
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9415465/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A rich and bountiful harvest: Key discoveries in plant cell biology. Plant Cell, 2022, 34, 53-71.	6.6	7
2	A biosensor for the direct visualization of auxin. Nature, 2021, 592, 768-772.	27.8	88
3	Comparative Embryogenesis in Angiosperms: Activation and Patterning of Embryonic Cell Lineages. Annual Review of Plant Biology, 2021, 72, 641-676.	18.7	33
4	The integral spliceosomal component CWC15 is required for development in Arabidopsis. Scientific Reports, 2020, 10, 13336.	3.3	9
5	Coordinated Activation of ARF1 GTPases by ARF-GEF GNOM Dimers Is Essential for Vesicle Trafficking in Arabidopsis. Plant Cell, 2020, 32, 2491-2507.	6.6	17
6	Mass-spectrometry-based draft of the Arabidopsis proteome. Nature, 2020, 579, 409-414.	27.8	328
7	Specification and regulation of vascular tissue identity in the <i>Arabidopsis</i> embryo. Development (Cambridge), 2020, 147, .	2.5	24
8	Transcriptomic Profiling of the Arabidopsis Embryonic Epidermis Using FANS in Combination with RNAseq. Methods in Molecular Biology, 2020, 2122, 151-164.	0.9	4
9	Plant membrane trafficking is coming of age. Seminars in Cell and Developmental Biology, 2018, 80, 83-84.	5.0	2
10	Concerted Action of Evolutionarily Ancient and Novel SNARE Complexes in Flowering-Plant Cytokinesis. Developmental Cell, 2018, 44, 500-511.e4.	7.0	35
11	Specificity of plant membrane trafficking – ARFs, regulators and coat proteins. Seminars in Cell and Developmental Biology, 2018, 80, 85-93.	5.0	47
12	A single class of ARF GTPase activated by several pathway-specific ARF-GEFs regulates essential membrane traffic in Arabidopsis. PLoS Genetics, 2018, 14, e1007795.	3.5	28
13	Functional diversification of <i>Arabidopsis</i> SEC1-related SM proteins in cytokinetic and secretory membrane fusion. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6309-6314.	7.1	23
14	Auxin and Vesicle Traffic. Plant Physiology, 2018, 176, 1884-1888.	4.8	8
15	Dynamic PIN-FORMED auxin efflux carrier phosphorylation at the plasma membrane controls auxin efflux-dependent growth. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E887-E896.	7.1	85
16	VPS9a Activates the Rab5 GTPase ARA7 to Confer Distinct Pre- and Postinvasive Plant Innate Immunity. Plant Cell, 2017, 29, 1927-1937.	6.6	28
17	Evolutionarily diverse <scp>SYP</scp> 1 Qaâ€ <scp>SNARE</scp> s jointly sustain pollen tube growth in Arabidopsis. Plant Journal, 2017, 92, 375-385.	5.7	43
18	Early plant embryogenesis — dark ages or dark matter?. Current Opinion in Plant Biology, 2017, 35, 30-36.	7.1	30

#	Article	IF	CITATIONS
19	ER assembly of SNARE complexes mediating formation of partitioning membrane in Arabidopsis cytokinesis. ELife, 2017, 6, .	6.0	33
20	Auxin responsiveness of the <scp>MONOPTEROS</scp> â€ <scp>BODENLOS</scp> module in primary root initiation critically depends on the nuclear import kinetics of the Aux/ <scp>IAA</scp> inhibitor <scp>BODENLOS</scp> . Plant Journal, 2016, 85, 269-277.	5.7	22
21	Plant cytokinesis—No ring, no constriction but centrifugal construction of the partitioning membrane. Seminars in Cell and Developmental Biology, 2016, 53, 10-18.	5.0	80
22	Twin Plants from Supernumerary Egg Cells in Arabidopsis. Current Biology, 2015, 25, 225-230.	3.9	45
23	Plant cytokinesis: a tale of membrane traffic and fusion. Biochemical Society Transactions, 2015, 43, 73-78.	3.4	38
24	Profiling of embryonic nuclear vs. cellular RNA in Arabidopsis thaliana. Genomics Data, 2015, 4, 96-98.	1.3	15
25	High lipid order of Arabidopsis cellâ€plate membranes mediated by sterol and DYNAMINâ€RELATED PROTEIN1A function. Plant Journal, 2014, 80, 745-757.	5.7	28
26	Cell type-specific transcriptome analysis in the early <i>Arabidopsis thaliana</i> embryo. Development (Cambridge), 2014, 141, 4831-4840.	2.5	69
27	Protein Delivery to Vacuole Requires SAND Protein-Dependent Rab GTPase Conversion for MVB-Vacuole Fusion. Current Biology, 2014, 24, 1383-1389.	3.9	144
28	Delivery of endocytosed proteins to the cell–division plane requires change of pathway from recycling to secretion. ELife, 2014, 3, e02131.	6.0	89
29	SNARE complexes of different composition jointly mediate membrane fusion in <i>Arabidopsis</i> cytokinesis. Molecular Biology of the Cell, 2013, 24, 1593-1601.	2.1	112
30	Transcriptional repression of BODENLOS by HD-ZIP transcription factor HB5 in Arabidopsis thaliana. Journal of Experimental Botany, 2013, 64, 3009-3019.	4.8	35
31	<i>Arabidopsis</i> μ-adaptin subunit AP1M of adaptor protein complex 1 mediates late secretory and vacuolar traffic and is required for growth. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10318-10323.	7.1	129
32	Different Auxin Response Machineries Control Distinct Cell Fates in the Early Plant Embryo. Developmental Cell, 2012, 22, 211-222.	7.0	176
33	Sec1/Munc18 Protein Stabilizes Fusion-Competent Syntaxin for Membrane Fusion in Arabidopsis Cytokinesis. Developmental Cell, 2012, 22, 989-1000.	7.0	55
34	<i>Arabidopsis</i> WD REPEAT DOMAIN55 Interacts with DNA DAMAGED BINDING PROTEIN1 and Is Required for Apical Patterning in the Embryo. Plant Cell, 2012, 24, 1013-1033.	6.6	27
35	Polarized cell growth in Arabidopsis requires endosomal recycling mediated by GBF1-related ARF exchange factors. Nature Cell Biology, 2012, 14, 80-86.	10.3	57
36	Early Embryogenesis in Flowering Plants: Setting Up the Basic Body Pattern. Annual Review of Plant Biology, 2012, 63, 483-506.	18.7	168

#	Article	IF	CITATIONS
37	Arabidopsis SNARE protein SEC22 is essential for gametophyte development and maintenance of Golgiâ€stack integrity. Plant Journal, 2011, 66, 268-279.	5.7	48
38	Functional anatomy of the Arabidopsis cytokinesisâ€specific syntaxin KNOLLE. Plant Journal, 2011, 68, 755-764.	5.7	22
39	Mechanisms of Functional Specificity Among Plasmaâ€Membrane Syntaxins in <i>Arabidopsis</i> . Traffic, 2011, 12, 1269-1280.	2.7	80
40	Auxin triggers a genetic switch. Nature Cell Biology, 2011, 13, 611-615.	10.3	108
41	Membrane Traffic and Fusion at Post-Golgi Compartments. Frontiers in Plant Science, 2011, 2, 111.	3.6	34
42	Cell–cell communication in Arabidopsis early embryogenesis. European Journal of Cell Biology, 2010, 89, 225-230.	3.6	9
43	Mechanisms of Cell Behaviour in Eukaryotes. European Journal of Cell Biology, 2010, 89, 125.	3.6	0
44	A putative TRAPPII tethering factor is required for cell plate assembly during cytokinesis in <i>Arabidopsis</i> . New Phytologist, 2010, 187, 751-763.	7.3	44
45	Embryogenesis – the humble beginnings of plant life. Plant Journal, 2010, 61, 959-970.	5.7	132
46	Endocytosis restricts Arabidopsis KNOLLE syntaxin to the cell division plane during late cytokinesis. EMBO Journal, 2010, 29, 546-558.	7.8	132
47	MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature, 2010, 464, 913-916.	27.8	532
48	Endocytic and Secretory Traffic in <i>Arabidopsis</i> Merge in the Trans-Golgi Network/Early Endosome, an Independent and Highly Dynamic Organelle. Plant Cell, 2010, 22, 1344-1357.	6.6	435
49	Microtubule-Associated Kinase-like Protein RUNKEL Needed for Cell Plate Expansion in Arabidopsis Cytokinesis. Current Biology, 2009, 19, 518-523.	3.9	44
50	The timely deposition of callose is essential for cytokinesis in Arabidopsis. Plant Journal, 2009, 58, 13-26.	5.7	116
51	Receptor-like kinases shape the plant. Nature Cell Biology, 2009, 11, 1166-1173.	10.3	261
52	Survival of the flexible: hormonal growth control and adaptation in plant development. Nature Reviews Genetics, 2009, 10, 305-317.	16.3	459
53	Postâ€Golgi Traffic in Plants. Traffic, 2009, 10, 819-828.	2.7	89
54	Auxin signaling in algal lineages: fact or myth?. Trends in Plant Science, 2009, 14, 182-188.	8.8	121

#	Article	IF	CITATIONS
55	Co-option of a default secretory pathway for plant immune responses. Nature, 2008, 451, 835-840.	27.8	414
56	Receptor-Like Kinase ACR4 Restricts Formative Cell Divisions in the <i>Arabidopsis</i> Root. Science, 2008, 322, 594-597.	12.6	342
57	TAA1-Mediated Auxin Biosynthesis Is Essential for Hormone Crosstalk and Plant Development. Cell, 2008, 133, 177-191.	28.9	1,065
58	The Evolving Complexity of the Auxin Pathway. Plant Cell, 2008, 20, 1738-1746.	6.6	141
59	Vascular signalling mediated by ZWILLE potentiates WUSCHEL function during shoot meristem stem cell development in the <i>Arabidopsis</i> embryo. Development (Cambridge), 2008, 135, 2839-2843.	2.5	109
60	Membrane Association of the <i>Arabidopsis</i> ARF Exchange Factor GNOM Involves Interaction of Conserved Domains. Plant Cell, 2008, 20, 142-151.	6.6	41
61	R1R2R3-Myb proteins positively regulate cytokinesis through activation of KNOLLE transcription in Arabidopsis thaliana. Development (Cambridge), 2007, 134, 1101-1110.	2.5	177
62	The High Road and the Low Road: Trafficking Choices in Plants. Cell, 2007, 130, 977-979.	28.9	30
63	Patterning the axis in plants – auxin in control. Current Opinion in Genetics and Development, 2007, 17, 337-343.	3.3	133
64	Transcriptional regulation of epidermal cell fate in the Arabidopsis embryo. Development (Cambridge), 2007, 134, 1141-1150.	2.5	109
65	LACHESIS Restricts Gametic Cell Fate in the Female Gametophyte of Arabidopsis. PLoS Biology, 2007, 5, e47.	5.6	153
66	Functional diversification of closely related ARF-GEFs in protein secretion and recycling. Nature, 2007, 448, 488-492.	27.8	215
67	Plant Cytokinesis Requires De Novo Secretory Trafficking but Not Endocytosis. Current Biology, 2007, 17, 2047-2053.	3.9	158
68	Auxin Triggers Transient Local Signaling for Cell Specification in Arabidopsis Embryogenesis. Developmental Cell, 2006, 10, 265-270.	7.0	303
69	Endocytosis in signalling and development. Current Opinion in Plant Biology, 2006, 9, 589-594.	7.1	56
70	Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO Journal, 2005, 24, 1874-1885.	7.8	349
71	Auxin inhibits endocytosis and promotes its own efflux from cells. Nature, 2005, 435, 1251-1256.	27.8	712
72	Plant cytokinesis: fission by fusion. Trends in Cell Biology, 2005, 15, 277-283.	7.9	142

#	Article	IF	CITATIONS
73	Auxin and embryo axis formation: the ends in sight?. Current Opinion in Plant Biology, 2005, 8, 32-37.	7.1	105
74	The domain architecture of large guanine nucleotide exchange factors for the small GTP-binding protein Arf. BMC Genomics, 2005, 6, 20.	2.8	102
75	Plant Development Is Regulated by a Family of Auxin Receptor F Box Proteins. Developmental Cell, 2005, 9, 109-119.	7.0	865
76	CYTOKINESIS IN HIGHER PLANTS. Annual Review of Plant Biology, 2005, 56, 281-299.	18.7	190
77	Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis. Development (Cambridge), 2004, 131, 389-400.	2.5	258
78	Cytokinesis: lines of division taking shape. Current Opinion in Plant Biology, 2004, 7, 599-604.	7.1	42
79	MEMBRANE TRAFFICKING IN PLANTS. Annual Review of Cell and Developmental Biology, 2004, 20, 481-504.	9.4	253
80	Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature, 2003, 426, 147-153.	27.8	1,672
81	Syntaxin specificity of cytokinesis in Arabidopsis. Nature Cell Biology, 2003, 5, 531-534.	10.3	72
82	Growing up green: cellular basis of plant development. Mechanisms of Development, 2003, 120, 1395-1406.	1.7	29
83	The Arabidopsis GNOM ARF-GEF Mediates Endosomal Recycling, Auxin Transport, and Auxin-Dependent Plant Growth. Cell, 2003, 112, 219-230.	28.9	1,027
84	Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation. Cell, 2003, 115, 591-602.	28.9	2,313
85	Arabidopsis haiku Mutants Reveal New Controls of Seed Size by Endosperm. Plant Physiology, 2003, 131, 1661-1670.	4.8	250
86	Cellularisation in the endosperm of Arabidopsis thaliana is coupled to mitosis and shares multiple components with cytokinesis. Development (Cambridge), 2002, 129, 5567-5576.	2.5	103
87	The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes and Development, 2002, 16, 1610-1615.	5.9	485
88	The <i>Arabidopsis PILZ</i> group genes encode tubulin-folding cofactor orthologs required for cell division but not cell growth. Genes and Development, 2002, 16, 959-971.	5.9	157
89	Cytokinesis-Defective Mutants of Arabidopsis. Plant Physiology, 2002, 129, 678-690.	4.8	80
90	AtPIN4 Mediates Sink-Driven Auxin Gradients and Root Patterning in Arabidopsis. Cell, 2002, 108, 661-673.	28.9	763

#	Article	IF	CITATIONS
91	Microtubule cytoskeleton: a track record. Current Opinion in Plant Biology, 2002, 5, 494-501.	7.1	67
92	The Arabidopsis HINKEL Gene Encodes a Kinesin-Related Protein Involved in Cytokinesis and Is Expressed in a Cell Cycle-Dependent Manner. Current Biology, 2002, 12, 153-158.	3.9	169
93	Protein Secretion in Plants: from thetrans-Golgi Network to the Outer Space. Traffic, 2002, 3, 605-613.	2.7	82
94	Termination of Stem Cell Maintenance in Arabidopsis Floral Meristems by Interactions between WUSCHEL and AGAMOUS. Cell, 2001, 105, 805-814.	28.9	544
95	The Cytokinesis Gene KEULE Encodes a Sec1 Protein That Binds the Syntaxin Knolle. Journal of Cell Biology, 2001, 152, 531-544.	5.2	188
96	Early paternal gene activity in Arabidopsis. Nature, 2001, 414, 709-710.	27.8	106
97	Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature, 2001, 413, 425-428.	27.8	1,174
98	The Arabidopsis KNOLLE and KEULE genes interact to promote vesicle fusion during cytokinesis. Current Biology, 2000, 10, 1371-1374.	3.9	159
99	Genetic dissection of cytokinesis. Plant Molecular Biology, 2000, 43, 719-733.	3.9	51
100	The Stem Cell Population of Arabidopsis Shoot Meristems Is Maintained by a Regulatory Loop between the CLAVATA and WUSCHEL Genes. Cell, 2000, 100, 635-644.	28.9	1,521
101	Mutations in the PILZ group genes disrupt the microtubule cytoskeleton and uncouple cell cycle progression from cell division in Arabidopsis embryo and endosperm. European Journal of Cell Biology, 1999, 78, 100-108.	3.6	116
102	Cytokinesis in flowering plants: cellular process and developmental integration. Current Opinion in Plant Biology, 1998, 1, 486-491.	7.1	62
103	Role of WUSCHEL in Regulating Stem Cell Fate in the Arabidopsis Shoot Meristem. Cell, 1998, 95, 805-815.	28.9	1,487
104	The Arabidopsis KNOLLE Protein Is a Cytokinesis-specific Syntaxin. Journal of Cell Biology, 1997, 139, 1485-1493.	5.2	500
105	Cytokinesis in the Arabidopsis Embryo Involves the Syntaxin-Related KNOLLE Gene Product. Cell, 1996, 84, 61-71.	28.9	519
106	Molecular analysis of theArabidopsis pattern formation geneGNOM: gene structure and intragenic complementation. Molecular Genetics and Genomics, 1996, 250, 681-691.	2.4	79
107	Rooting the meristem. Nature, 1995, 378, 16-16.	27.8	4
108	Mutations affecting body organization in the Arabidopsis embryo. Nature, 1991, 353, 402-407.	27.8	551