Baoyang Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9413867/publications.pdf

Version: 2024-02-01

101543 76900 6,022 109 36 74 citations h-index g-index papers 111 111 111 5704 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Robust PEDOT:PSS-based hydrogel for highly efficient interfacial solar water purification. Chemical Engineering Journal, 2022, 442, 136284.	12.7	66
2	3D Printing of Stretchable, Adhesive and Conductive Ti3C2Tx-Polyacrylic Acid Hydrogels. Polymers, 2022, 14, 1992.	4.5	11
3	Highâ€Stretchability, Ultralowâ€Hysteresis ConductingPolymer Hydrogel Strain Sensors for Soft Machines. Advanced Materials, 2022, 34, .	21.0	209
4	Stretchable Antiâ€Fogging Tapes for Diverse Transparent Materials. Advanced Functional Materials, 2021, 31, 2103551.	14.9	25
5	Stable low-bandgap isoindigo-bisEDOT copolymer with superior electrochromic performance in NIR window. Electrochimica Acta, 2021, 399, 139418.	5.2	17
6	Structural Design and Applications of Stereoregular Fused Thiophenes and Their Oligomers and Polymers. Polymer Reviews, 2020, 60, 318-358.	10.9	27
7	Nanostructured conducting polymers and their composites: synthesis methodologies, morphologies and applications. Journal of Materials Chemistry C, 2020, 8, 10136-10159.	5.5	53
8	Design of twisted conjugated molecular systems towards stable multi-colored electrochromic polymers. Dyes and Pigments, 2020, 183, 108648.	3.7	16
9	Pyrazine-EDOT D-A-D type Hybrid Polymer for Patterned Flexible Electrochromic Devices. Electrochimica Acta, 2020, 357, 136859.	5.2	20
10	Stepwise enhancement on optoelectronic performances of polyselenophene via electropolymerization of mono-, bi-, and tri-selenophene. Electrochimica Acta, 2020, 340, 135974.	5.2	11
11	Strong adhesion of wet conducting polymers on diverse substrates. Science Advances, 2020, 6, eaay5394.	10.3	141
12	3D printing of conducting polymers. Nature Communications, 2020, 11, 1604.	12.8	568
13	Tuning optoelectronic performances for 3-methylselenophene-EDOT hybrid polymer. Materials Chemistry and Physics, 2020, 244, 122699.	4.0	10
14	PEDOT-Based Conducting Polymer Actuators. Frontiers in Robotics and Al, 2019, 6, 114.	3.2	89
15	Hydrogel bioelectronics. Chemical Society Reviews, 2019, 48, 1642-1667.	38.1	1,267
16	A universal respiration sensing platform utilizing surface water condensation. Journal of Materials Chemistry C, 2019, 7, 2853-2864.	5.5	10
17	Pure PEDOT:PSS hydrogels. Nature Communications, 2019, 10, 1043.	12.8	528
18	Highly fluorescent triazolopyridine–thiophene D–A–D oligomers for efficient pH sensing both in solution and in the solid state. Physical Chemistry Chemical Physics, 2019, 21, 7174-7182.	2.8	26

#	Article	lF	Citations
19	Synthesis and electrochromic performances of donor-acceptor-type polymers from chalcogenodiazolo [3,4-c]pyridine and alkyl ProDOTs. Electrochimica Acta, 2018, 266, 263-275.	5.2	42
20	Isoindigo as an electronâ^'deficient unit for highâ^'performance polymeric electrochromics. Electrochimica Acta, 2018, 260, 772-782.	5.2	62
21	A reusable fluorescent sensor from electrosynthesized water-soluble oligo(1-pyrenesulfonic acid) for effective detection of Fe ³⁺ . New Journal of Chemistry, 2018, 42, 19450-19457.	2.8	10
22	Free-standing oligo(oxyethylene)-functionalized polythiophene with the 3,4-ethylenedioxythiophene building block: electrosynthesis, electrochromic and thermoelectric properties. Electrochimica Acta, 2017, 228, 361-370.	5.2	23
23	Thermoelectric Properties of Poly(selenophene-co-3, 4-ethylenedioxythiophene) via Electropolymerization. Journal of Electronic Materials, 2017, 46, 3124-3130.	2.2	9
24	Hybrid π-conjugated polymers from dibenzo pentacyclic centers: precursor design, electrosynthesis and electrochromics. Science China Chemistry, 2017, 60, 38-53.	8.2	54
25	High fluorescent ethyl acrylate modified PEDOTâ€MeNH ₂ with enhanced electrochromic performance. Journal of Polymer Science Part A, 2016, 54, 2081-2091.	2.3	4
26	Furan and pyridinechalcogenodiazole-based ï€-conjugated systems via a donor-acceptor approach. Journal of Solid State Electrochemistry, 2016, 20, 2337-2349.	2.5	12
27	Blue to light gray electrochromic polymers from dodecylâ€derivatized thiophene <i>Bisâ€</i> substituted dibenzothiophene/dibenzofuran. Journal of Polymer Science Part A, 2016, 54, 1468-1478.	2.3	17
28	[1,2,5]Chalcogenodiazolo[3,4-c]pyridine and selenophene based donor–acceptor–donor electrochromic polymers electrosynthesized from high fluorescent precursors. New Journal of Chemistry, 2016, 40, 8316-8323.	2.8	18
29	Facile one-pot preparation of Pd–Au/PEDOT/graphene nanocomposites and their high electrochemical sensing performance for caffeic acid detection. RSC Advances, 2016, 6, 89157-89166.	3.6	35
30	Fluorescent and electrochromic poly(5-(benzo[d][1,3]dioxol-5-yl)-2,3-dihydrothieno[3,4-b][1,4]dioxin). Synthetic Metals, 2016, 220, 202-207.	3.9	5
31	Solvent effects on the synthesis, characterization and electrochromic properties of acetic acid modified polyterthiophene. Electrochimica Acta, 2016, 220, 122-129.	5. 2	7
32	Capacitive performance of electrodeposited PEDOS and a comparative study with PEDOT. Electrochimica Acta, 2016, 220, 340-346.	5.2	25
33	Electrochemical Treatment for Effectively Tuning Thermoelectric Properties of Freeâ€Standing Poly(3â€methylthiophene) Films. ChemPhysChem, 2016, 17, 2256-2262.	2.1	25
34	Electrosynthesis and electrochemical capacitive behavior of a new nitrogen PEDOT analogue-based polymer electrode. New Journal of Chemistry, 2016, 40, 2304-2314.	2.8	16
35	Dibenzothiophene-thiophene hybrid electrochromic polymer: effect of media on electrosynthesis and optical properties. Journal of Solid State Electrochemistry, 2016, 20, 1369-1376.	2.5	4
36	Novel highly selective fluorescent sensor based on electrosynthesized poly(9-fluorenecarboxylic) Tj ETQq0 0 0 rg Actuators B: Chemical, 2016, 230, 123-129.	gBT /Overlo 7.8	ock 10 Tf 50 6 30

Actuators B: Chemical, 2016, 230, 123-129.

#	Article	IF	Citations
37	Solvent effects on electrosynthesis, morphological and electrochromic properties of a nitrogen analog of PEDOT. Physical Chemistry Chemical Physics, 2016, 18, 5129-5138.	2.8	28
38	Novel chiral PEDOTs for selective recognition of 3,4-dihydroxyphenylalanine enantiomers: Synthesis and characterization. Journal of Polymer Science Part A, 2015, 53, 2238-2251.	2.3	19
39	Poly(thieno[3,4- <i>b</i>]-1,4-oxathiane) and poly(3,4-ethylenedioxythiophene- <i>co</i> -thieno[3,4- <i>b</i>]-1,4-oxathiane)/poly(styrene sulfonic) Tj ETQq1 Part A. 2015, 53, 2285-2297.	1 0,78431 2.3	4 rgBT /Over
40	Three novel electrochemical electrodes for the fabrication of conducting polymer/SWCNTs layered nanostructures and their thermoelectric performance. Nanotechnology, 2015, 26, 245401.	2.6	16
41	Low-potential electrosynthesis of a novel nitrogen analog of PEDOT in an ionic liquid and its optoelectronic properties. Electrochimica Acta, 2015, 160, 160-168.	5.2	30
42	PEDOT:PSS film: a novel flexible organic electrode for facile electrodeposition of dendritic tellurium nanostructures. Journal of Materials Science, 2015, 50, 4813-4821.	3.7	11
43	Thiadiazolo[3,4- <i>c</i>)pyridine as an Acceptor toward Fast-Switching Green Donor–Acceptor-Type Electrochromic Polymer with Low Bandgap. ACS Applied Materials & Diterfaces, 2015, 7, 11089-11098.	8.0	135
44	Molecular design of DBT/DBF hybrid thiophenes π-conjugated systems and comparative study of their electropolymerization and optoelectronic properties: from comonomers to electrochromic polymers. Polymer Chemistry, 2015, 6, 4575-4587.	3.9	48
45	Chalcogenodiazolo[3,4-c]pyridine based donor–acceptor–donor polymers for green and near-infrared electrochromics. Polymer Chemistry, 2015, 6, 8248-8258.	3.9	68
46	Effect of electrolytes on the electropolymerization and optoelectronic properties of poly(3-methylselenophene). RSC Advances, 2015, 5, 70649-70660.	3.6	13
47	Electrosynthesis of electroactive and fluorescent polyphenanthrenes via electropolymerization in BmimPF6. Synthetic Metals, 2015, 209, 447-454.	3.9	3
48	Synthesis and electro-optical properties of new conjugated hybrid polymers from EDOT end-capped dibenzothiophene and dibenzofuran. New Journal of Chemistry, 2015, 39, 2096-2105.	2.8	24
49	One-step template-free electrodeposition of novel poly(indole-7-carboxylic acid) nanowires and their high capacitance properties. RSC Advances, 2015, 5, 3215-3223.	3.6	30
50	Thermoelectric Performance of Donor–Acceptor–Donor Conjugated Polymers Based on Benzothiadiazole Derivatives. Journal of Electronic Materials, 2015, 44, 1606-1613.	2.2	13
51	Paper: An effective substrate for the enhancement of thermoelectric properties in PEDOT:PSS. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 737-742.	2.1	54
52	Poly(thieno[3,4- <i>b</i>]-1,4-oxathiane): Medium Effect on Electropolymerization and Electrochromic Performance. Langmuir, 2014, 30, 15581-15589.	3.5	49
53	Electrochemical synthesis and capacitance properties of a novel poly(3,4-ethylenedioxythiophene) Tj ${\sf ETQq1\ 1\ 0}$.	784314 rg 5.2	gBT ₃₆ Overloc
54	A novel solution-processable amino-group-substituted oligopyrene: Synthesis, electropolymerization, properties, and application in fluorescent chemosensor. Synthetic Metals, 2014, 198, 155-160.	3.9	16

#	Article	IF	CITATIONS
55	Electrochromic enhancement of poly(3,4â€ethylenedioxythiophene) films functionalized with hydroxymethyl and ethylene oxide. Journal of Polymer Science Part A, 2014, 52, 1989-1999.	2.3	29
56	Novel functionalized conjugated polypyrene with polyacrylate: synthesis, electrochemistry, luminescence, and chemical sensing properties. RSC Advances, 2014, 4, 28368.	3.6	14
57	Synthesis of novel chiral <scp>l</scp> -leucine grafted PEDOT derivatives with excellent electrochromic performances. RSC Advances, 2014, 4, 35597-35608.	3.6	36
58	Tuning the optoelectronic properties of polyfuran by design of furan-EDOT monomers and free-standing films with enhanced redox stability and electrochromic performances. Electrochimica Acta, 2014, 146, 666-678.	5.2	49
59	Highly stable hybrid selenophene-3,4-ethylenedioxythiophene as electrically conducting and electrochromic polymers. Polymer Chemistry, 2014, 5, 4896-4908.	3.9	92
60	Alkyl chain engineering in the hybrid bithiophene-3,4-ethylenedioxythiophene: Synthesis, electronic properties, and electropolymerization. Synthetic Metals, 2014, 198, 19-30.	3.9	18
61	Electrochemical fabrication of a porous network MnO2/poly(5-cyanoindole) composite and its capacitance performance. Electrochimica Acta, 2014, 138, 270-277.	5.2	42
62	Poly(mono-, bi- or trifuran): effect of oligomer chain length on the electropolymerization performances and polymer properties. RSC Advances, 2014, 4, 14001-14012.	3.6	32
63	Efficient Fluorescent Recognition of Carboxylates in Aqueous Media Using Facilely Electrosynthesized Poly(9-Aminofluorene). Journal of Fluorescence, 2013, 23, 1053-1063.	2.5	15
64	Improved thermoelectric performance of PEDOT:PSS films prepared by polar-solvent vapor annealing method. Journal of Materials Science: Materials in Electronics, 2013, 24, 4240-4246.	2.2	48
65	Improved Thermoelectric Performance of Free-Standing PEDOT:PSS/Bi2Te3 Films with Low Thermal Conductivity. Journal of Electronic Materials, 2013, 42, 1268-1274.	2.2	92
66	Thermoelectric Performances of Different Types of Polyselenophene and its Copolymers with 3-Methylthiophene via Electropolymerization. Synthetic Metals, 2013, 183, 8-15.	3.9	25
67	A cost-effective and practical polybenzanthrone-based fluorescent sensor for efficient determination of palladium (II) ion and its application in agricultural crops and environment. Analytica Chimica Acta, 2013, 805, 87-94.	5.4	27
68	Preparation and characterization of aqueous dispersions of poly(3,4â€ethylenedioxythiophene)/ poly(styrene sulfonate) and their conducting films. Journal of Applied Polymer Science, 2013, 129, 1717-1725.	2.6	12
69	Electrosynthesis of poly(3,4-ethylenedithiathiophene) in an ionic liquid and its electrochemistry and electrochromic properties. Electrochimica Acta, 2013, 106, 201-208.	5.2	41
70	Low-potential electrosynthesis of novel electroactive poly(9-fluorenemethanol) and its electrochromic and blue-light-emitting properties. Electrochimica Acta, 2013, 90, 452-460.	5.2	6
71	Low-potential electrosynthesis of conducting and electroactive oligocatecholborane with blue light-emitting properties. Chinese Journal of Polymer Science (English Edition), 2013, 31, 159-170.	3.8	1
72	Facile Fabrication of PEDOT:PSS/Polythiophenes Bilayered Nanofilms on Pure Organic Electrodes and Their Thermoelectric Performance. ACS Applied Materials & Samp; Interfaces, 2013, 5, 12811-12819.	8.0	87

#	Article	IF	CITATIONS
73	Synthesis and electrochromic properties of polyacrylate functionalized poly(3,4-ethylenedioxythiophene) network films. Journal of Materials Chemistry, 2012, 22, 18345.	6.7	57
74	Facile fabrication of a cost-effective, water-soluble, and electrosynthesized poly(9-aminofluorene) fluorescent sensor for the selective and sensitive detection of Fe(III) and inorganic phosphates. Sensors and Actuators B: Chemical, 2012, 171-172, 786-794.	7.8	59
75	Systematic study on chemical oxidative and solidâ€state polymerization of poly(3,4â€ethylenedithiathiophene). Journal of Polymer Science Part A, 2012, 50, 1967-1978.	2.3	40
76	Novel redoxâ€active polycarbazoleâ€functionalized polycatechol network films produced by controlled electropolymerization. Journal of Applied Polymer Science, 2012, 126, 1613-1622.	2.6	6
77	Soluble and Greenâ€lightâ€emitting Oligo(9â€fluorenylideneacetic acid): Electrosynthesis and Characterization. Chinese Journal of Chemistry, 2012, 30, 1177-1184.	4.9	3
78	Simultaneous Increases in Electrical Conductivity and Seebeck Coefficient of PEDOT:PSS Films by Adding Ionic Liquids into a Polymer Solution. Journal of Electronic Materials, 2012, 41, 639-645.	2.2	74
79	Electrosynthesis of blue-light-emitting oligo(1-bromopyrene) with favorable solubility. Journal of Solid State Electrochemistry, 2012, 16, 1907-1915.	2.5	1
80	Novel cross-linking poly(ethylene oxide) grafted poly(1-hydroxy-2-methoxyphenol) copolymers by secondary polymerization. Electrochimica Acta, 2012, 77, 163-170.	5.2	4
81	Novel polyâ€bridgedâ€naphthalene with blueâ€lightâ€emitting property via electropolymerization. Journal of Applied Polymer Science, 2012, 123, 2706-2714.	2.6	7
82	Electrosynthesis and characterization of a polyfluorene derivative with green-light-emitting property. Journal of Materials Science, 2012, 47, 315-322.	3.7	10
83	Synthesis, characterization, and thermoelectric properties of a conducting copolymer of 1,12-bis(carbazolyl)dodecane and thieno[3,2-b]thiophene. Journal of Solid State Electrochemistry, 2012, 16, 117-126.	2.5	30
84	Electrochemistry, morphology, thermoelectric and thermal degradation behaviors of free-standing copolymer films made from $1,12$ -bis(carbazolyl)dodecane and $3,4$ -ethylenedioxythiophene. Polymer Journal, $2011, 43, 531$ - 539 .	2.7	30
85	Conducting polynaphthalenes from $1,1\hat{a}\in^2$ -binaphthyl and $1,1\hat{a}\in^2$ -bi-2-naphthol via electropolymerization. Synthetic Metals, 2011, 161, 188-195.	3.9	27
86	Facile electrosynthesis and thermoelectric performance of electroactive free-standing polythieno[3,2-b]thiophene films. Journal of Solid State Electrochemistry, 2011, 15, 539-548.	2.5	28
87	Free-Standing PEDOT-PSS/Ca3Co4O9 Composite Films as Novel Thermoelectric Materials. Journal of Electronic Materials, 2011, 40, 948-952.	2.2	64
88	Thermoelectric Performance of Poly(3,4-Ethylenedioxy-thiophene)/Poly(Styrenesulfonate) Pellets and Films. Journal of Electronic Materials, 2011, 40, 648-651.	2,2	47
89	Electrochemical immobilization of ascorbate oxidase in poly(3,4â€ethylenedioxythiophene)/multiwalled carbon nanotubes composite films. Journal of Applied Polymer Science, 2011, 122, 1142-1151.	2.6	21
90	Effect of oxidants on chemical synthesis and properties of poly(3,4-ethylenedithiathiophene)., 2011,,.		0

#	Article	IF	CITATIONS
91	ELECTROCHEMICAL POLYMERIZATION OF FLUORENE IN MIXED PROTON ELECTROLYTE OF ACETIC ACID CONTAINING BORON TRIFLUORIDE DIETHYL ETHERATE. Acta Polymerica Sinica, 2011, 011, 327-334.	0.0	5
92	Electrochemical copolymerization of 9,10-dihydrophenanthrene and 3-methylthiophene and characterization of their copolymer with tunable fluorescence properties. Journal of Solid State Electrochemistry, 2010, 14, 1153-1161.	2.5	6
93	Synthesis and electrochemical polymerization of 9,9-bis(carbazolylalkyl)fluorene and characterization of its conducting polymer film with high tensile strength. Journal of Materials Science, 2010, 45, 1963-1971.	3.7	4
94	Electrochemical copolymerization of dibenzo-18-crown-6 and carbazole and characterization of their copolymer. Journal of Materials Science, 2010, 45, 5769-5777.	3.7	5
95	Electrodeposition of freeâ€standing poly(<i>o< i>a€dihydroxybenzeneâ€<i>co< i>a€3â€methylthiophene) films with tunable fluorescence properties. Journal of Applied Polymer Science, 2010, 115, 3273-3281.</i></i>	2.6	4
96	Electropolymerization study of benzothiophenes and characterization of novel poly(dibenzothiophene-S,S-dioxide). Journal of Electroanalytical Chemistry, 2010, 643, 67-76.	3.8	35
97	Facile electrosynthesis of novel free-standing electroactive poly((S)-(â^')-1,1′-bi-2-naphthol dimethyl) Tj ETQq1	1 0.78431 5.2	.4 rgBT /0ve
98	Thermoelectric Performances of Free-Standing Polythiophene and Poly(3-Methylthiophene) Nanofilms. Chinese Physics Letters, 2010, 27, 057201.	3.3	61
99	Novel Electroactive Proton-Doped Conducting Poly(aromatic ethers) with Good Fluorescence Properties via Electropolymerization. Macromolecules, 2010, 43, 4599-4608.	4.8	75
100	Highly conducting free-standing poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) films with improved thermoelectric performances. Synthetic Metals, 2010, 160, 2481-2485.	3.9	107
101	ELECTROCHEMICAL OXIDATION CROSS-LINKING REACTION OF POLY(FLUORENYLACRYLATE) AND ITS CHARACTERIZATION. Acta Polymerica Sinica, 2010, 010, 714-720.	0.0	3
102	Electrochemical copolymerization of benzanthrone and 3-methylthiophene and characterization of their fluorescent copolymer. Journal of Materials Science, 2009, 44, 5909-5918.	3.7	26
103	Electrosynthesis of highly conducting poly(1,5-dihydroxynaphthalene) in BF3Â-Et2O. European Polymer Journal, 2009, 45, 2279-2287.	5.4	39
104	Electrochemical polymerization of 3,4-ethylenedioxythiophene in aqueous micellar solution containing biocompatible amino acid-based surfactant. Journal of Electroanalytical Chemistry, 2009, 634, 49-58.	3.8	55
105	Electrosyntheses and characterization of poly(9-bromophenanthrene) in boron trifluoride diethyl etherate. European Polymer Journal, 2009, 45, 418-425.	5.4	12
106	Electrochemical Polymerization of Benzanthrone and Characterization of its Excellent Green-light-emitting Polymer. Journal of Physical Chemistry B, 2009, 113, 37-48.	2.6	45
107	Polyfluorene Derivatives with Hydroxyl and Carboxyl Substitution: Electrosynthesis and Characterization. Journal of Physical Chemistry C, 2009, 113, 9900-9910.	3.1	25
108	Facile electrosynthesis of nitro-group-substituted oligopyrene with bicolored emission. Electrochimica Acta, 2008, 54, 334-340.	5.2	54

#	Article	IF	CITATIONS
109	Thermoelectric Performance of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate). Chinese Physics Letters, 2008, 25, 2202-2205.	3.3	168