
Mauricio Berriel Diaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9417416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Therapy-Related Transcriptional Subtypes in Matched Primary and Recurrent Head and Neck Cancer. Clinical Cancer Research, 2022, 28, 1038-1052.	7.0	13
2	Aging Aggravates Cachexia in Tumor-Bearing Mice. Cancers, 2022, 14, 90.	3.7	7
3	Combination therapies induce cancer cell death through the integrated stress response and disturbed pyrimidine metabolism. EMBO Molecular Medicine, 2021, 13, e12461.	6.9	12
4	Liver-fibrosis-activated transcriptional networks govern hepatocyte reprogramming and intra-hepatic communication. Cell Metabolism, 2021, 33, 1685-1700.e9.	16.2	73
5	Association of circulating PLA2G7 levels with cancer cachexia and assessment of darapladib as a therapy. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 1333-1351.	7.3	16
6	MRI-Determined Psoas Muscle Fat Infiltration Correlates with Severity of Weight Loss during Cancer Cachexia. Cancers, 2021, 13, 4433.	3.7	7
7	High levels of modified ceramides are a defining feature of murine and human cancer cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 1459-1475.	7.3	26
8	αâ^'Calcitonin gene-related peptide inhibits autophagy and calpain systems and maintains the stability of neuromuscular junction in denervated muscles. Molecular Metabolism, 2019, 28, 91-106.	6.5	16
9	Hepatic Rab24 controls blood glucose homeostasis via improving mitochondrial plasticity. Nature Metabolism, 2019, 1, 1009-1026.	11.9	27
10	Cancer Cachexia: More Than Skeletal Muscle Wasting. Trends in Cancer, 2018, 4, 849-860.	7.4	123
11	Acetyl-CoA Carboxylase 1-Dependent Protein Acetylation Controls Breast Cancer Metastasis and Recurrence. Cell Metabolism, 2017, 26, 842-855.e5.	16.2	180
12	A Hepatic GAbp-AMPK Axis Links Inflammatory Signaling to Systemic Vascular Damage. Cell Reports, 2017, 20, 1422-1434.	6.4	7
13	<i>In vivo</i> assessment of cold stimulation effects on the fat fraction of brown adipose tissue using DIXON MRI. Journal of Magnetic Resonance Imaging, 2017, 45, 369-380.	3.4	34
14	Fastingâ€induced liver <scp>GADD</scp> 45β restrains hepatic fatty acid uptake and improves metabolic health. EMBO Molecular Medicine, 2016, 8, 654-669.	6.9	32
15	Mouse redox histology using genetically encoded probes. Science Signaling, 2016, 9, rs1.	3.6	62
16	Biological Mechanisms for the Effect of Obesity on Cancer Risk: Experimental Evidence. Recent Results in Cancer Research, 2016, 208, 219-242.	1.8	9
17	Ataxin-10 is part of a cachexokine cocktail triggering cardiac metabolic dysfunction in cancer cachexia. Molecular Metabolism, 2016, 5, 67-78.	6.5	51
18	An AMP-activated protein kinase–stabilizing peptide ameliorates adipose tissue wasting in cancer cachexia in mice. Nature Medicine, 2016, 22, 1120-1130.	30.7	106

MAURICIO BERRIEL DIAZ

#	Article	IF	CITATIONS
19	The necroptosis-inducing kinase RIPK3 dampens adipose tissue inflammation and glucose intolerance. Nature Communications, 2016, 7, 11869.	12.8	68
20	Transcriptional coâ€factor Transducin betaâ€like (<scp>TBL</scp>) 1 acts as a checkpoint in pancreatic cancer malignancy. EMBO Molecular Medicine, 2015, 7, 1048-1062.	6.9	12
21	PPP2R5C Couples Hepatic Glucose and Lipid Homeostasis. PLoS Genetics, 2015, 11, e1005561.	3.5	33
22	micro <scp>RNA</scp> â€379 couples glucocorticoid hormones to dysfunctional lipid homeostasis. EMBO Journal, 2015, 34, 344-360.	7.8	43
23	Thermogenic adipocytes: From cells to physiology and medicine. Metabolism: Clinical and Experimental, 2014, 63, 1238-1249.	3.4	46
24	Detecting endogenous SUMO targets in mammalian cells and tissues. Nature Structural and Molecular Biology, 2013, 20, 525-531.	8.2	188
25	Transcriptional Cofactor TBLR1 Controls Lipid Mobilization in White Adipose Tissue. Cell Metabolism, 2013, 17, 575-585.	16.2	41
26	TSC22D4 is a molecular output of hepatic wasting metabolism. EMBO Molecular Medicine, 2013, 5, 294-308.	6.9	57
27	Selective enrichment of newly synthesized proteins for quantitative secretome analysis. Nature Biotechnology, 2012, 30, 984-990.	17.5	234
28	Hepatic Deficiency in Transcriptional Cofactor TBL1 Promotes Liver Steatosis and Hypertriglyceridemia. Cell Metabolism, 2011, 13, 389-400.	16.2	49
29	Molecular Control of Systemic Bile Acid Homeostasis by the Liver Glucocorticoid Receptor. Cell Metabolism, 2011, 14, 123-130.	16.2	77
30	Cyclooxygenase-2 Controls Energy Homeostasis in Mice by de Novo Recruitment of Brown Adipocytes. Science, 2010, 328, 1158-1161.	12.6	401
31	Control of Adipose Tissue Inflammation Through TRB1. Diabetes, 2010, 59, 1991-2000.	0.6	58
32	Positional Cloning of Zinc Finger Domain Transcription Factor Zfp69, a Candidate Gene for Obesity-Associated Diabetes Contributed by Mouse Locus Nidd/SJL. PLoS Genetics, 2009, 5, e1000541.	3.5	68
33	Liver-Specific Loss of Lipolysis-Stimulated Lipoprotein Receptor Triggers Systemic Hyperlipidemia in Mice. Diabetes, 2009, 58, 1040-1049.	0.6	44
34	Protein Kinase G Controls Brown Fat Cell Differentiation and Mitochondrial Biogenesis. Science Signaling, 2009, 2, ra78.	3.6	118
35	In vivo phosphoenolpyruvate carboxykinase promoter mapping identifies disrupted hormonal synergism as a target of inflammation during sepsis in mice. Hepatology, 2009, 50, 1963-1971.	7.3	10
36	Nuclear receptor cofactor receptor interacting protein 140 controls hepatic triglyceride metabolism during wasting in mice. Hepatology, 2008, 48, 782-791.	7.3	54

#	Article	IF	CITATIONS
37	The Glucocorticoid Receptor Controls Hepatic Dyslipidemia through Hes1. Cell Metabolism, 2008, 8, 212-223.	16.2	126
38	Coactivator function of RIP140 for NFκB/RelA-dependent cytokine gene expression. Blood, 2008, 112, 264-276.	1.4	108
39	Discovering orphans' sweet secret: NR4A receptors and hepatic glucose production. Cell Metabolism, 2006, 4, 339-340.	16.2	16
40	Effects of periodic intake of a high-caloric diet on body mass and leptin resistance. Physiology and Behavior, 2006, 88, 191-200.	2.1	9
41	Depression of transcription and translation during daily torpor in the Djungarian hamster (Phodopus) Tj ETQq1 1 Physiology, 2004, 174, 495-502,	0.784314 1.5	rgBT /Over 22