Michael A Silverman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/941504/publications.pdf

Version: 2024-02-01

36 papers 2,756 citations

218677 26 h-index 36 g-index

38 all docs 38 docs citations

38 times ranked 4923 citing authors

#	Article	IF	CITATIONS
1	Intranasal Paclitaxel Alters Alzheimer's Disease Phenotypic Features in 3xTg-AD Mice. Journal of Alzheimer's Disease, 2021, 83, 379-394.	2.6	9
2	GSK3β Impairs KIF1A Transport in a Cellular Model of Alzheimer's Disease but Does Not Regulate Motor Motility at S402. ENeuro, 2020, 7, ENEURO.0176-20.2020.	1.9	9
3	Going Too Far Is the Same as Falling Shortâ€: Kinesin-3 Family Members in Hereditary Spastic Paraplegia. Frontiers in Cellular Neuroscience, 2019, 13, 419.	3.7	52
4	A catalytic antioxidant for limiting amyloid-beta peptide aggregation and reactive oxygen species generation. Chemical Science, 2019, 10, 1634-1643.	7.4	44
5	Pharmacological Inhibition of O-GlcNAcase Enhances Autophagy in Brain through an mTOR-Independent Pathway. ACS Chemical Neuroscience, 2018, 9, 1366-1379.	3.5	47
6	In vivo induction of membrane damage by \hat{l}^2 -amyloid peptide oligomers. Acta Neuropathologica Communications, 2018, 6, 131.	5.2	31
7	Stochastic Subcellular Organization of Dense-Core Vesicles Revealed by Point Pattern Analysis. Biophysical Journal, 2016, 111, 852-863.	0.5	4
8	Imaging organelle transport in primary hippocampal neurons treated with amyloid- \hat{l}^2 oligomers. Methods in Cell Biology, 2016, 131, 425-451.	1.1	7
9	Mycalolide B dissociates dynactin and abolishes retrograde axonal transport of dense-core vesicles. Molecular Biology of the Cell, 2015, 26, 2664-2672.	2.1	16
10	Modulation of insulin signaling rescues BDNF transport defects independent of tau in amyloid- \hat{l}^2 oligomer-treated hippocampal neurons. Neurobiology of Aging, 2015, 36, 1378-1382.	3.1	26
11	<i>Atlas stumbled</i> : Kinesin light chainâ€1 variant E triggers a vicious cycle of axonal transport disruption and amyloidâ€1² generation in Alzheimer's disease. BioEssays, 2015, 37, 131-141.	2.5	14
12	Dendritic and axonal mechanisms of Ca ²⁺ elevation impair BDNF transport in \hat{Al}^2 oligomer $\hat{a}\in \hat{a}$ treated hippocampal neurons. Molecular Biology of the Cell, 2015, 26, 1058-1071.	2.1	32
13	Intracellular amyloid \hat{l}^2 oligomers impair organelle transport and induce dendritic spine loss in primary neurons. Acta Neuropathologica Communications, 2015, 3, 51.	5.2	52
14	Transcriptome analysis of distinct mouse strains reveals kinesin light chain-1 splicing as an amyloid- \hat{l}^2 accumulation modifier. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2638-2643.	7.1	31
15	Pharmacological inhibition of O-GlcNAcase (OGA) prevents cognitive decline and amyloid plaque formation in bigenic tau/APP mutant mice. Molecular Neurodegeneration, 2014, 9, 42.	10.8	114
16	A truncating mutation of Alms1 reduces the number of hypothalamic neuronal cilia in obese mice. Developmental Neurobiology, 2013, 73, 1-13.	3.0	60
17	Activity-dependent secretion of progranulin from synapses. Journal of Cell Science, 2013, 126, 5412-21.	2.0	41
18	Amyloid- \hat{l}^2 oligomers induce tau-independent disruption of BDNF axonal transport via calcineurin activation in cultured hippocampal neurons. Molecular Biology of the Cell, 2013, 24, 2494-2505.	2.1	57

#	Article	IF	CITATIONS
19	An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer's disease–associated Al² oligomers. Journal of Clinical Investigation, 2012, 122, 1339-1353.	8.2	697
20	KIF1A is the primary anterograde motor protein required for the axonal transport of dense-core vesicles in cultured hippocampal neurons. Neuroscience Letters, 2011, 491, 168-173.	2.1	121
21	A glycine zipper motif mediates the formation of toxic \hat{l}^2 -amyloid oligomers in vitro and in vivo. Molecular Neurodegeneration, 2011, 6, 61.	10.8	37
22	Expression of kinesin superfamily genes in cultured hippocampal neurons. Cytoskeleton, 2010, 67, 784-795.	2.0	34
23	Amyloid-Â Peptide Oligomers Disrupt Axonal Transport through an NMDA Receptor-Dependent Mechanism That Is Mediated by Glycogen Synthase Kinase 3Â in Primary Cultured Hippocampal Neurons. Journal of Neuroscience, 2010, 30, 9166-9171.	3.6	187
24	Live Imaging of Dense-core Vesicles in Primary Cultured Hippocampal Neurons. Journal of Visualized Experiments, 2009, , .	0.3	6
25	Intraflagellar transport and the generation of dynamic, structurally and functionally diverse cilia. Trends in Cell Biology, 2009, 19, 306-316.	7.9	146
26	Dynactin regulates bidirectional transport of dense-core vesicles in the axon and dendrites of cultured hippocampal neurons. Neuroscience, 2009, 162, 1001-1010.	2.3	81
27	The \hat{I}^2 amyloid peptide can act as a modular aggregation domain. Neurobiology of Disease, 2008, 32, 420-425.	4.4	8
28	Activity-dependent release of tissue plasminogen activator from the dendritic spines of hippocampal neurons revealed by live-cell imaging. Journal of Neurobiology, 2006, 66, 564-577.	3.6	102
29	Conversion of Green Fluorescent Protein into a Toxic, Aggregation-prone Protein by C-terminal Addition of a Short Peptide. Journal of Biological Chemistry, 2006, 281, 1808-1816.	3.4	72
30	A cytoplasmic motif targets neuroligin-1 exclusively to dendrites of cultured hippocampal neurons. European Journal of Neuroscience, 2005, 22, 2381-2386.	2.6	37
31	Mechanisms of Transport and Exocytosis of Dense-Core Granules Containing Tissue Plasminogen Activator in Developing Hippocampal Neurons. Journal of Neuroscience, 2005, 25, 3095-3106.	3.6	48
32	Regulation of Peptidergic Vesicle Mobility by Secretagogues. Traffic, 2002, 3, 801-809.	2.7	7
33	Sorting and directed transport of membrane proteins during development of hippocampal neurons in culture. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 7051-7057.	7.1	79
34	The Role of Selective Transport in Neuronal Protein Sorting. Neuron, 2000, 26, 465-472.	8.1	241
35	CPG16, a Novel Protein Serine/Threonine Kinase Downstream of cAMP-dependent Protein Kinase. Journal of Biological Chemistry, 1999, 274, 2631-2636.	3.4	60
36	Hippocampal plasticity involves extensive gene induction and multiple cellular mechanisms. Journal of Molecular Neuroscience, 1998, 10, 75-98.	2.3	147