
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9412861/publications.pdf Version: 2024-02-01



REDNADD DILLON

| #  | Article                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Functional variability in adhesion and flocculation of yeast megasatellite genes. Genetics, 2022, 221, .                                                                         | 2.9  | 2         |
| 2  | The Formation of Neochromosomes during Experimental Evolution in the Yeast Saccharomyces cerevisiae. Genes, 2021, 12, 1678.                                                      | 2.4  | 0         |
| 3  | Hijacking, arms race, GMOs and pesticides. Comptes Rendus - Biologies, 2021, 344, 203-207.                                                                                       | 0.2  | 0         |
| 4  | Mitochondrial genetics revisited. Yeast, 2020, 37, 191-205.                                                                                                                      | 1.7  | 29        |
| 5  | The unlimited editing of nucleic acids in the oceans. Comptes Rendus - Biologies, 2020, 343, 215-217.                                                                            | 0.2  | 0         |
| 6  | To identify the panoply of somatic mutations in each cell. Comptes Rendus - Biologies, 2020, 343, 211-213.                                                                       | 0.2  | 0         |
| 7  | On the origin of the genetic code: a 27-codon hypothetical precursor of an intricate 64-codon intermediate shaped the modern code. Comptes Rendus - Biologies, 2020, 343, 15-52. | 0.2  | 2         |
| 8  | My route to the intimacy of genomes. FEMS Yeast Research, 2019, 19, .                                                                                                            | 2.3  | 1         |
| 9  | Massive Amplification at an Unselected Locus Accompanies Complex Chromosomal Rearrangements in<br>Yeast. G3: Genes, Genomes, Genetics, 2016, 6, 1201-1215.                       | 1.8  | 6         |
| 10 | Foreword. Comptes Rendus - Biologies, 2016, 339, 223-224.                                                                                                                        | 0.2  | 1         |
| 11 | Replication stalling and heteroduplex formation within CAG/CTG trinucleotide repeats by mismatch repair. DNA Repair, 2016, 42, 94-106.                                           | 2.8  | 34        |
| 12 | Genome-wide replication landscape of Candida glabrata. BMC Biology, 2015, 13, 69.                                                                                                | 3.8  | 16        |
| 13 | Basic principles of yeast genomics, a personal recollection: Graphical Abstract Figure FEMS Yeast<br>Research, 2015, 15, fov047.                                                 | 2.3  | 9         |
| 14 | Macrotene chromosomes provide insights to a new mechanism of high-order gene amplification in eukaryotes. Nature Communications, 2015, 6, 6154.                                  | 12.8 | 13        |
| 15 | Purification of G <sub>1</sub> daughter cells from different <i>Saccharomycetes</i> species through<br>an optimized centrifugal elutriation procedure. Yeast, 2014, 31, 159-166. | 1.7  | 18        |
| 16 | The complete genome of Blastobotrys (Arxula) adeninivorans LS3 - a yeast of biotechnological<br>interest. Biotechnology for Biofuels, 2014, 7, 66.                               | 6.2  | 57        |
| 17 | Highly Specific Contractions of a Single CAG/CTG Trinucleotide Repeat by TALEN in Yeast. PLoS ONE, 2014, 9, e95611.                                                              | 2.5  | 53        |
| 18 | Comparative genomics of emerging pathogens in the Candida glabrata clade. BMC Genomics, 2013, 14, 623.                                                                           | 2.8  | 174       |

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Complete DNA Sequence of Kuraishia capsulata Illustrates Novel Genomic Features among Budding<br>Yeasts (Saccharomycotina). Genome Biology and Evolution, 2013, 5, 2524-2539.                                        | 2.5  | 39        |
| 20 | Detection and Characterization of Megasatellites in Orthologous and Nonorthologous Genes of 21<br>Fungal Genomes. Eukaryotic Cell, 2013, 12, 794-803.                                                                | 3.4  | 12        |
| 21 | <i>Pichia sorbitophila</i> , an Interspecies Yeast Hybrid, Reveals Early Steps of Genome Resolution<br>After Polyploidization. G3: Genes, Genomes, Genetics, 2012, 2, 299-311.                                       | 1.8  | 113       |
| 22 | Evolutionary Role of Interspecies Hybridization and Genetic Exchanges in Yeasts. Microbiology and<br>Molecular Biology Reviews, 2012, 76, 721-739.                                                                   | 6.6  | 183       |
| 23 | Yeasty clocks: Dating genomic changes in yeasts. Comptes Rendus - Biologies, 2011, 334, 620-628.                                                                                                                     | 0.2  | 25        |
| 24 | Foreword. Comptes Rendus - Biologies, 2011, 334, 578-579.                                                                                                                                                            | 0.2  | 0         |
| 25 | Genome-Wide Analysis of Heteroduplex DNA in Mismatch Repair–Deficient Yeast Cells Reveals Novel<br>Properties of Meiotic Recombination Pathways. PLoS Genetics, 2011, 7, e1002305.                                   | 3.5  | 128       |
| 26 | Megasatellites: a new class of large tandem repeats discovered in the pathogenic yeast Candida<br>glabrata. Cellular and Molecular Life Sciences, 2010, 67, 671-676.                                                 | 5.4  | 30        |
| 27 | Origin and fate of pseudogenes in Hemiascomycetes: a comparative analysis. BMC Genomics, 2010, 11, 260.                                                                                                              | 2.8  | 27        |
| 28 | Yeast evolutionary genomics. Nature Reviews Genetics, 2010, 11, 512-524.                                                                                                                                             | 16.3 | 337       |
| 29 | Dynamic evolution of megasatellites in yeasts. Nucleic Acids Research, 2010, 38, 4731-4739.                                                                                                                          | 14.5 | 18        |
| 30 | Chromosome arm length and nuclear constraints determine the dynamic relationship of yeast<br>subtelomeres. Proceedings of the National Academy of Sciences of the United States of America, 2010,<br>107, 2025-2030. | 7.1  | 135       |
| 31 | Population Polymorphism of Nuclear Mitochondrial DNA Insertions Reveals Widespread Diploidy<br>Associated with Loss of Heterozygosity in Debaryomyces hansenii. Eukaryotic Cell, 2010, 9, 449-459.                   | 3.4  | 26        |
| 32 | In Memoriam Piotr Slonimski (1922–2009) The Unconventional Yeast Geneticist. Genetics, 2009, 183, 1-2.                                                                                                               | 2.9  | 1         |
| 33 | Unusual composition of a yeast chromosome arm is associated with its delayed replication. Genome<br>Research, 2009, 19, 1710-1721.                                                                                   | 5.5  | 43        |
| 34 | Uneven Distribution of Mating Types among Genotypes of <i>Candida glabrata</i> Isolates from Clinical Samples. Eukaryotic Cell, 2009, 8, 287-295.                                                                    | 3.4  | 54        |
| 35 | Comparative genomics of protoploid <i>Saccharomycetaceae</i> . Genome Research, 2009, 19, 1696-1709.                                                                                                                 | 5.5  | 207       |
| 36 | SRS2 and SGS1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination.<br>Nature Structural and Molecular Biology, 2009, 16, 159-167.                                                  | 8.2  | 89        |

| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Complete mitochondrial genome sequences of  three <i>Nakaseomyces</i> species reveal invasion by palindromic GC clusters and considerable size expansion. FEMS Yeast Research, 2009, 9, 1283-1292.       | 2.3  | 34        |
| 38 | Genomic polymorphism in the population of Candida glabrata: Gene copy-number variation and chromosomal translocations. Fungal Genetics and Biology, 2009, 46, 264-276.                                   | 2.1  | 73        |
| 39 | Insertion of Horizontally Transferred Genes within Conserved Syntenic Regions of Yeast Genomes.<br>PLoS ONE, 2009, 4, e6515.                                                                             | 2.5  | 57        |
| 40 | Promiscuous DNA in the nuclear genomes of hemiascomycetous yeasts. FEMS Yeast Research, 2008, 8, 846-857.                                                                                                | 2.3  | 42        |
| 41 | The Asexual Yeast Candida glabrata Maintains Distinct a and α Haploid Mating Types. Eukaryotic Cell,<br>2008, 7, 848-858.                                                                                | 3.4  | 69        |
| 42 | Megasatellites: a peculiar class of giant minisatellites in genes involved in cell adhesion and pathogenicity in Candida glabrata. Nucleic Acids Research, 2008, 36, 5970-5982.                          | 14.5 | 40        |
| 43 | Segmental Duplications Arise from Pol32-Dependent Repair of Broken Forks through Two Alternative<br>Replication-Based Mechanisms. PLoS Genetics, 2008, 4, e1000175.                                      | 3.5  | 161       |
| 44 | Comparative Genomics and Molecular Dynamics of DNA Repeats in Eukaryotes. Microbiology and<br>Molecular Biology Reviews, 2008, 72, 686-727.                                                              | 6.6  | 450       |
| 45 | Structure ofKluyveromyces lactissubtelomeres: duplications and gene content. FEMS Yeast Research, 2006, 6, 428-441.                                                                                      | 2.3  | 56        |
| 46 | Yeasts illustrate the molecular mechanisms of eukaryotic genome evolution. Trends in Genetics, 2006, 22, 375-387.                                                                                        | 6.7  | 200       |
| 47 | Highly Variable Rates of Genome Rearrangements between Hemiascomycetous Yeast Lineages. PLoS<br>Genetics, 2006, 2, e32.                                                                                  | 3.5  | 94        |
| 48 | Molecular Evolution of Minisatellites in Hemiascomycetous Yeasts. Molecular Biology and Evolution, 2006, 23, 189-202.                                                                                    | 8.9  | 47        |
| 49 | Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair<br>in subtelomeric region. Journal of Cell Biology, 2006, 172, 189-199.                            | 5.2  | 201       |
| 50 | Correction: Telomere tethering at the nuclear periphery is essential for efficient DNA double strand<br>break repair in subtelomeric region. Journal of Cell Biology, 2006, 172, 951-951.                | 5.2  | 0         |
| 51 | Stability of Large Segmental Duplications in the Yeast Genome. Genetics, 2006, 172, 2211-2222.                                                                                                           | 2.9  | 50        |
| 52 | The RNA polymerase III-dependent family of genes in hemiascomycetes: comparative RNomics, decoding strategies, transcription and evolutionary implications. Nucleic Acids Research, 2006, 34, 1816-1835. | 14.5 | 86        |
| 53 | Cooperative evolution in protein complexes of yeast from comparative analyses of its interaction network. Proteomics, 2005, 5, 3116-3119.                                                                | 2.2  | 8         |
| 54 | Comparative Genomics in Hemiascomycete Yeasts: Evolution of Sex, Silencing, and Subtelomeres.<br>Molecular Biology and Evolution, 2005, 22, 856-873.                                                     | 8.9  | 135       |

| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Highly variable rates of genome rearrangements between Hemiascomycetous yeast lineages. PLoS<br>Genetics, 2005, preprint, e32.                                                                        | 3.5  | 0         |
| 56 | Comparative Genomics of Hemiascomycete Yeasts: Genes Involved in DNA Replication, Repair, and Recombination. Molecular Biology and Evolution, 2005, 22, 1011-1023.                                    | 8.9  | 79        |
| 57 | Hemiascomycetous yeasts at the forefront of comparative genomics. Current Opinion in Genetics and Development, 2005, 15, 614-620.                                                                     | 3.3  | 45        |
| 58 | Genetic network interactions among replication, repair and nuclear pore deficiencies in yeast. DNA<br>Repair, 2005, 4, 459-468.                                                                       | 2.8  | 111       |
| 59 | The complete mitochondrial genome of the yeastKluyveromyces thermotolerans. FEBS Letters, 2005, 579, 30-40.                                                                                           | 2.8  | 30        |
| 60 | Homing Endonucleases and the Yeast Mitochondrial ω Locus — A Historical Perspective. , 2005, , 11-31.                                                                                                 |      | 6         |
| 61 | Continued Colonization of the Human Genome by Mitochondrial DNA. PLoS Biology, 2004, 2, e273.                                                                                                         | 5.6  | 187       |
| 62 | Eucaryotic genome evolution through the spontaneous duplication of large chromosomal segments.<br>EMBO Journal, 2004, 23, 234-243.                                                                    | 7.8  | 192       |
| 63 | Genome evolution in yeasts. Nature, 2004, 430, 35-44.                                                                                                                                                 | 27.8 | 1,498     |
| 64 | Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida<br>glabrata. Molecular Microbiology, 2004, 55, 1246-1258.                                                  | 2.5  | 165       |
| 65 | Large-scale exploration of growth inhibition caused by overexpression of genomic fragments in Saccharomyces cerevisiae. Genome Biology, 2004, 5, R72.                                                 | 9.6  | 36        |
| 66 | Gene relics in the genome of the yeast Saccharomyces cerevisiae. Gene, 2004, 335, 1-17.                                                                                                               | 2.2  | 36        |
| 67 | Analysis of Microsatellites in 13 Hemiascomycetous Yeast Species: Mechanisms Involved in Genome<br>Dynamics. Journal of Molecular Evolution, 2003, 56, 730-741.                                       | 1.8  | 24        |
| 68 | A novel design of whole-genome microarray probes for Saccharomyces cerevisiae which minimizes cross-hybridization. BMC Genomics, 2003, 4, 38.                                                         | 2.8  | 29        |
| 69 | Contractions and Expansions of CAG/CTG Trinucleotide Repeats occur during Ectopic Gene<br>Conversion in Yeast, by a MUS81-independent Mechanism. Journal of Molecular Biology, 2003, 326,<br>769-782. | 4.2  | 32        |
| 70 | Distance from the Chromosome End Determines the Efficiency of Double Strand Break Repair in<br>Subtelomeres of Haploid Yeast. Journal of Molecular Biology, 2003, 328, 847-862.                       | 4.2  | 68        |
| 71 | The complete mitochondrial genome sequence of the pathogenic yeastCandida(Torulopsis)glabrata.<br>FEBS Letters, 2003, 534, 39-48.                                                                     | 2.8  | 68        |
| 72 | Novel Transporters from Hemiascomycete Yeasts. Journal of Molecular Microbiology and<br>Biotechnology, 2003, 6, 19-28.                                                                                | 1.0  | 3         |

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Molecular evolution of eukaryotic genomes: hemiascomycetous yeast spliceosomal introns. Nucleic<br>Acids Research, 2003, 31, 1121-1135.                                                              | 14.5 | 118       |
| 74 | Transcription and nuclear transport of CAG/CTG trinucleotide repeats in yeast. Nucleic Acids Research, 2002, 30, 3540-3547.                                                                          | 14.5 | 17        |
| 75 | Genome-wide Nuclear Morphology Screen Identifies Novel Genes Involved in Nuclear Architecture and<br>Gene-silencing in Saccharomyces cerevisiae. Journal of Molecular Biology, 2002, 321, 551-561.   | 4.2  | 38        |
| 76 | Amino acid composition of genomes, lifestyles of organisms, and evolutionary trends: a global picture with correspondence analysis. Gene, 2002, 297, 51-60.                                          | 2.2  | 171       |
| 77 | Characterization of the I-Spom I Endonuclease from Fission Yeast: Insights into the Evolution of a<br>Group I Intron-Encoded Homing Endonuclease. Journal of Molecular Evolution, 2002, 55, 302-313. | 1.8  | 35        |
| 78 | Functional analysis of yeast gene families involved in metabolism of vitamins B1and B6. Yeast, 2002, 19, 1261-1276.                                                                                  | 1.7  | 89        |
| 79 | Evolution of Gene Order in the Genomes of Two Related Yeast Species. Genome Research, 2001, 11, 2009-2019.                                                                                           | 5.5  | 84        |
| 80 | The genomics of microbial diversity. Current Opinion in Microbiology, 2000, 3, 443-444.                                                                                                              | 5.1  | 7         |
| 81 | Transcriptional regulation of theSaccharomyces cerevisiae DAL5gene family and identification of the high affinity nicotinic acid permeaseTNA1(YGR260w). FEBS Letters, 2000, 475, 237-241.            | 2.8  | 70        |
| 82 | Genomic Exploration of the Hemiascomycetous Yeasts: 1. A set of yeast species for molecular evolution studies1. FEBS Letters, 2000, 487, 3-12.                                                       | 2.8  | 186       |
| 83 | Genomic Exploration of the Hemiascomycetous Yeasts: 3. Methods and strategies used for sequence analysis and annotation. FEBS Letters, 2000, 487, 17-30.                                             | 2.8  | 37        |
| 84 | Genomic Exploration of the Hemiascomycetous Yeasts: 4. The genome of Saccharomyces cerevisiaerevisited. FEBS Letters, 2000, 487, 31-36.                                                              | 2.8  | 75        |
| 85 | Genomic Exploration of the Hemiascomycetous Yeasts: 8.Zygosaccharomyces rouxii1. FEBS Letters, 2000, 487, 52-55.                                                                                     | 2.8  | 30        |
| 86 | Genomic Exploration of the Hemiascomycetous Yeasts: 10. Kluyveromyces thermotolerans. FEBS<br>Letters, 2000, 487, 61-65.                                                                             | 2.8  | 11        |
| 87 | Genomic Exploration of the Hemiascomycetous Yeasts: 12. Kluyveromyces marxianus var. marxianus.<br>FEBS Letters, 2000, 487, 71-75.                                                                   | 2.8  | 45        |
| 88 | Genomic Exploration of the Hemiascomycetous Yeasts: 13.Pichia angusta. FEBS Letters, 2000, 487, 76-81.                                                                                               | 2.8  | 28        |
| 89 | Genomic Exploration of the Hemiascomycetous Yeasts: 15.Pichia sorbitophila. FEBS Letters, 2000, 487, 87-90.                                                                                          | 2.8  | 14        |
| 90 | Genomic Exploration of the Hemiascomycetous Yeasts: 16.Candida tropicalis. FEBS Letters, 2000, 487, 91-94.                                                                                           | 2.8  | 27        |

| #   | Article                                                                                                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Genomic Exploration of the Hemiascomycetous Yeasts: 18. Comparative analysis of chromosome maps and synteny with <i>Saccharomyces cerevisiae</i> . FEBS Letters, 2000, 487, 101-112.                                                                                                                                                            | 2.8  | 71        |
| 92  | Genomic Exploration of the Hemiascomycetous Yeasts: 19. Ascomycetes-specific genes. FEBS Letters, 2000, 487, 113-121.                                                                                                                                                                                                                           | 2.8  | 47        |
| 93  | Genomic Exploration of the Hemiascomycetous Yeasts: 20. Evolution of gene redundancy compared to Saccharomyces cerevisiae. FEBS Letters, 2000, 487, 122-133.                                                                                                                                                                                    | 2.8  | 49        |
| 94  | Genetic redundancy and gene fusion in the genome of the baker's yeast Saccharomyces cerevisiae :<br>functional characterization of a three-member gene family involved in the thiamine biosynthetic<br>pathway. Molecular Microbiology, 1999, 32, 1140-1152.                                                                                    | 2.5  | 38        |
| 95  | Mitochondrial DNA repairs double-strand breaks in yeast chromosomes. Nature, 1999, 402, 96-100.                                                                                                                                                                                                                                                 | 27.8 | 239       |
| 96  | Pervasiveness of Gene Conservation and Persistence of Duplicates in Cellular Genomes. Journal of<br>Molecular Evolution, 1999, 49, 591-600.                                                                                                                                                                                                     | 1.8  | 37        |
| 97  | Trinucleotide repeats and other microsatellites in yeasts. Research in Microbiology, 1999, 150, 589-602.                                                                                                                                                                                                                                        | 2.1  | 35        |
| 98  | The Genomic Tree as Revealed from Whole Proteome Comparisons. Genome Research, 1999, 9, 550-557.                                                                                                                                                                                                                                                | 5.5  | 213       |
| 99  | European functional analysis network (EUROFAN) and the functional analysis of theSaccharomyces cerevisiae genome (minireview). Electrophoresis, 1998, 19, 617-624.                                                                                                                                                                              | 2.4  | 70        |
| 100 | Physical mapping of chromosomes VII and XV ofSaccharomyces cerevisiae at 3·5 kb average resolution to allow their complete sequencing. , 1998, 14, 601-616.                                                                                                                                                                                     |      | 5         |
| 101 | `Mass-murder' of ORFs from three regions of chromosome XI from Saccharomyces<br>cerevisiae1Published in conjunction with A Wisconsin Gathering Honoring Waclaw Szybalski on<br>occasion of his 75th year and 20years of Editorship-in-Chief of Gene, 10–11 August 1997, University of<br>Wisconsin, Madison, WI, USA.1. Gene, 1998, 223, 33-46. | 2.2  | 31        |
| 102 | The yeast genome project: what did we learn?. Trends in Genetics, 1996, 12, 263-270.                                                                                                                                                                                                                                                            | 6.7  | 498       |
| 103 | New vectors for combinatorial deletions in yeast chromosomes and for gap-repair cloning using<br>â€~split-marker' recombination. Yeast, 1996, 12, 1439-1457.                                                                                                                                                                                    | 1.7  | 155       |
| 104 | New vectors for combinatorial deletions in yeast chromosomes and for gap-repair cloning using 'split-marker' recombination. Yeast, 1996, 12, 1439-57.                                                                                                                                                                                           | 1.7  | 63        |
| 105 | [5] In Vitro fragmentation of yeast chromosomes and yeast artificial chromosomes at artificially inserted sites and applications to genome mapping. Methods in Molecular Genetics, 1995, , 81-107.                                                                                                                                              | 0.6  | 4         |
| 106 | Construction of a complete genomic library ofSaccharomyces cerevisiae and physical mapping of chromosome XI at 3·7 kb resolution. Yeast, 1995, 11, 121-135.                                                                                                                                                                                     | 1.7  | 56        |
| 107 | Conditional Lethality of Null Mutations in RTH1 That Encodes the Yeast Counterpart of a Mammalian 5′-<br>to 3′-Exonuclease Required for Lagging Strand DNA Synthesis in Reconstituted Systems. Journal of<br>Biological Chemistry, 1995, 270, 4193-4196.                                                                                        | 3.4  | 172       |
| 108 | Construction of a cosmid contig and of anEcoRI restriction map of yeast chromosome X. DNA Sequence, 1994, 4, 293-300.                                                                                                                                                                                                                           | 0.7  | 17        |

| #   | Article                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Interaction between the first and last nucleotides of pre-mRNA introns is a determinant of 3′ splice site selection inS.cerevisiae. Nucleic Acids Research, 1994, 22, 1981-1987.                                                                                           | 14.5 | 44        |
| 110 | Transcript map of two regions from chromosome XI ofSaccharomyces cerevisiae for interpretation of systematic sequencing results. Yeast, 1994, 10, 1403-1413.                                                                                                               | 1.7  | 16        |
| 111 | Consequences of unique double-stranded breaks in yeast chromosomes: death or homozygosis.<br>Molecular Genetics and Genomics, 1993, 240, 170-180.                                                                                                                          | 2.4  | 50        |
| 112 | Sequence of a 7·8 kb segment on the left arm of yeast chromosome XI reveals four open reading frames, including theCAP1 gene, an intron-containing gene and a gene encoding a homolog to the mammalianUOC-1 gene. Yeast, 1993, 9, 279-287.                                 | 1.7  | 11        |
| 113 | Homologous recombination in plant cells is enhanced byin vivoinduction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Research, 1993, 21, 5034-5040.                                                                                      | 14.5 | 272       |
| 114 | Rapid physical mapping of YAC inserts by random integration of I-Sce I sites. Human Molecular Genetics, 1993, 2, 265-271.                                                                                                                                                  | 2.9  | 14        |
| 115 | Nested chromosomal fragmentation in yeast using the meganuclease I-Scel: a new method for physical mapping of eukaryotic genomes. Nucleic Acids Research, 1992, 20, 5625-5631.                                                                                             | 14.5 | 96        |
| 116 | Sequence of a 10·7 kb segment of yeast chromosome XI identifies theAPN1 and theBAF1 loci and reveals<br>one tRNA gene and several new open reading frames including homologs to RAD2 and kinases. Yeast,<br>1992, 8, 121-132.                                              | 1.7  | 50        |
| 117 | Sequence of a segment of yeast chromosome XI identifies a new mitochondrial carrier,a new member of the G protein family, and a protein with thePAAKK motif of the H1 histones. Yeast, 1992, 8, 325-336.                                                                   | 1.7  | 22        |
| 118 | XI. Yeast sequencing reports. The sequence of a 9·3 kb segment located on the left arm of the yeast chromosome XI reveals five open reading frames including theCCE1 gene and putative products related to MYO2 and to the ribosomal protein L10. Yeast, 1992, 8, 987-995. | 1.7  | 17        |
| 119 | Altogether now — sequencing the yeast genome. Current Biology, 1992, 2, 279-281.                                                                                                                                                                                           | 3.9  | 11        |
| 120 | Cleavage of yeast and bacteriophage T7 genomes at a single site using the rare cutter endonuclease<br>I-Scel. Nucleic Acids Research, 1991, 19, 189-190.                                                                                                                   | 14.5 | 68        |
| 121 | The complete sequence of the 8·2 kb segment left ofMAT on chromosome III reveals five ORFs, including<br>a gene for a yeast ribokinase. Yeast, 1990, 6, 521-534.                                                                                                           | 1.7  | 104       |
| 122 | The apocytochrome b gene of Chlamydomonas smithii contains a mobile intron related to both<br>Saccharomyces and Neurospora introns. Molecular Genetics and Genomics, 1990, 223, 288-296.                                                                                   | 2.4  | 64        |
| 123 | Purification and characterization of thein vitroactivity of I-Scel, a novel and highly specific endonuclease encoded by a group I intron. Nucleic Acids Research, 1990, 18, 1407-1413.                                                                                     | 14.5 | 184       |
| 124 | Group I introns as mobile genetic elements: facts and mechanistic speculations — a review**Presented<br>at the Albany Conference on â€~RNA: Catalysis, Splicing, Evolution', Rensselaerville, NY (U.S.A.) 22-25<br>September, 1988 , 1989, , 91-114.                       |      | 0         |
| 125 | Group I introns as mobile genetic elements: Facts and mechanistic speculations — a review. Gene, 1989, 82, 91-114.                                                                                                                                                         | 2.2  | 500       |
| 126 | Mobile introns: definition of terms and recommended nomenclature. Gene, 1989, 82, 115-118.                                                                                                                                                                                 | 2.2  | 135       |

| #   | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Mobile introns: definition of terms and recommended nomenclature**Presented at the Albany<br>Conference on â€~RNA: Catalysis, Splicing, Evolution', Rensselaerville, NY (U.S.A.) 22-25 September, 1988 ,<br>1989, , 115-118.           |      | 0         |
| 128 | Genetic exchanges between bacteriophage T4 and filamentous fungi?. Cell, 1986, 46, 323.                                                                                                                                                | 28.9 | 78        |
| 129 | The pho1 mutation. A frameshift, and its compensation, producing altered forms of physiologically efficient ATPase in yeast mitochondria. FEBS Journal, 1985, 150, 89-94.                                                              | 0.2  | 13        |
| 130 | The intron of the mitochondrial 21S rRNA gene: Distribution in different yeast species and sequence comparison between Kluyveromyces thermotolerans and Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1983, 192, 487-499. | 2.4  | 72        |
| 131 | ORGANIZATION OF THE MITOCHONDRIAL 21S rRNA GENE IN Saccharomyces cerevisiae s MUTANTS OF THE PEPTIDYL TRANSFERASE CENTRE AND NATURE OF THE omega LOCUS. , 1983, , 389-404.                                                             |      | 0         |
| 132 | Comparison of fungal mitochondrial introns reveals extensive homologies in RNA secondary structure. Biochimie, 1982, 64, 867-881.                                                                                                      | 2.6  | 528       |
| 133 | Sequence of the intron and flanking exons of the mitochondrial 21S rRNA gene of yeast strains having different alleles at the ï‰ and rib-1 loci. Cell, 1980, 20, 185-197.                                                              | 28.9 | 399       |
| 134 | Genetic and physical characterization of a segment of yeast mitochondrial DNA involved in the control of genetic recombination. Biochimie, 1980, 61, 985-1010.                                                                         | 2.6  | 16        |
| 135 | Mutants in a mosaic gene reveal functions for introns. Nature, 1979, 282, 777-778.                                                                                                                                                     | 27.8 | 28        |
| 136 | Oligomycin Sensitivity of ATPase Studied as a Function of Mitochondrial Biogenesis, using<br>Mitochondrially Determined Oligomycin-Resistant Mutants of Saccharomyces cerevisiae. FEBS<br>Journal, 1974, 42, 439-445.                  | 0.2  | 27        |
| 137 | MITOCHONDRIAL GENETICS VII. ALLELISM AND MAPPING STUDIES OF RIBOSOMAL MUTANTS RESISTANT TO<br>CHLORAMPHENICOL, ERYTHROMYCIN AND SPIRAMYCIN IN S. CEREVISIAE. Genetics, 1974, 78, 1063-1100.                                            | 2.9  | 69        |
| 138 | Extrakaryotic Inheritance. Progress in Botany Fortschritte Der Botanik, 1974, , 236-246.                                                                                                                                               | 0.3  | 1         |
| 139 | Mitochondrial genetics. Molecular Genetics and Genomics, 1973, 125, 53-90.                                                                                                                                                             | 2.4  | 135       |
| 140 | Ascomycetes: the Candida MAT Locus: Comparing MAT in the Genomes of Hemiascomycetous Yeasts. , 0, ,                                                                                                                                    |      | 7         |

140 247-263.