
Julia Mahamid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/941776/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation. Cell, 2015, 162, 1066-1077.	13.5	2,182
2	RNA-Induced Conformational Switching and Clustering of G3BP Drive Stress Granule Assembly by Condensation. Cell, 2020, 181, 346-361.e17.	13.5	557
3	Phase separation of a yeast prion protein promotes cellular fitness. Science, 2018, 359, .	6.0	534
4	The Centrosome Is a Selective Condensate that Nucleates Microtubules by Concentrating Tubulin. Cell, 2017, 169, 1066-1077.e10.	13.5	533
5	Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science, 2016, 351, 969-972.	6.0	493
6	Polar Positioning of Phase-Separated Liquid Compartments in Cells Regulated by an mRNA Competition Mechanism. Cell, 2016, 166, 1572-1584.e16.	13.5	283
7	Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5 à in cells. Nature Methods, 2021, 18, 186-193.	9.0	265
8	Protein condensates as aging Maxwell fluids. Science, 2020, 370, 1317-1323.	6.0	247
9	Optimized cryo-focused ion beam sample preparation aimed at in situ structural studies of membrane proteins. Journal of Structural Biology, 2017, 197, 73-82.	1.3	216
10	In-cell architecture of an actively transcribing-translating expressome. Science, 2020, 369, 554-557.	6.0	192
11	Site-Specific Cryo-focused Ion Beam Sample Preparation Guided by 3D Correlative Microscopy. Biophysical Journal, 2016, 110, 860-869.	0.2	172
12	Regulated assembly of a supramolecular centrosome scaffold in vitro. Science, 2015, 348, 808-812.	6.0	170
13	A cryo-FIB lift-out technique enables molecular-resolution cryo-ET within native Caenorhabditis elegans tissue. Nature Methods, 2019, 16, 757-762.	9.0	165
14	Nuclear pores dilate and constrict in cellulo. Science, 2021, 374, eabd9776.	6.0	162
15	A hydrated crystalline calcium carbonate phase: Calcium carbonate hemihydrate. Science, 2019, 363, 396-400.	6.0	153
16	In-cell architecture of the nuclear pore and snapshots of its turnover. Nature, 2020, 586, 796-800.	13.7	139
17	A focused ion beam milling and lift-out approach for site-specific preparation of frozen-hydrated lamellas from multicellular organisms. Journal of Structural Biology, 2015, 192, 262-269.	1.3	125
18	Cryo-focused Ion Beam Sample Preparation for Imaging Vitreous Cells by Cryo-electron Tomography. Bio-protocol, 2015, 5, .	0.2	105

Julia Mahamid

#	Article	IF	CITATIONS
19	Stress fibres are embedded in a contractile cortical network. Nature Materials, 2021, 20, 410-420.	13.3	73
20	Tailoring cryo-electron microscopy grids by photo-micropatterning for in-cell structural studies. Nature Methods, 2020, 17, 50-54.	9.0	67
21	A modular platform for automated cryo-FIB workflows. ELife, 2021, 10, .	2.8	65
22	Cryo-EM structure of the native rhodopsin dimer in nanodiscs. Journal of Biological Chemistry, 2019, 294, 14215-14230.	1.6	64
23	Liquid-crystalline phase transitions in lipid droplets are related to cellular states and specific organelle association. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16866-16871.	3.3	64
24	Locating macromolecular assemblies in cells by 2D template matching with cisTEM. ELife, 2021, 10, .	2.8	55
25	Unravelling molecular complexity in structural cell biology. Current Opinion in Structural Biology, 2018, 52, 111-118.	2.6	54
26	Liquid-to-solid phase transition of oskar ribonucleoprotein granules is essential for their function in Drosophila embryonic development. Cell, 2022, 185, 1308-1324.e23.	13.5	47
27	High-precision targeting workflow for volume electron microscopy. Journal of Cell Biology, 2021, 220, .	2.3	33
28	Cryoelectron Tomography Reveals Nanoscale Organization of the Cytoskeleton and Its Relation to Microtubule Curvature Inside Cells. Structure, 2020, 28, 991-1003.e4.	1.6	32
29	Determinants shaping the nanoscale architecture of the mouse rod outer segment. ELife, 2021, 10, .	2.8	25
30	Intracellular nanoscale architecture as a master regulator of calcium carbonate crystallization in marine microalgae. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
31	Visualizing Molecular Architectures of Cellular Condensates: Hints of Complex Coacervation Scenarios. Developmental Cell, 2020, 55, 97-107.	3.1	15
32	Challenges of Integrating Stochastic Dynamics and Cryo-Electron Tomograms in Whole-Cell Simulations. Journal of Physical Chemistry B, 2017, 121, 3871-3881.	1.2	14
33	TEM bright field imaging of thick specimens: nodes in Thon ring patterns. Ultramicroscopy, 2020, 216, 113023.	0.8	10
34	Mechanism of RNA polymerase I selection by transcription factor UAF. Science Advances, 2022, 8, eabn5725.	4.7	9
35	Interphase epichromatin: last refuge for the 30-nm chromatin fiber?. Chromosoma, 2021, 130, 91-102.	1.0	7
36	Cryo-FIB Lamella Milling: A Comprehensive Technique to Prepare Samples of Both Plunge- and High-pressure Frozen-hydrated Specimens for in situ Studies Microscopy and Microanalysis, 2018, 24, 820-821.	0.2	5

Julia Mahamid

#	Article	IF	CITATIONS
37	Addressing the challenge of in situ structural studies of RNP granules in light of emerging opportunities. Current Opinion in Structural Biology, 2020, 65, 149-158.	2.6	3
38	In Situ Tomography of Membrane Proteins Enabled by Advanced Cryo-FIB Sample Preparation and Phase Plate Imaging. Microscopy and Microanalysis, 2015, 21, 1119-1120.	0.2	2
39	Charting Molecular Landscapes Using Cryo-Electron Tomography. Microscopy Today, 2017, 25, 26-31.	0.2	Ο
40	Site Specific Cryo-FIB Preparations Aimed at in situ Cryo-Electron Tomography. Microscopy and Microanalysis, 2017, 23, 250-251.	0.2	0
41	Molecular views into cellular functions by in-cell cryo-electron tomography. Microscopy and Microanalysis, 2021, 27, 2076-2076.	0.2	0