Christopher M Smyth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9416490/publications.pdf

Version: 2024-02-01

623734 794594 20 911 14 19 citations g-index h-index papers 20 20 20 1974 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Controlling the Pd Metal Contact Polarity to Trigonal Tellurium by Atomic Hydrogenâ€Removal of the Native Tellurium Oxide. Advanced Materials Interfaces, 2021, 8, 2002050.	3.7	10
2	Modification of the Electronic Transport in Atomically Thin WSe ₂ by Oxidation. Advanced Materials Interfaces, 2020, 7, 2000422.	3.7	11
3	Origins of Fermi Level Pinning between Tungsten Dichalcogenides (WS2, WTe2) and Bulk Metal Contacts: Interface Chemistry and Band Alignment. Journal of Physical Chemistry C, 2020, 124, 14550-14563.	3.1	19
4	<i>In situ</i> exfoliated 2D molybdenum disulfide analyzed by XPS. Surface Science Spectra, 2020, 27, .	1.3	21
5	Impact of Etch Processes on the Chemistry and Surface States of the Topological Insulator Bi ₂ Se ₃ . ACS Applied Materials & amp; Interfaces, 2019, 11, 32144-32150.	8.0	9
6	Origins of Fermi-Level Pinning between Molybdenum Dichalcogenides (MoSe ₂ ,) Tj ETQq0 0 0 rgBT Physical Chemistry C, 2019, 123, 23919-23930.	/Overlock 3.1	10 Tf 50 547 ²
7	Contact Engineering High-Performance n-Type MoTe ₂ Transistors. Nano Letters, 2019, 19, 6352-6362.	9.1	87
8	2D bismuth telluride analyzed by XPS. Surface Science Spectra, 2019, 26, .	1.3	6
9	2D topological insulator bismuth selenide analyzed by in situ XPS. Surface Science Spectra, 2019, 26, 024014.	1.3	3
10	Contact Engineering for Dual-Gate MoS ₂ Transistors Using O ₂ Plasma Exposure. ACS Applied Electronic Materials, 2019, 1, 210-219.	4.3	40
11	Engineering the Palladium–WSe2 Interface Chemistry for Field Effect Transistors with High-Performance Hole Contacts. ACS Applied Nano Materials, 2019, 2, 75-88.	5.0	24
12	One dimensional metallic edges in atomically thin WSe $\langle \text{sub} \rangle 2 \langle \text{sub} \rangle$ induced by air exposure. 2D Materials, 2018, 5, 025017.	4.4	47
13	Covalent nitrogen doping in molecular beam epitaxy-grown and bulk WSe2. APL Materials, 2018, 6, .	5.1	21
14	Realizing Large-Scale, Electronic-Grade Two-Dimensional Semiconductors. ACS Nano, 2018, 12, 965-975.	14.6	172
15	Highâ€Mobility Helical Tellurium Fieldâ€Effect Transistors Enabled by Transferâ€Free, Lowâ€Temperature Direct Growth. Advanced Materials, 2018, 30, e1803109.	21.0	71
16	WSe ₂ -contact metal interface chemistry and band alignment under high vacuum and ultra high vacuum deposition conditions. 2D Materials, 2017, 4, 025084.	4.4	77
17	Intrinsic air stability mechanisms of two-dimensional transition metal dichalcogenide surfaces: basal versus edge oxidation. 2D Materials, 2017, 4, 025050.	4.4	87
18	Interface Chemistry of Contact Metals and Ferromagnets on the Topological Insulator Bi ₂ Se ₃ . Journal of Physical Chemistry C, 2017, 121, 23551-23563.	3.1	71

#	Article	IF	CITATIONS
19	Test structures for understanding the impact of ultra-high vacuum metal deposition on top-gate MoS $<$ inf $>$ 2 $<$ /inf $>$ field-effect-transistors. , 2017, , .		1
20	Contact Metal–MoS ₂ Interfacial Reactions and Potential Implications on MoS ₂ -Based Device Performance. Journal of Physical Chemistry C, 2016, 120, 14719-14729.	3.1	114