Clusters: Aunâ [^] (n = 27â [^] 35). Journal of the American Chemical Society, 2010, 132, 6596-6605.	13.7	118
428	Ab Initio Prediction of Amorphous B ₈₄ . Journal of Physical Chemistry A, 2010, 114, 2245-2249.	2.5	33
429	Patterned Hydrogenation of Graphene: Magnetic Quantum Dot Array. Journal of Physical Chemistry C, 2010, 114, 139-142.	3.1	35
430	Self-Assembly and Properties of Nonmetalated Tetraphenyl-Porphyrin on Metal Substrates. Journal of Physical Chemistry C, 2010, 114, 9408-9415.	3.1	101
431	Exploration of Half Metallicity in Edge-Modified Graphene Nanoribbons. Journal of Physical Chemistry C, 2010, 114, 3937-3944.	3.1	105
432	Excitations of Precursor Molecules by Different Laser Powers in Laser-Assisted Growth of Diamond Films. Crystal Growth and Design, 2010, 10, 4928-4933.	3.0	14

#	Article	IF	CITATIONS
433	Self-Assembled Nanolayers of Conjugated Silane with Ï€â~Ï€ Interlocking. ACS Nano, 2010, 4, 3773-3780.	14.6	18
434	Controlling Cross Section of Carbon Nanotubes via Selective Hydrogenation. Journal of Physical Chemistry C, 2010, 114, 11753-11757.	3.1	7
435	Planar Tetracoordinate Carbon Strips in Edge Decorated Graphene Nanoribbon. Journal of the American Chemical Society, 2010, 132, 5554-5555.	13.7	75
436	Icosahedral Crown Gold Nanocluster Au $<$ sub $>$ 43 $<$ /sub $>$ Cu $<$ sub $>$ 12 $<$ /sub $>$ with High Catalytic Activity. Nano Letters, 2010, 10, 1055-1062.	9.1	115
437	Observation of earlier two-to-three dimensional structural transition in gold cluster anions by isoelectronic substitution: MAunâ^'â€^(n=8â€"11;â€,M=Ag,Cu). Journal of Chemical Physics, 2010, 132, 114306.	3.0	74
438	Carrier-Tunable Magnetic Ordering in Vanadiumâ^'Naphthalene Sandwich Nanowires. Journal of the American Chemical Society, 2010, 132, 10215-10217.	13.7	57
439	Icosahedral B12-containing core–shell structures of B80. Chemical Communications, 2010, 46, 3878.	4.1	96
440	Molecular dynamics simulations of urea–water binary droplets on flat and pillared hydrophobic surfaces. Faraday Discussions, 2010, 146, 185.	3.2	20
441	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mi>M</mml:mi><mml:mo>@</mml:mo><mml:msubsup><mml:mrow><mml:< th=""><th>:mtext>Aı 3.2</th><th>ı85</th></mml:<></mml:mrow></mml:msubsup></mml:mrow>	:mtext>Aı 3.2	ı85
442	On the phase diagram of water with density functional theory potentials: The melting temperature of ice Ih with the Perdew–Burke–Ernzerhof and Becke–Lee–Yang–Parr functionals. Journal of Chemical Physics, 2009, 130, 221102.	3.0	203
443	First-principles study of methane dehydrogenation on a bimetallic Cu/Ni(111) surface. Journal of Chemical Physics, 2009, 131, 174702.	3.0	94
444	COMPUTER SIMULATION OF LIQUID–VAPOR INTERFACIAL TENSION: LENNARD-JONES FLUID AND WATER REVISITED. Journal of Theoretical and Computational Chemistry, 2009, 08, 733-763.	1.8	14
445	Mechanical Properties of Nanostructured Hard Coating of ZrO2. Materials Research Society Symposia Proceedings, 2009, 1224, 1.	0.1	1
446	Theoretical Optical Absorption and Photoelectron Spectra of Small Endohedral Gold Clusters. Journal of Computational and Theoretical Nanoscience, 2009, 6, 359-363.	0.4	1
447	Tuning the electronic properties of the golden buckyball by endohedral doping: M@Au16â^' (M=Ag,Zn,In). Journal of Chemical Physics, 2009, 130, 051101.	3.0	61
448	Freeâ€Standing Allâ€Nanoparticle Thin Fibers: A Novel Nanostructure Bridging Zero―and Oneâ€Dimensional Nanoscale Features. Advanced Materials, 2009, 21, 314-319.	21.0	24
449	Oneâ€Pot Formation of Large Macrocycles with Modifiable Peripheries and Internal Cavities. Angewandte Chemie - International Edition, 2009, 48, 3150-3154.	13.8	67
450	Reexamine structures and relative stability of medium-sized silicon clusters: Low-lying endohedral fullerene-like clusters Si30–Si38. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 3757-3760.	2.1	11

#	Article	IF	Citations
451	Chemically decorated boron-nitride nanoribbons. Frontiers of Physics in China, 2009, 4, 367-372.	1.0	59
452	The melting temperature of bulk silicon from ab initio molecular dynamics simulations. Chemical Physics Letters, 2009, 481, 88-90.	2.6	22
453	Onset of Double Helical Structure in Small-Sized Homoleptic Gold Thiolate Clusters. Journal of Physical Chemistry A, 2009, 113, 629-632.	2.5	39
454	Search for Lowest-Energy Nonclassical Fullerenes III: C22. Journal of Physical Chemistry A, 2009, 113, 8839-8844.	2.5	19
455	Structural Transition of Gold Nanoclusters: From the Golden Cage to the Golden Pyramid. ACS Nano, 2009, 3, 1225-1230.	14.6	103
456	Efficient Kinetic Macrocyclization. Journal of the American Chemical Society, 2009, 131, 2629-2637.	13.7	120
457	Ab Initio Study of Structural, Electronic, and Magnetic Properties of V _{<i>n< i></i>} (C ₆₀) _{<i>m</i>} Complexes. Journal of Physical Chemistry A, 2009, 113, 5406-5413.	2.5	18
458	Detecting Weak Interactions between Au ^{â^'} and Gas Molecules: A Photoelectron Spectroscopic and Ab Initio Study. Journal of the American Chemical Society, 2009, 131, 9484-9485.	13.7	48
459	Dipole-Induced, Thermally Stable Lamellar Structure by Polar Aromatic Silane. Journal of the American Chemical Society, 2009, 131, 900-901.	13.7	23
460	Structural Evolution of Doped Gold Clusters: MAuxâ $^{\circ}$ (M = Si, Ge, Sn; x = 5 \hat{a}° 8). Journal of the American Chemical Society, 2009, 131, 3396-3404.	13.7	89
461	Thiolate-Protected Au ₂₀ (SR) ₁₆ Cluster: Prolate Au ₈ Core with New [Au ₃ (SR) ₄] Staple Motif. Journal of the American Chemical Society, 2009, 131, 13619-13621.	13.7	156
462	Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8435-8440.	7.1	395
463	B ₂ C Graphene, Nanotubes, and Nanoribbons. Nano Letters, 2009, 9, 1577-1582.	9.1	154
464	Periodic Graphene Nanobuds. Nano Letters, 2009, 9, 250-256.	9.1	108
465	Materials design of half-metallic graphene and graphene nanoribbons. Applied Physics Letters, 2009, 94, .	3.3	100
466	Double Metallocene Nanowires. Journal of the American Chemical Society, 2009, 131, 14246-14248.	13.7	61
467	<i>Ab Initio</i> Study of Structural and Magnetic Properties of TM _{<i>n</i> (I) Ab Initio Study of Structural and Magnetic Properties of TM_{<i>n</i> (IM = Sc, Ti, V, Mn) Sandwich Clusters and Nanowires (<i>n</i> = \hat{a}^2). ACS Nano, 2009, 3, 537-545.}}	14.6	67
468	Aromatic oligoamide macrocycles from the bimolecular coupling of folded oligomeric precursors. New Journal of Chemistry, 2009, 33, 729.	2.8	40

#	Article	IF	Citations
469	CO chemisorption on the surfaces of the golden cages. Journal of Chemical Physics, 2009, 131, 234305.	3.0	33
470	Crescent oligoamides as hosts: conformation-dependent binding specificity. Organic and Biomolecular Chemistry, 2009, 7, 3643.	2.8	30
471	Sawtooth-like graphene nanoribbon. Nano Research, 2008, 1, 40-45.	10.4	41
472	Structure and thermophysical properties of single-wall Si nanotubes. Physica B: Condensed Matter, 2008, 403, 2021-2028.	2.7	15
473	First-Principles Study of a Carbon Nanobud. ACS Nano, 2008, 2, 1459-1465.	14.6	59
474	Lotus Effect in Engineered Zirconia. Nano Letters, 2008, 8, 988-996.	9.1	64
475	Probing the Planar Tetra-, Penta-, and Hexacoordinate Carbon in Carbonâ-'Boron Mixed Clusters. Journal of the American Chemical Society, 2008, 130, 2580-2592.	13.7	95
476	Planar Pentacoordinate Carbon in CAl ₅ ⁺ : A Global Minimum. Journal of the American Chemical Society, 2008, 130, 10394-10400.	13.7	153
477	Ab Initio Study of Thiolate-Protected Au102 Nanocluster. ACS Nano, 2008, 2, 1497-1503.	14.6	74
478	Adsorption of O ₂ , H ₂ , CO, NH ₃ , and NO ₂ on ZnO Nanotube:  A Density Functional Theory Study. Journal of Physical Chemistry C, 2008, 112, 5747-5755.	3.1	280
479	Self-Assembly of Surfactants and Polymorphic Transition in Nanotubes. Journal of the American Chemical Society, 2008, 130, 7916-7920.	13.7	87
480	Electronic Structures of Defective Boron Nitride Nanotubes under Transverse Electric Fields. Journal of Physical Chemistry C, 2008, 112, 8424-8428.	3.1	30
481	Effects of Radical Site Location and Surface Doping on the Radical Chain-reaction on Hâ $^{\circ}$ Si(100)-(2 \tilde{A} — 1): A Density Functional Theory Study. Journal of Physical Chemistry C, 2008, 112, 16078-16086.	3.1	8
482	Hydrogen Storage in Pillared Li-Dispersed Boron Carbide Nanotubes. Journal of Physical Chemistry C, 2008, 112, 8458-8463.	3.1	105
483	Effective CO Oxidation on Endohedral Gold-Cage Nanoclusters. Journal of Physical Chemistry C, 2008, 112, 8234-8238.	3.1	61
484	Ferroelectric Ordering in Ice Nanotubes Confined in Carbon Nanotubes. Nano Letters, 2008, 8, 2607-2612.	9.1	64
485	CO Oxidation Catalyzed by Single-Walled Helical Gold Nanotube. Nano Letters, 2008, 8, 195-202.	9.1	113
486	Structural Prediction of Thiolate-Protected Au ₃₈ : A Face-Fused Bi-icosahedral Au Core. Journal of the American Chemical Society, 2008, 130, 7830-7832.	13.7	272

#	Article	IF	Citations
487	Structures and relative stability of medium- and large-sized silicon clusters. VI. Fullerene cage motifs for low-lying clusters Si39, Si40, Si50, Si60, Si70, and Si80. Journal of Chemical Physics, 2008, 128, 104316.	3.0	32
488	Search for lowest-energy structure of Zintl dianion Si122â^', Ge122â^', and Sn122â^'. Journal of Chemical Physics, 2008, 128, 154326.	3.0	17
489	Anisotropy of crystal-melt interfacial free energy of silicon by simulation. Applied Physics Letters, 2008, 92, .	3.3	56
490	Molecular dynamics of homogeneous nucleation in the vapor phase of Lennard-Jones. III. Effect of carrier gas pressure. Journal of Chemical Physics, 2007, 126, 124320.	3.0	32
491	Quantum confinement of crystalline silicon nanotubes with nonuniform wall thickness: Implication to modulation doping. Applied Physics Letters, 2007, 91, 103107.	3.3	12
492	Doping the Golden Cage Au16- with Si, Ge, and Sn. Journal of the American Chemical Society, 2007, 129, 15136-15137.	13.7	90
493	Thermal stability of nanostructurally stabilized zirconium oxide. Nanotechnology, 2007, 18, 415702.	2.6	65
494	Single-Walled MoTe ₂ Nanotubes. Nano Letters, 2007, 7, 2987-2992.	9.1	37
495	Au34-:  A Fluxional Coreâ^'Shell Cluster. Journal of Physical Chemistry C, 2007, 111, 8228-8232.	3.1	103
496	Analysis of the Gas States at a Liquid/Solid Interface Based on Interactions at the Microscopic Level. Journal of Physical Chemistry B, 2007, 111, 9325-9329.	2.6	13
497	Structural Transitions from Pyramidal to Fused Planar to Tubular to Core/Shell Compact in Gold Clusters:  Aun- (n = 21â^²25). Journal of Physical Chemistry C, 2007, 111, 4190-4198.	3.1	85
498	Gold-Coated Transition-Metal Anion [Mn13@Au20]-with Ultrahigh Magnetic Moment. Journal of the American Chemical Society, 2007, 129, 4110-4111.	13.7	58
499	Solidâ^'Liquid Interfacial Free Energy of Water:  A Molecular Dynamics Simulation Study. Journal of Chemical Theory and Computation, 2007, 3, 1494-1498.	5.3	21
500	Search for Lowest-Energy Fullerenes 2:  C38to C80and C112to C120â€. Journal of Physical Chemistry C, 2007, 111, 17671-17677.	3.1	65
501	Detection of Novel Gaseous States at the Highly Oriented Pyrolytic Graphiteâ^'Water Interface. Langmuir, 2007, 23, 1778-1783.	3.5	148
502	Adsorption and Surface Reactivity on Single-Walled Boron Nitride Nanotubes Containing Stoneâ°'Wales Defects. Journal of Physical Chemistry C, 2007, 111, 14105-14112.	3.1	110
503	<i>Ab initio</i> study of hydrogen adsorption on benzenoid linkers in metal–organic framework materials. Journal of Physics Condensed Matter, 2007, 19, 386220.	1.8	34
504	Doping Golden Buckyballs: Cu@Au16â^' and Cu@Au17â^' Cluster Anions. Angewandte Chemie - International Edition, 2007, 46, 2915-2918.	13.8	110

#	Article	IF	CITATIONS
505	Relative stability of planar versus double-ring tubular isomers of neutral and anionic boron cluster B20 and B20â^². Journal of Chemical Physics, 2006, 124, 154310.	3.0	100
506	Chemical Functionalization of Boronâ^'Nitride Nanotubes with NH3and Amino Functional Groups. Journal of the American Chemical Society, 2006, 128, 12001-12006.	13.7	165
507	Lowest-Energy Structures of Water Clusters (H2O)11 and (H2O)13. Journal of Physical Chemistry A, 2006, 110, 11781-11784.	2.5	81
508	Search for Lowest-Energy Fullerenes:  C98 to C110. Journal of Physical Chemistry A, 2006, 110, 7672-7676.	2.5	63
509	Structural Evolution of Anionic Silicon Clusters SiN(20 â‰N≠45). Journal of Physical Chemistry A, 2006, 110, 908-912.	2.5	75
510	Aromatic Oligoureas:  Enforced Folding and Assisted Cyclization. Organic Letters, 2006, 8, 803-806.	4.6	80
511	Structural and Magnetic Properties of Gd3N@C80. Journal of Physical Chemistry B, 2006, 110, 23637-23640.	2.6	53
512	Structural and electronic properties of Gd@C60: All-electron relativistic total-energy study. Chemical Physics Letters, 2006, 425, 82-84.	2.6	42
513	Molecular Dynamics Simulations of Thermal Conductivity of Silicon Nanotubes. Journal of Computational and Theoretical Nanoscience, 2006, 3, 824-829.	0.4	5
514	Effect of Apical Defects and Doped Atoms on Field Emission of Boron Nitride Nanocones. Journal of Physical Chemistry B, 2006, 110, 16346-16352.	2.6	22
515	Gold-Caged Metal Clusters with Large HOMO—LUMO Gap and High Electron Affinity ChemInform, 2006, 37, no.	0.0	O
516	A Global Search of Highly Stable Gold-Covered Bimetallic Clusters M@Aun (n=8–17): Endohedral Gold Clusters. ChemPhysChem, 2006, 7, 2275-2278.	2.1	83
517	Molecular simulations of solid-liquid interfacial tension of silicon. Journal of Chemical Physics, 2006, 124, 236103.	3.0	24
518	Multiwalled ice helixes and ice nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19664-19667.	7.1	167
519	Structures and relative stability of neutral gold clusters: Aun (n=15–19). Journal of Chemical Physics, 2006, 125, 154303.	3.0	136
520	Homogeneous nucleation at high supersaturation and heterogeneous nucleation on microscopic wettable particles: A hybrid thermodynamicâ̂density-functional theory. Journal of Chemical Physics, 2006, 125, 144515.	3.0	29
521	Evidence of hollow golden cages. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8326-8330.	7.1	361
522	Search for global-minimum geometries of medium-sized germanium clusters. II. Motif-based low-lying clusters Ge21–Ge29. Journal of Chemical Physics, 2006, 124, 184309.	3.0	41

#	Article	IF	Citations
523	Shape-persistent macrocyclic aromatic tetrasulfonamides: Molecules with nanosized cavities and their nanotubular assemblies in solid state. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10850-10855.	7.1	47
524	Motif Transition in Growth Patterns of Small to Medium-Sized Silicon Clusters. Angewandte Chemie - International Edition, 2005, 44, 1491-1494.	13.8	111
525	Endohedral Silicon Fullerenes SiN (27 ≠N ≠39). ChemInform, 2005, 36, no.	0.0	0
526	Au42: An Alternative Icosahedral Golden Fullerene Cage. ChemInform, 2005, 36, no.	0.0	0
527	Ab initio calculation of bowl, cage, and ring isomers of C20 and C20â°. Journal of Chemical Physics, 2005, 122, 204109.	3.0	84
528	M4@Si28 (M=Al,Ga): Metal-encapsulated tetrahedral silicon fullerene. Journal of Chemical Physics, 2005, 123, 204325.	3.0	19
529	Search for global minimum geometries for medium sized germanium clusters: Ge12–Ge20. Journal of Chemical Physics, 2005, 122, 164305.	3.0	62
530	Large-scale molecular-dynamics simulation of nanoscale hydrophobic interaction and nanobubble formation. Journal of Chemical Physics, 2005, 123, 204707.	3.0	46
531	Coarse-grained free-energy-functional treatment of quasistatic multiscale processes in heterogeneous materials. Journal of Chemical Physics, 2005, 123, 164109.	3.0	5
532	Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 961-964.	7.1	490
533	The Tolman Length:  Is It Positive or Negative?. Journal of the American Chemical Society, 2005, 127, 15346-15347.	13.7	99
534	Multiscale treatment of thin-film lubrication. Molecular Simulation, 2005, 31, 811-815.	2.0	5
535	Crystalline Ice Grown on the Surface of the Ferroelectric Polymer Poly(vinylidene fluoride) (70%) and Trifluoroethylene (30%). Journal of the American Chemical Society, 2005, 127, 17261-17265.	13.7	18
536	Gold-Caged Metal Clusters with Large HOMOâ^'LUMO Gap and High Electron Affinity. Journal of the American Chemical Society, 2005, 127, 15680-15681.	13.7	137
537	Cooperative effects in two-dimensional ring-like networks of three-center hydrogen bonding interactions. Journal of Chemical Physics, 2005, 122, 184325.	3.0	25
538	Structures and stability of medium-sized silicon clusters. III. Reexamination of motif transition in growth pattern from Si15 to Si20. Journal of Chemical Physics, 2005, 123, 164303.	3.0	60
539	Au42:Â An Alternative Icosahedral Golden Fullerene Cage. Journal of the American Chemical Society, 2005, 127, 3698-3699.	13.7	109
540	Hybrid atomistic-coarse-grained treatment of thin-film lubrication. II. Journal of Chemical Physics, 2004, 121, 8029.	3.0	4

#	Article	IF	Citations
541	Melting points and thermal expansivities of proton-disordered hexagonal ice with several model potentials. Journal of Chemical Physics, 2004, 121, 7926.	3.0	68
542	An extension of the quasicontinuum treatment of multiscale solid systems to nonzero temperature. Journal of Chemical Physics, 2004, 121, 9279-9282.	3.0	22
543	Possible Lowest-Energy Geometry of Silicon Clusters Si21 and Si25 ChemInform, 2004, 35, no.	0.0	0
544	Metallic single-walled silicon nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2664-2668.	7.1	124
545	Hybrid atomistic-coarse-grained treatment of thin-film lubrication. I. Journal of Chemical Physics, 2004, 120, 6744-6750.	3.0	7
546	Endohedral Silicon Fullerenes SiN(27 â‰N≠39). Journal of the American Chemical Society, 2004, 126, 13845-13849.	13.7	129
547	Backbone-Rigidified Oligo(m-phenylene ethynylenes). Journal of the American Chemical Society, 2004, 126, 3148-3162.	13.7	80
548	The melting lines of model silicon calculated from coexisting solid–liquid phases. Journal of Chemical Physics, 2004, 120, 1654-1656.	3.0	75
549	Structures and stability of medium silicon clusters. II. Ab initio molecular orbital calculations of Si12–Si20. Journal of Chemical Physics, 2004, 120, 8985-8995.	3.0	120
550	Nanoscale Hydrophobic Interaction and Nanobubble Nucleation. Physical Review Letters, 2004, 93, 185701.	7.8	93
551	Computer simulation of bilayer ice: structures and thermodynamics. Physica A: Statistical Mechanics and Its Applications, 2003, 319, 163-174.	2.6	22
552	Cooperative effects in one-dimensional chains of three-center hydrogen bonding interactions. Journal of Chemical Physics, 2003, 118, 3499-3509.	3.0	70
553	Possible Lowest-Energy Geometry of Silicon Clusters Si21and Si25. Journal of the American Chemical Society, 2003, 125, 13318-13319.	13.7	58
554	A new strategy for folding oligo(m-phenylene ethynylenes)Electronic supplementary information available: experimental data. See http://www.rsc.org/suppdata/cc/b2/b209809a/. Chemical Communications, 2003, , 56-57.	4.1	52
555	Global geometry optimization of silicon clusters described by three empirical potentials. Journal of Chemical Physics, 2003, 119, 1442-1450.	3.0	67
556	Coarse-graining description of solid systems at nonzero temperature. Journal of Chemical Physics, 2003, 119, 8013-8023.	3.0	20
557	Structures and stabilities of small silicon clusters: Ab initio molecular-orbital calculations of Si7–Si11. Journal of Chemical Physics, 2003, 118, 3558-3570.	3.0	153
558	Effect of polarizability of halide anions on the ionic solvation in water clusters. Journal of Chemical Physics, 2003, 119, 6083-6091.	3.0	54

#	Article	IF	Citations
559	Ab initiostudies of quasi-one-dimensional pentagon and hexagon ice nanotubes. Journal of Chemical Physics, 2003, 118, 3913-3916.	3.0	55
560	Formation of Quasi Two-dimensional Bilayer Ice in Hydrophobic Slits: A Possible Candidate for Ice XIII?. Molecular Simulation, 2003, 29, 619-626.	2.0	22
561	Bulk and interfacial properties of quadrupolar fluids. Journal of Chemical Physics, 2002, 117, 3982-3991.	3.0	9
562	Effect of an Electric Field on the Surface Tension of a Dipolar-Quadrupolar Fluid and Its Implication for Sign Preference in Droplet Nucleation. Physical Review Letters, 2002, 89, 246104.	7.8	23
563	Monte Carlo simulation of vapor–liquid binodal of water. Journal of Chemical Physics, 2002, 117, 9518-9519.	3.0	7
564	Heterogeneous nucleation on mesoscopic wettable particles: A hybrid thermodynamic/density-functional theory. Journal of Chemical Physics, 2002, 117, 1851-1868.	3.0	40
565	Creating nanocavities of tunable sizes: Hollow helices. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11583-11588.	7.1	149
566	How does water freeze inside carbon nanotubes?. Physica A: Statistical Mechanics and Its Applications, 2002, 314, 462-469.	2.6	89
567	Statistical Mechanics of Surface Tension and Tolman Length of Dipolar Fluidsâ€. Journal of Physical Chemistry B, 2001, 105, 11586-11594.	2.6	22
568	Effect of carrier-gas pressure on barrier to nucleation: Monte Carlo simulation of water/nitrogen system. Journal of Chemical Physics, 2001, 114, 2681-2686.	3.0	18
569	Computer simulation of water–ice transition in hydrophobic nanopores. Physica A: Statistical Mechanics and Its Applications, 2001, 292, 87-101.	2.6	8
570	Stable Three-Center Hydrogen Bonding in a Partially Rigidified Structure. Chemistry - A European Journal, 2001, 7, 4352-4357.	3.3	98
571	Formation of ordered ice nanotubes inside carbon nanotubes. Nature, 2001, 412, 802-805.	27.8	1,008
572	Role of hysteresis in the molecular picture of friction. Physical Chemistry Chemical Physics, 2001, 3, 1175-1178.	2.8	5
573	Nucleation of Water and Methanol Droplets on Cations and Anions: The Sign Preference. Physical Review Letters, 2001, 86, 5080-5083.	7.8	47
574	Monte Carlo simulation of homogeneous binary vapor–liquid nucleation: Mutual enhancement of nucleation in a partially miscible system. Journal of Chemical Physics, 2001, 115, 8518-8524.	3.0	18
575	Molecular dynamics simulation of supersaturated vapor nucleation in slit pore. II. Thermostatted atomic-wall model. Journal of Chemical Physics, 2001, 114, 9578-9584.	3.0	18
576	Energetics and cooperativity in three-center hydrogen bonding interactions. I. Diacetamide-X dimers (X=HCN, CH3OH). Journal of Chemical Physics, 2001, 115, 6030-6035.	3.0	46

#	Article	IF	Citations
577	Energetics and cooperativity in three-center hydrogen bonding interactions. II. Intramolecular hydrogen bonding systems. Journal of Chemical Physics, 2001, 115, 6036-6041.	3.0	57
578	Effects of external electric field on the interfacial properties of weakly dipolar fluid. Journal of Chemical Physics, 2001, 114, 504.	3.0	17
579	First-order transition in confined water between high-density liquid and low-density amorphous phases. Nature, 2000, 408, 564-567.	27.8	324
580	Basis set effects on the intermolecular interaction of the CF4–CF4 system. Computational and Theoretical Chemistry, 2000, 503, 213-220.	1.5	12
581	Bubble Nucleation in Confined Liquids: Molecular Dynamics Study. Progress of Theoretical Physics Supplement, 2000, 138, 732-733.	0.1	5
582	Nonlinear effects of physisorption on static friction. Journal of Chemical Physics, 2000, 113, 11293-11296.	3.0	5
583	Freezing transition of a strongly dipolar simple fluid. Physical Review E, 2000, 61, R2188-R2191.	2.1	28
584	Ice nanotube: What does the unit cell look like?. Journal of Chemical Physics, 2000, 113, 5037.	3.0	86
585	The melting temperature of proton-disordered hexagonal ice: A computer simulation of 4-site transferable intermolecular potential model of water. Journal of Chemical Physics, 2000, 112, 8534-8538.	3.0	94
586	A small-system ensemble Monte Carlo simulation of supersaturated vapor: Evaluation of barrier to nucleation. Journal of Chemical Physics, 2000, 112, 294-300.	3.0	52
587	Molecular dynamics simulation of supersaturated vapor nucleation in slit pore. Journal of Chemical Physics, 2000, 112, 4279-4285.	3.0	49
588	A New Class of Folding Oligomers:  Crescent Oligoamides. Journal of the American Chemical Society, 2000, 122, 4219-4220.	13.7	168
589	Thermodynamic expansion of nucleation free-energy barrier and size of critical nucleus near the vapor-liquid coexistence. Journal of Chemical Physics, 1999, 110, 3466-3471.	3.0	43
590	Formation free energy of clusters in vapor-liquid nucleation: A Monte Carlo simulation study. Journal of Chemical Physics, 1999, 110, 4471-4476.	3.0	69
591	A patching model for surface tension and the Tolman length. Journal of Chemical Physics, 1999, 111, 3705-3713.	3.0	41
592	Imaging point defects in a liquid environment: A model AFM study. Physical Review B, 1999, 60, 14328-14333.	3.2	6
593	Hydrogen bonding and cooperative effects in mixed dimers and trimers of methanol and trifluoromethanol: An ab initio study. Journal of Chemical Physics, 1999, 110, 6329-6338.	3.0	43
594	Confined water in hydrophobic nanopores: Dynamics of freezing into bilayer ice. Physical Review E, 1999, 60, 5833-5840.	2.1	34

#	Article	IF	CITATIONS
595	The Boundary Condition in the Gibbs Ensemble Simulation of a Stockmayer Fluid under an Applied Field. Molecular Simulation, 1999, 23, 95-107.	2.0	9
596	Can thin disk-like ice clusters be more stable than compact droplet-like ice clusters?. Chemical Physics Letters, 1999, 304, 378-384.	2.6	18
597	Molecular dynamics study of a phase-separating fluid mixture under shear flow. Physical Review E, 1999, 59, 3223-3230.	2.1	18
598	Effect of uniform electric field on homogeneous vapor–liquid nucleation and phase equilibria. II. Extended simple point charge model water. Journal of Chemical Physics, 1999, 110, 2533-2538.	3.0	33
599	A patching model for surface tension of spherical droplet and Tolman length. II. Journal of Chemical Physics, 1999, 111, 10602-10610.	3.0	32
600	Effects of confinement on the phase behavior of supercooled water. Chemical Physics Letters, 1998, 285, 278-283.	2.6	35
601	Cooperativity effects in cyclic trifluoromethanol trimer: an ab initio study. Computational and Theoretical Chemistry, 1998, 431, 119-126.	1.5	11
602	Study of hydrophillic interactions between polyatomic sheets in water. Fluid Phase Equilibria, 1998, 144, 377-385.	2.5	1
603	Validity of Tolman's equation: How large should a droplet be?. Journal of Chemical Physics, 1998, 109, 4063-4070.	3.0	120
604	Rotational Barrier for 1,1-Difluoroethane, 1,1,1,2-Tetrafluoroethane, Pentafluoroethane, and Hexafluoroethane: A Density Functional and ab Initio Molecular Orbital Study. Journal of Physical Chemistry A, 1998, $102,654-658$.	2.5	21
605	The effect of a uniform electric field on homogeneous vapor–liquid nucleation in a dipolar fluid. I. Stockmayer fluid. Journal of Chemical Physics, 1998, 109, 8435-8441.	3.0	6
606	Contribution of the center-of-mass fluctuation of a liquid cluster to the free energy: A Monte Carlo simulation study. Journal of Chemical Physics, 1998, 108, 4683-4684.	3.0	7
607	Vapour - liquid equilibria of binary mixtures containing Stockmayer molecules. Journal of Physics Condensed Matter, 1997, 9, 3349-3360.	1.8	11
608	Monte Carlo simulation of the solid to superliquid phase transition of Langmuir monolayers. II. Characteristics of phase transition. Journal of Chemical Physics, 1997, 106, 1961-1966.	3.0	14
609	Scanning Motions of an Atomic Force Microscope Tip in Water. Physical Review Letters, 1997, 79, 853-856.	7.8	15
610	Vapor–liquid coexistence of quasi-two-dimensional Stockmayer fluids. Journal of Chemical Physics, 1997, 106, 3311-3317.	3.0	50
611	Solvent-induced interactions between hydrophobic and hydrophilic polyatomic sheets in water and hypothetical nonpolar water. Journal of Chemical Physics, 1997, 106, 9781-9792.	3.0	9
612	Toward a molecular theory of vapor-phase nucleation. V. Self-consistency in the decoupled dimer limit. Journal of Chemical Physics, 1997, 107, 1242-1246.	3.0	17

#	Article	IF	CITATIONS
613	Freezing of Confined Water: A Bilayer Ice Phase in Hydrophobic Nanopores. Physical Review Letters, 1997, 79, 5262-5265.	7.8	222
614	Static Frictional Forces at Crystalline Interfaces. Journal of Physical Chemistry B, 1997, 101, 4992-4997.	2.6	11
615	Vapor-liquid equilibria for pure substances by Gibbs ensemble simulation of Stockmayer potential molecules. Fluid Phase Equilibria, 1997, 137, 87-98.	2.5	10
616	Effects of the co-solvent energy parameter and dipolar strength on solute residual chemical potential. Fluid Phase Equilibria, 1997, 138, 61-68.	2.5	6
617	Effects of solute size on the local solvent density and solute solubility in infinitely dilute supercritical solutions. Fluid Phase Equilibria, 1996, 116, 296-303.	2.5	9
618	Gas–liquid nucleation in twoâ€dimensional fluids. Journal of Chemical Physics, 1996, 104, 2699-2704.	3.0	25
619	Integral equation and Monte Carlo simulation studies of clusters in infinitely dilute supercritical solutions. Chemical Physics Letters, 1995, 239, 168-172.	2.6	19
620	Reexamination of the depolarized-light-scattering spectra of glass-forming liquids. Physical Review E, 1994, 50, 1711-1716.	2.1	26
621	Can the †van der Waals loop' vanish?. Chemical Physics Letters, 1994, 231, 401-406.	2.6	7
622	Density Functional Mean Field Theory of Crystal-Melt Interfaces. Physics and Chemistry of Liquids, 1989, 20, 39-43.	1.2	1
623	Comment on Dual-Hard-Sphere Models for Liquid Semiconductors Si And Ge. Physics and Chemistry of Liquids, 1989, 19, 69-72.	1.2	3
624	The effective-medium approximation for the thermoelectric power of polycrystals: application to a model for La2-xMxCuO4. Journal of Physics C: Solid State Physics, 1987, 20, L907-L910.	1.5	6
625	Ginzburg-Landau theory for the solid-liquid interface of bcc elements. Physical Review A, 1987, 35, 2611-2618.	2.5	61
626	Calculation of the surface tension of liquid metals using a one-component-plasma reference system. Journal of Physics F: Metal Physics, 1987, 17, 2345-2352.	1.6	4
627	Generation and Release of OH Radicals from the Reaction of H ₂ O with O ₂ over Soot. Angewandte Chemie, 0, , .	2.0	2