List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9415465/publications.pdf Version: 2024-02-01

CEDD IÃ1/ DCENS

#	Article	IF	CITATIONS
1	Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation. Cell, 2003, 115, 591-602.	28.9	2,313
2	Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature, 2003, 426, 147-153.	27.8	1,672
3	The Stem Cell Population of Arabidopsis Shoot Meristems Is Maintained by a Regulatory Loop between the CLAVATA and WUSCHEL Genes. Cell, 2000, 100, 635-644.	28.9	1,521
4	Role of WUSCHEL in Regulating Stem Cell Fate in the Arabidopsis Shoot Meristem. Cell, 1998, 95, 805-815.	28.9	1,487
5	Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature, 2001, 413, 425-428.	27.8	1,174
6	TAA1-Mediated Auxin Biosynthesis Is Essential for Hormone Crosstalk and Plant Development. Cell, 2008, 133, 177-191.	28.9	1,065
7	The Arabidopsis GNOM ARF-GEF Mediates Endosomal Recycling, Auxin Transport, and Auxin-Dependent Plant Growth. Cell, 2003, 112, 219-230.	28.9	1,027
8	Plant Development Is Regulated by a Family of Auxin Receptor F Box Proteins. Developmental Cell, 2005, 9, 109-119.	7.0	865
9	AtPIN4 Mediates Sink-Driven Auxin Gradients and Root Patterning in Arabidopsis. Cell, 2002, 108, 661-673.	28.9	763
10	Auxin inhibits endocytosis and promotes its own efflux from cells. Nature, 2005, 435, 1251-1256.	27.8	712
11	Mutations affecting body organization in the Arabidopsis embryo. Nature, 1991, 353, 402-407.	27.8	551
12	Termination of Stem Cell Maintenance in Arabidopsis Floral Meristems by Interactions between WUSCHEL and AGAMOUS. Cell, 2001, 105, 805-814.	28.9	544
13	MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature, 2010, 464, 913-916.	27.8	532
14	Cytokinesis in the Arabidopsis Embryo Involves the Syntaxin-Related KNOLLE Gene Product. Cell, 1996, 84, 61-71.	28.9	519
15	The Arabidopsis KNOLLE Protein Is a Cytokinesis-specific Syntaxin. Journal of Cell Biology, 1997, 139, 1485-1493.	5.2	500
16	The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes and Development, 2002, 16, 1610-1615.	5.9	485
17	Survival of the flexible: hormonal growth control and adaptation in plant development. Nature Reviews Genetics, 2009, 10, 305-317.	16.3	459
18	Endocytic and Secretory Traffic in <i>Arabidopsis</i> Merge in the Trans-Golgi Network/Early Endosome, an Independent and Highly Dynamic Organelle. Plant Cell, 2010, 22, 1344-1357.	6.6	435

#	Article	IF	CITATIONS
19	Co-option of a default secretory pathway for plant immune responses. Nature, 2008, 451, 835-840.	27.8	414
20	Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO Journal, 2005, 24, 1874-1885.	7.8	349
21	Receptor-Like Kinase ACR4 Restricts Formative Cell Divisions in the <i>Arabidopsis</i> Root. Science, 2008, 322, 594-597.	12.6	342
22	Mass-spectrometry-based draft of the Arabidopsis proteome. Nature, 2020, 579, 409-414.	27.8	328
23	Auxin Triggers Transient Local Signaling for Cell Specification in Arabidopsis Embryogenesis. Developmental Cell, 2006, 10, 265-270.	7.0	303
24	Receptor-like kinases shape the plant. Nature Cell Biology, 2009, 11, 1166-1173.	10.3	261
25	Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis. Development (Cambridge), 2004, 131, 389-400.	2.5	258
26	MEMBRANE TRAFFICKING IN PLANTS. Annual Review of Cell and Developmental Biology, 2004, 20, 481-504.	9.4	253
27	Arabidopsis haiku Mutants Reveal New Controls of Seed Size by Endosperm. Plant Physiology, 2003, 131, 1661-1670.	4.8	250
28	Functional diversification of closely related ARF-GEFs in protein secretion and recycling. Nature, 2007, 448, 488-492.	27.8	215
29	CYTOKINESIS IN HIGHER PLANTS. Annual Review of Plant Biology, 2005, 56, 281-299.	18.7	190
30	The Cytokinesis Gene KEULE Encodes a Sec1 Protein That Binds the Syntaxin Knolle. Journal of Cell Biology, 2001, 152, 531-544.	5.2	188
31	R1R2R3-Myb proteins positively regulate cytokinesis through activation of KNOLLE transcription in Arabidopsis thaliana. Development (Cambridge), 2007, 134, 1101-1110.	2.5	177
32	Different Auxin Response Machineries Control Distinct Cell Fates in the Early Plant Embryo. Developmental Cell, 2012, 22, 211-222.	7.0	176
33	The Arabidopsis HINKEL Gene Encodes a Kinesin-Related Protein Involved in Cytokinesis and Is Expressed in a Cell Cycle-Dependent Manner. Current Biology, 2002, 12, 153-158.	3.9	169
34	Early Embryogenesis in Flowering Plants: Setting Up the Basic Body Pattern. Annual Review of Plant Biology, 2012, 63, 483-506.	18.7	168
35	The Arabidopsis KNOLLE and KEULE genes interact to promote vesicle fusion during cytokinesis. Current Biology, 2000, 10, 1371-1374.	3.9	159
36	Plant Cytokinesis Requires De Novo Secretory Trafficking but Not Endocytosis. Current Biology, 2007, 17, 2047-2053.	3.9	158

#	Article	IF	CITATIONS
37	The <i>Arabidopsis PILZ</i> group genes encode tubulin-folding cofactor orthologs required for cell division but not cell growth. Genes and Development, 2002, 16, 959-971.	5.9	157
38	LACHESIS Restricts Gametic Cell Fate in the Female Gametophyte of Arabidopsis. PLoS Biology, 2007, 5, e47.	5.6	153
39	Protein Delivery to Vacuole Requires SAND Protein-Dependent Rab GTPase Conversion for MVB-Vacuole Fusion. Current Biology, 2014, 24, 1383-1389.	3.9	144
40	Plant cytokinesis: fission by fusion. Trends in Cell Biology, 2005, 15, 277-283.	7.9	142
41	The Evolving Complexity of the Auxin Pathway. Plant Cell, 2008, 20, 1738-1746.	6.6	141
42	Patterning the axis in plants – auxin in control. Current Opinion in Genetics and Development, 2007, 17, 337-343.	3.3	133
43	Embryogenesis – the humble beginnings of plant life. Plant Journal, 2010, 61, 959-970.	5.7	132
44	Endocytosis restricts Arabidopsis KNOLLE syntaxin to the cell division plane during late cytokinesis. EMBO Journal, 2010, 29, 546-558.	7.8	132
45	<i>Arabidopsis</i> μ-adaptin subunit AP1M of adaptor protein complex 1 mediates late secretory and vacuolar traffic and is required for growth. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10318-10323.	7.1	129
46	Auxin signaling in algal lineages: fact or myth?. Trends in Plant Science, 2009, 14, 182-188.	8.8	121
47	Mutations in the PILZ group genes disrupt the microtubule cytoskeleton and uncouple cell cycle progression from cell division in Arabidopsis embryo and endosperm. European Journal of Cell Biology, 1999, 78, 100-108.	3.6	116
48	The timely deposition of callose is essential for cytokinesis in Arabidopsis. Plant Journal, 2009, 58, 13-26.	5.7	116
49	SNARE complexes of different composition jointly mediate membrane fusion in <i>Arabidopsis</i> cytokinesis. Molecular Biology of the Cell, 2013, 24, 1593-1601.	2.1	112
50	Transcriptional regulation of epidermal cell fate in the Arabidopsis embryo. Development (Cambridge), 2007, 134, 1141-1150.	2.5	109
51	Vascular signalling mediated by ZWILLE potentiates WUSCHEL function during shoot meristem stem cell development in the <i>Arabidopsis</i> embryo. Development (Cambridge), 2008, 135, 2839-2843.	2.5	109
52	Auxin triggers a genetic switch. Nature Cell Biology, 2011, 13, 611-615.	10.3	108
53	Early paternal gene activity in Arabidopsis. Nature, 2001, 414, 709-710.	27.8	106
54	Auxin and embryo axis formation: the ends in sight?. Current Opinion in Plant Biology, 2005, 8, 32-37.	7.1	105

#	Article	IF	CITATIONS
55	Cellularisation in the endosperm of Arabidopsis thaliana is coupled to mitosis and shares multiple components with cytokinesis. Development (Cambridge), 2002, 129, 5567-5576.	2.5	103
56	The domain architecture of large guanine nucleotide exchange factors for the small GTP-binding protein Arf. BMC Genomics, 2005, 6, 20.	2.8	102
57	Postâ€Golgi Traffic in Plants. Traffic, 2009, 10, 819-828.	2.7	89
58	Delivery of endocytosed proteins to the cell–division plane requires change of pathway from recycling to secretion. ELife, 2014, 3, e02131.	6.0	89
59	A biosensor for the direct visualization of auxin. Nature, 2021, 592, 768-772.	27.8	88
60	Dynamic PIN-FORMED auxin efflux carrier phosphorylation at the plasma membrane controls auxin efflux-dependent growth. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E887-E896.	7.1	85
61	Protein Secretion in Plants: from thetrans-Golgi Network to the Outer Space. Traffic, 2002, 3, 605-613.	2.7	82
62	Cytokinesis-Defective Mutants of Arabidopsis. Plant Physiology, 2002, 129, 678-690.	4.8	80
63	Mechanisms of Functional Specificity Among Plasmaâ€Membrane Syntaxins in <i>Arabidopsis</i> . Traffic, 2011, 12, 1269-1280.	2.7	80
64	Plant cytokinesis—No ring, no constriction but centrifugal construction of the partitioning membrane. Seminars in Cell and Developmental Biology, 2016, 53, 10-18.	5.0	80
65	Molecular analysis of theArabidopsis pattern formation geneGNOM: gene structure and intragenic complementation. Molecular Genetics and Genomics, 1996, 250, 681-691.	2.4	79
66	Syntaxin specificity of cytokinesis in Arabidopsis. Nature Cell Biology, 2003, 5, 531-534.	10.3	72
67	Cell type-specific transcriptome analysis in the early <i>Arabidopsis thaliana</i> embryo. Development (Cambridge), 2014, 141, 4831-4840.	2.5	69
68	Microtubule cytoskeleton: a track record. Current Opinion in Plant Biology, 2002, 5, 494-501.	7.1	67
69	Cytokinesis in flowering plants: cellular process and developmental integration. Current Opinion in Plant Biology, 1998, 1, 486-491.	7.1	62
70	Polarized cell growth in Arabidopsis requires endosomal recycling mediated by GBF1-related ARF exchange factors. Nature Cell Biology, 2012, 14, 80-86.	10.3	57
71	Endocytosis in signalling and development. Current Opinion in Plant Biology, 2006, 9, 589-594.	7.1	56
72	Sec1/Munc18 Protein Stabilizes Fusion-Competent Syntaxin for Membrane Fusion in Arabidopsis Cytokinesis. Developmental Cell, 2012, 22, 989-1000.	7.0	55

#	Article	IF	CITATIONS
73	Genetic dissection of cytokinesis. Plant Molecular Biology, 2000, 43, 719-733.	3.9	51
74	Arabidopsis SNARE protein SEC22 is essential for gametophyte development and maintenance of Golgiâ€stack integrity. Plant Journal, 2011, 66, 268-279.	5.7	48
75	Specificity of plant membrane trafficking – ARFs, regulators and coat proteins. Seminars in Cell and Developmental Biology, 2018, 80, 85-93.	5.0	47
76	Twin Plants from Supernumerary Egg Cells in Arabidopsis. Current Biology, 2015, 25, 225-230.	3.9	45
77	Microtubule-Associated Kinase-like Protein RUNKEL Needed for Cell Plate Expansion in Arabidopsis Cytokinesis. Current Biology, 2009, 19, 518-523.	3.9	44
78	A putative TRAPPII tethering factor is required for cell plate assembly during cytokinesis in <i>Arabidopsis</i> . New Phytologist, 2010, 187, 751-763.	7.3	44
79	Evolutionarily diverse <scp>SYP</scp> 1 Qaâ€ <scp>SNARE</scp> s jointly sustain pollen tube growth in Arabidopsis. Plant Journal, 2017, 92, 375-385.	5.7	43
80	Cytokinesis: lines of division taking shape. Current Opinion in Plant Biology, 2004, 7, 599-604.	7.1	42
81	Membrane Association of the <i>Arabidopsis</i> ARF Exchange Factor GNOM Involves Interaction of Conserved Domains. Plant Cell, 2008, 20, 142-151.	6.6	41
82	Plant cytokinesis: a tale of membrane traffic and fusion. Biochemical Society Transactions, 2015, 43, 73-78.	3.4	38
83	Transcriptional repression of BODENLOS by HD-ZIP transcription factor HB5 in Arabidopsis thaliana. Journal of Experimental Botany, 2013, 64, 3009-3019.	4.8	35
84	Concerted Action of Evolutionarily Ancient and Novel SNARE Complexes in Flowering-Plant Cytokinesis. Developmental Cell, 2018, 44, 500-511.e4.	7.0	35
85	Membrane Traffic and Fusion at Post-Golgi Compartments. Frontiers in Plant Science, 2011, 2, 111.	3.6	34
86	Comparative Embryogenesis in Angiosperms: Activation and Patterning of Embryonic Cell Lineages. Annual Review of Plant Biology, 2021, 72, 641-676.	18.7	33
87	ER assembly of SNARE complexes mediating formation of partitioning membrane in Arabidopsis cytokinesis. ELife, 2017, 6, .	6.0	33
88	The High Road and the Low Road: Trafficking Choices in Plants. Cell, 2007, 130, 977-979.	28.9	30
89	Early plant embryogenesis — dark ages or dark matter?. Current Opinion in Plant Biology, 2017, 35, 30-36.	7.1	30
90	Growing up green: cellular basis of plant development. Mechanisms of Development, 2003, 120, 1395-1406.	1.7	29

#	Article	IF	CITATIONS
91	High lipid order of Arabidopsis cellâ€plate membranes mediated by sterol and DYNAMINâ€RELATED PROTEIN1A function. Plant Journal, 2014, 80, 745-757.	5.7	28
92	VPS9a Activates the Rab5 GTPase ARA7 to Confer Distinct Pre- and Postinvasive Plant Innate Immunity. Plant Cell, 2017, 29, 1927-1937.	6.6	28
93	A single class of ARF GTPase activated by several pathway-specific ARF-GEFs regulates essential membrane traffic in Arabidopsis. PLoS Genetics, 2018, 14, e1007795.	3.5	28
94	<i>Arabidopsis</i> WD REPEAT DOMAIN55 Interacts with DNA DAMAGED BINDING PROTEIN1 and Is Required for Apical Patterning in the Embryo. Plant Cell, 2012, 24, 1013-1033.	6.6	27
95	Specification and regulation of vascular tissue identity in the <i>Arabidopsis</i> embryo. Development (Cambridge), 2020, 147, .	2.5	24
96	Functional diversification of <i>Arabidopsis</i> SEC1-related SM proteins in cytokinetic and secretory membrane fusion. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6309-6314.	7.1	23
97	Functional anatomy of the Arabidopsis cytokinesisâ€specific syntaxin KNOLLE. Plant Journal, 2011, 68, 755-764.	5.7	22
98	Auxin responsiveness of the <scp>MONOPTEROS</scp> â€ <scp>BODENLOS</scp> module in primary root initiation critically depends on the nuclear import kinetics of the Aux/ <scp>IAA</scp> inhibitor <scp>BODENLOS</scp> . Plant Journal, 2016, 85, 269-277.	5.7	22
99	Coordinated Activation of ARF1 GTPases by ARF-GEF GNOM Dimers Is Essential for Vesicle Trafficking in Arabidopsis. Plant Cell, 2020, 32, 2491-2507.	6.6	17
100	Profiling of embryonic nuclear vs. cellular RNA in Arabidopsis thaliana. Genomics Data, 2015, 4, 96-98.	1.3	15
101	Cell–cell communication in Arabidopsis early embryogenesis. European Journal of Cell Biology, 2010, 89, 225-230.	3.6	9
102	The integral spliceosomal component CWC15 is required for development in Arabidopsis. Scientific Reports, 2020, 10, 13336.	3.3	9
103	Auxin and Vesicle Traffic. Plant Physiology, 2018, 176, 1884-1888.	4.8	8
104	A rich and bountiful harvest: Key discoveries in plant cell biology. Plant Cell, 2022, 34, 53-71.	6.6	7
105	Rooting the meristem. Nature, 1995, 378, 16-16.	27.8	4
106	Transcriptomic Profiling of the Arabidopsis Embryonic Epidermis Using FANS in Combination with RNAseq. Methods in Molecular Biology, 2020, 2122, 151-164.	0.9	4
107	Plant membrane trafficking is coming of age. Seminars in Cell and Developmental Biology, 2018, 80, 83-84.	5.0	2
108	Mechanisms of Cell Behaviour in Eukaryotes. European Journal of Cell Biology, 2010, 89, 125.	3.6	0