Donald Tryk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9412684/publications.pdf

Version: 2024-02-01

220 papers

27,558 citations

71 h-index

10986

164 g-index

224 all docs

224 docs citations

times ranked

224

25722 citing authors

#	Article	IF	CITATIONS
1	Particle-Size Effect of Pt Anode Catalysts on H $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 2 $<$ /sub $>$ Production Rate and H $<$ sub $>$ 2 $<$ /sub $>$ Oxidation Activity at 20 to 80 Â $^{\circ}$ C. Journal of the Electrochemical Society, 2022, 169, 014516.	2.9	4
2	Effect of water management in membrane and cathode catalyst layers on suppressing the performance hysteresis phenomenon in anion-exchange membrane fuel cells. Journal of Power Sources, 2022, 522, 230997.	7.8	13
3	Pt nanorods oriented on Gd-doped ceria polyhedra enable superior oxygen reduction catalysis for fuel cells. Journal of Catalysis, 2022, 407, 300-311.	6.2	17
4	Properties and Morphologies of Anion-Exchange Membranes with Different Lengths of Fluorinated Hydrophobic Chains. ACS Omega, 2022, 7, 13577-13587.	3.5	6
5	Performance hysteresis phenomena of anion exchange membrane fuel cells using an Fe–N–C cathode catalyst and an in-house-developed polymer electrolyte. Journal of Power Sources, 2021, 487, 229407.	7.8	13
6	Temperature Dependence of Oxygen Reduction Activity at Pt/Nb-Doped SnO ₂ Catalysts with Varied Pt Loading. ACS Catalysis, 2021, 11, 5222-5230.	11.2	28
7	Enhanced oxygen reduction electrocatalysis on PtCoSn alloy nanocatalyst mediated by Ta-doped SnO2 support for polymer electrolyte fuel cells. Electrochimica Acta, 2021, 390, 138894.	5.2	8
8	Effect of Water Management for Membranes and Catalyst Layers Using an In-House Developed Polymer Electrolyte on Cell Performance Hysteresis in Anion Exchange Membrane Fuel Cells. ECS Meeting Abstracts, 2021, MA2021-02, 1206-1206.	0.0	О
9	Unparalleled mitigation of membrane degradation in fuel cells ⟨i>via⟨li> a counter-intuitive approach: suppression of H⟨sub>2⟨ sub>0⟨sub>2⟨ sub> production at the hydrogen anode using a Pt⟨sub>skin⟨ sub⟩–PtCo catalyst. Journal of Materials Chemistry A, 2020, 8, 1091-1094.	10.3	19
10	A Simple Analytical Approach for Fitting Steady-State Polarization Behavior of Polymer Electrolyte Fuel Cells Using Tafel Slope Component Analysis (TSCA). ECS Meeting Abstracts, 2020, MA2020-02, 2177-2177.	0.0	0
11	Study of Cathode Catalyst Layers for Anion Exchange Membrane Fuel Cells Using Fe-N-C Catalyst and a Novel Polymer Electrolyte. ECS Meeting Abstracts, 2020, MA2020-02, 2349-2349.	0.0	O
12	(Invited) Effect of Water Management for Cathode Catalyst Layers Using a Non-Noble Metal Catalyst and a Novel Polymer Electrolyte on Cell Performance Hysteresis in Anion Exchange Membrane Fuel Cells. ECS Meeting Abstracts, 2020, MA2020-02, 2371-2371.	0.0	0
13	Activation of the Oxygen Reduction Reaction at an Interface-Regulated Pt/Nb-SnO2 Catalyst. ECS Meeting Abstracts, 2020, MA2020-02, 2332-2332.	0.0	O
14	The Role of Carbon Blacks as Catalyst Supports and Structural Elements in Polymer Electrolyte Fuel Cells. Nanostructure Science and Technology, 2019, , 81-118.	0.1	3
15	Effect of core-alloy composition and particle size of stabilized Pt Skin/PtCo alloy nanocatalysts on the CO-Tolerant hydrogen oxidation electrocatalysis. Electrochimica Acta, 2019, 328, 135056.	5.2	12
16	High hydrogen evolution activity and suppressed H ₂ O ₂ production on Pt-skin/PtFe alloy nanocatalysts for proton exchange membrane water electrolysis. Physical Chemistry Chemical Physics, 2019, 21, 2861-2865.	2.8	11
17	Effect of Underlying Cobalt Content on Oxygen Reduction Reaction Activity at Pt-Skin/Pt100-XCox (111) Single Crystal Electrodes. ECS Meeting Abstracts, 2019, , .	0.0	O
18	Modeling the Effect of Underlying Cobalt on the Electrochemical Behavior of Pt-Skin / Pt100-x $Cox(111)$ Single Crystal Electrodes. ECS Meeting Abstracts, 2019, , .	0.0	1

#	Article	IF	Citations
19	(Invited) Highly Active and Robust Pt-Skin/Pt Alloy Two-Way Catalysts for Oxygen Reduction and Hydrogen Oxidation in PEFCs. ECS Meeting Abstracts, 2019, , .	0.0	0
20	The Role of Theory in the Development of Electrocatalysts: Case Study on Pt-Skin/Pt Alloy Nanoparticles for Hydrogen Oxidation and Evolution. ECS Meeting Abstracts, 2019, , .	0.0	0
21	Suppression of H2O2 Formation at Pt-Skin/Pt Alloy Hydrogen Anode Catalysts for Mitigation of Membrane Degradation. ECS Meeting Abstracts, 2019, , .	0.0	0
22	Atomically Flat Pt Skin and Striking Enrichment of Co in Underlying Alloy at Pt $<$ sub $>$ 3 $<$ /sub $>$ Co (111) Single Crystal with Unprecedented Activity for the Oxygen Reduction Reaction. ACS Omega, 2018, 3, 154-158.	3.5	30
23	Effects of Sulfate on the Oxygen Reduction Reaction Activity on Stabilized Pt Skin/PtCo Alloy Catalysts from 30 to 80 °C. Langmuir, 2018, 34, 13558-13564.	3.5	16
24	(Invited) <i></i> Recent Progress in the Understanding of the Electrocatalysis of the CO-Tolerant Hydrogen Oxidation Reaction in Polymer Electrolyte Fuel Cells. ECS Transactions, 2018, 85, 41-46.	0.5	7
25	(Invited) Recent Progress in the Understanding of the Electrocatalysis of the CO-Tolerant Hydrogen Oxidation Reaction in Polymer Electrolyte Fuel Cells. ECS Meeting Abstracts, 2018, , .	0.0	0
26	Fuel Cells: An Overview with Emphasis on Polymer Electrolyte Fuel Cells. , 2017, , 51-94.		0
27	Highly Active, CO-Tolerant, and Robust Hydrogen Anode Catalysts: Pt–M (M = Fe, Co, Ni) Alloys with Stabilized Pt-Skin Layers. ACS Catalysis, 2017, 7, 267-274.	11.2	67
28	Weakened CO adsorption and enhanced structural integrity of a stabilized Pt skin/PtCo hydrogen oxidation catalyst analysed by <i>in situ</i> X-ray absorption spectroscopy. Catalysis Science and Technology, 2017, 7, 6124-6131.	4.1	16
29	In Situ FTIR Analysis of CO-Tolerance of a Pt-Fe Alloy with Stabilized Pt Skin Layers as a Hydrogen Anode Catalyst for Polymer Electrolyte Fuel Cells. Catalysts, 2017, 7, 8.	3.5	10
30	(Invited) Analyses of CO Tolerance at Stabilized Pt-Skin/Ptfe and PtCo Hydrogen Anode Catalysts with High Activity and Robustness for Residential PEFCs. ECS Meeting Abstracts, 2017, , .	0.0	0
31	Density Functional Theory Studies of CO-Tolerant Stabilized Platinum Skin/Platinum Alloy Catalysts for the Hydrogen Oxidation Reaction. ECS Meeting Abstracts, 2017, , .	0.0	0
32	The Influence of Fe Substitution in Lanthanum Calcium Cobalt Oxide on the Oxygen Evolution Reaction in Alkaline Media. Journal of the Electrochemical Society, 2016, 163, F1124-F1132.	2.9	19
33	Highly Durable and Active PtCo Alloy/Graphitized Carbon Black Cathode Catalysts by Controlled Deposition of Stabilized Pt Skin Layers. Journal of the Electrochemical Society, 2016, 163, F455-F463.	2.9	38
34	Influence of Pt Loading and Cell Potential on the HF Ohmic Resistance of an Nb-Doped SnO ₂ -Supported Pt Cathode for PEFCs. Journal of the Electrochemical Society, 2016, 163, F97-F105.	2.9	17
35	Highly Active, CO-Tolerant and Robust Hydrogen Anode Catalysts: Pt-M (M=Fe, Co, and Ni) Alloys with Stabilized Pt Skin. ECS Meeting Abstracts, 2016, , .	0.0	0
36	(Invited) Enhanced Hydrogen Oxidation Activity at Pt-M Alloy Catalysts in Acid: A DFT Study. ECS Meeting Abstracts, $2016, , .$	0.0	0

#	Article	IF	CITATIONS
37	Effect of HClO4 Concentration on Oxygen Reduction Reaction Activity at Pt and Pt-Co Alloy Single Crystal Electrodes. ECS Meeting Abstracts, 2016, , .	0.0	0
38	The Road Taken to Japan. Hyomen Kagaku, 2015, 36, 592-593.	0.0	0
39	Triplet ground state of the neutral oxygen-vacancy donor in rutile <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>TiO</mml:mi><mml:mn>2<td>mn3.2/mm</td><td>l:mջub></td></mml:mn></mml:msub></mml:math>	mn 3. 2/mm	l:m ջu b>
40	Investigation of the effect of a hydrophilic layer in the gas diffusion layer of a polymer electrolyte membrane fuel cell on the cell performance and cold start behaviour. Electrochimica Acta, 2014, 120, 240-247.	5.2	52
41	Electrochemical Quartz Crystal Microbalance Analysis of the Oxygen Reduction Reaction on Pt-Based Electrodes. Part 2: Adsorption of Oxygen Species and ClO ₄ [–] Anions on Pt and Pt–Co Alloy in HClO ₄ Solutions. Langmuir, 2014, 30, 432-439.	3.5	33
42	Visible light-induced reduction of carbon dioxide sensitized by a porphyrin–rhenium dyad metal complex on p-type semiconducting NiO as the reduction terminal end of an artificial photosynthetic system. Journal of Catalysis, 2014, 310, 57-66.	6.2	116
43	Microstructure and the Mobility of Fluorinated Carbon Chain of Reversed Micelles Formed by Cationic Polyfluorinated Surfactant. Bulletin of the Chemical Society of Japan, 2014, 87, 1273-1277.	3.2	3
44	Effect of the state of distribution of supported Pt nanoparticles on effective Pt utilization in polymer electrolyte fuel cells. Physical Chemistry Chemical Physics, 2013, 15, 11236.	2.8	99
45	Ground state of the singly ionized oxygen vacancy in rutile TiO2. Journal of Applied Physics, 2013, 114, .	2.5	23
46	Hydrolyzed polyoxymethylenedimethylethers as liquid fuels for direct oxidation fuel cells. Electrochimica Acta, 2013, 108, 350-355.	5.2	22
47	Investigation of the corrosion of carbon supports in polymer electrolyte fuel cells using simulated start-up/shutdown cycling. Electrochimica Acta, 2013, 91, 195-207.	5.2	105
48	Direct STM Elucidation of the Effects of Atomic-Level Structure on Pt(111) Electrodes for Dissolved CO Oxidation. Journal of the American Chemical Society, 2013, 135, 1476-1490.	13.7	66
49	Role of Hydrophobic Interaction in Controlling the Orientation of Dicationic Porphyrins on Solid Surfaces. Journal of Physical Chemistry C, 2013, 117, 9245-9251.	3.1	32
50	The Scientific Legacy of Su-Moon Park: a Personal View. Journal of Electrochemical Science and Technology, 2013, 4, 119-124.	2.2	0
51	The Scientific Legacy of Su-Moon Park: a Personal View. Journal of Electrochemical Science and Technology, 2013, 4, 119-124.	2.2	0
52	Overview of recent developments in oxygen reduction electrocatalysis. Electrochimica Acta, 2012, 84, 187-201.	5.2	117
53	Diamond Nanoparticles as a Support for Pt and PtRu Catalysts for Direct Methanol Fuel Cells. ACS Applied Materials & Direct Methanol Fuel Cells & Direct Methanol Fuel Cell	8.0	67
54	How is the water molecule activated on metalloporphyrins? Oxygenation of substrates induced through one-photon/two-electron conversion in artificial photosynthesis by visible light. Faraday Discussions, 2012, 155, 145-163.	3.2	36

#	Article	IF	CITATIONS
55	Tafel Slope Component Analysis of Polymer Electrolyte Fuel Cell Cathode Current-Potential Behavior. ECS Transactions, 2011, 35, 13-23.	0.5	3
56	Fabrication of Vertically Aligned Diamond Whiskers from Highly Boron-Doped Diamond by Oxygen Plasma Etching. ACS Applied Materials & Interfaces, 2011, 3, 177-182.	8.0	47
57	Efficient electrochemical decomposition of perfluorocarboxylic acids by the use of a boron-doped diamond electrode. Diamond and Related Materials, 2011, 20, 64-67.	3.9	103
58	Efficient Decomposition of Perfluorocarboxylic Acids in Aqueous Suspensions of a TiO ₂ Photocatalyst with Medium-Pressure Ultraviolet Lamp Irradiation under Atmospheric Pressure. Industrial & Decomposition Chemistry Research, 2011, 50, 10943-10947.	3.7	29
59	Diffusion structural diagnostics of polycrystalline boron-doped diamond films. Thermochimica Acta, 2011, 524, 104-108.	2.7	0
60	Synthesis of platinum and platinum–ruthenium-modified diamond nanoparticles. Journal of Nanoparticle Research, 2011, 13, 2997-3009.	1.9	27
61	The effectiveness of platinum/carbon electrocatalysts: Dependence on catalyst layer thickness and Pt alloy catalytic effects. Electrochimica Acta, 2011, 56, 4783-4790.	5.2	48
62	Facile Fabrication and Photocatalytic Application of Ag Nanoparticles-TiO ₂ Nanofiber Composites. Journal of Nanoscience and Nanotechnology, 2011, 11, 3692-3695.	0.9	260
63	New evaluation method for the effectiveness of platinum/carbon electrocatalysts under operating conditions. Electrochimica Acta, 2010, 55, 8504-8512.	5.2	117
64	Photocatalytic inactivation and removal of algae with TiO2-coated materials. Journal of Applied Electrochemistry, 2010, 40, 1737-1742.	2.9	27
65	Nanofibrous TiO ₂ -Core/Conjugated Polymer-Sheath Composites: Synthesis, Structural Properties and Photocatalytic Activity. Journal of Nanoscience and Nanotechnology, 2010, 10, 7951-7957.	0.9	115
66	Unique Solvatochromism of a Membrane Composed of a Cationic Porphyrinâ^'Clay Complex. Langmuir, 2010, 26, 4639-4641.	3.5	50
67	Development of solar-driven electrochemical and photocatalytic water treatment system using a boron-doped diamond electrode and TiO2 photocatalyst. Water Research, 2010, 44, 904-910.	11.3	53
68	In situATR-FTIR study of oxygenreduction at the Pt/Nafion interface. Physical Chemistry Chemical Physics, 2010, 12, 621-629.	2.8	114
69	Platinum Electrodeposition at High Surface Area Carbon Vulcan-XC-72R Material Using a Rotating Disk-Slurry Electrode Technique. Journal of the Electrochemical Society, 2010, 157, F189.	2.9	52
70	Surface residual stress dependence on photoinduced highly hydrophilic conversion and back-reaction in the dark of rutile single crystals. Physical Chemistry Chemical Physics, 2010, 12, 7911.	2.8	3
71	Modulation of Electron Transfer Activity at Diamond Films by Dissolved Oxygen in Aqueous Solution. Journal of the Electrochemical Society, 2009, 156, J152.	2.9	0
72	Fabrication of micro-patterned TiO2 thin films incorporating Ag nanoparticles. Materials Letters, 2009, 63, 1628-1630.	2.6	12

#	Article	IF	CITATIONS
73	Enhanced electrochemical response in oxidative differential pulse voltammetry of dopamine in the presence of ascorbic acid at carboxyl-terminated boron-doped diamond electrodes. Electrochimica Acta, 2009, 54, 2312-2319.	5.2	48
74	Facet-Selective Platinum Electrodeposition at Free-standing Polycrystalline Boron-Doped Diamond Films. Langmuir, 2009, 25, 10329-10336.	3.5	19
75	Fabrication and Application of TiO ₂ â€Based Superhydrophilic–Superhydrophobic Patterns on Titanium Substrates for Offset Printing. Chemistry - an Asian Journal, 2009, 4, 984-988.	3.3	49
76	Oxygen Reduction at the Pt/Carbon Black-Polyimide Ionomer Interface. Journal of Physical Chemistry C, 2009, 113, 7772-7778.	3.1	26
77	Effect of Residual Stress on the Photochemical Properties of TiO2 Thin Films. Journal of Physical Chemistry C, 2009, 113, 12811-12817.	3.1	25
78	Electron Transfer from the Porphyrin S ₂ State in a Zinc Porphyrin-Rhenium Bipyridyl Dyad having Carbon Dioxide Reduction Activity. Journal of Physical Chemistry C, 2009, 113, 11667-11673.	3.1	86
79	Visible Light-Sensitive Cu(II)-Grafted TiO ₂ Photocatalysts: Activities and X-ray Absorption Fine Structure Analyses. Journal of Physical Chemistry C, 2009, 113, 10761-10766.	3.1	393
80	Electrospun fibers composed of Al2O3-TiO2 nanocrystals. Journal of the Ceramic Society of Japan, 2009, 117, 1203-1207.	1.1	13
81	Sensitive Electrochemical Detection of Oxalate at a Positively Charged Boronâ€Doped Diamond Surface. Electroanalysis, 2008, 20, 1556-1564.	2.9	35
82	TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 2008, 63, 515-582.	7.2	5,758
83	Highly Ordered TiO ₂ Nanotube Arrays with Controllable Length for Photoelectrocatalytic Degradation of Phenol. Journal of Physical Chemistry C, 2008, 112, 253-259.	3.1	362
84	Preparation and photochemical behavior of polyfluorinated cationic azobenzene-titanoniobate intercalation compounds. Journal of Materials Chemistry, 2008, 18, 4641.	6.7	22
85	Underpotential deposition of hydrogen on $Pt(111)$: a combined direct molecular dynamics/density functional theory study. Molecular Simulation, 2008, 34, 1065-1072.	2.0	25
86	Anodic Deposition of RuO[sub x] \hat{a} nH[sub 2]O at Conductive Diamond Films and Conductive Diamond Powder for Electrochemical Capacitors. Journal of the Electrochemical Society, 2008, 155, D73.	2.9	29
87	Platinum Electrodeposition on Conductive Diamond Powder and Its Application to Methanol Oxidation in Acidic Media. Journal of the Electrochemical Society, 2008, 155, B264.	2.9	44
88	Pt/C Catalyst Preparation Using Rotating Disk-Slurry Electrode (RoDSE) Technique. ECS Transactions, 2007, 3, 35-40.	0.5	6
89	Dichroic Measurements on Dicationic and Tetracationic Porphyrins on Clay Surfaces with Visible-Light-Attenuated Total Reflectance. Bulletin of the Chemical Society of Japan, 2007, 80, 1350-1356.	3.2	40
90	Electrophoretic preparation and characterization of porous electrodes from diamond nanoparticles. Journal of Physics: Conference Series, 2007, 61, 1022-1026.	0.4	3

#	Article	IF	Citations
91	Light-Stimulated Composition Conversion in TiO2-Based Nanofibers. Journal of Physical Chemistry C, 2007, 111, 658-665.	3.1	102
92	Boron-doped diamond electrodes: The role of surface termination in the oxidation of dopamine and ascorbic acid. Diamond and Related Materials, 2007, 16, 881-887.	3.9	52
93	Large-scale fabrication of Ag nanoparticles in PVP nanofibres and net-like silver nanofibre films by electrospinning. Nanotechnology, 2007, 18, 075605.	2.6	52
94	A transparent and photo-patternable superhydrophobic film. Chemical Communications, 2007, , 4949.	4.1	102
95	Anatase TiO ₂ Nanoparticles on Rutile TiO ₂ Nanorods:  A Heterogeneous Nanostructure via Layer-by-Layer Assembly. Langmuir, 2007, 23, 10916-10919.	3.5	167
96	Superhydrophobic TiO ₂ Surfaces:  Preparation, Photocatalytic Wettability Conversion, and Superhydrophobicâ°'Superhydrophilic Patterning. Journal of Physical Chemistry C, 2007, 111, 14521-14529.	3.1	242
97	Heterogeneous photocatalysis: From water photolysis to applications in environmental cleanup. International Journal of Hydrogen Energy, 2007, 32, 2664-2672.	7.1	475
98	Direct molecular dynamics and density-functional theoretical study of the electrochemical hydrogen oxidation reaction and underpotential deposition of H on Pt(111). Journal of Electroanalytical Chemistry, 2007, 607, 37-46.	3.8	79
99	Fibrous TiO2–SiO2nanocomposite photocatalyst. Chemical Communications, 2006, , 4483-4485.	4.1	57
100	Light-Harvesting Energy Transfer and Subsequent Electron Transfer of Cationic Porphyrin Complexes on Clay Surfaces. Langmuir, 2006, 22, 1406-1408.	3.5	71
101	Oxygen effect on the electrochemical behavior of n-type sulfur-doped diamond. Diamond and Related Materials, 2006, 15, 221-224.	3.9	5
102	Polycrystalline boron-doped diamond films as supports for methanol oxidation electrocatalysts. Diamond and Related Materials, 2006, 15, 275-278.	3.9	34
103	Detection of trace levels of Pb2+ in tap water at boron-doped diamond electrodes with anodic stripping voltammetry. Electrochimica Acta, 2006, 51, 2437-2441.	5.2	84
104	Porphyrin photochemistry in inorganic/organic hybrid materials: Clays, layered semiconductors, nanotubes, and mesoporous materials. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2006, 7, 104-126.	11.6	245
105	Boron-Doped Diamond-Based Sensors: A Review. Sensor Letters, 2006, 4, 99-119.	0.4	71
106	Mercury detection at boron doped diamond electrodes using a rotating disk technique. Journal of Electroanalytical Chemistry, 2005, 577, 287-293.	3.8	33
107	Resistance to Surfactant and Protein Fouling Effects at Conducting Diamond Electrodes. Electroanalysis, 2005, 17, 305-311.	2.9	49
108	Covalent Modification of Single-Crystal Diamond Electrode Surfaces. Journal of the Electrochemical Society, 2005, 152, E18.	2.9	53

#	Article	IF	Citations
109	Microchip capillary electrophoresis with a boron-doped diamond electrochemical detector for analysis of aromatic amines. Electrophoresis, 2004, 25, 3017-3023.	2.4	50
110	Interaction of Pb and Cd during anodic stripping voltammetric analysis at boron-doped diamond electrodes. Electrochimica Acta, 2004, 49, 3313-3318.	5.2	73
111	AC impedance studies of anodically treated polycrystalline and homoepitaxial boron-doped diamond electrodes. Electrochimica Acta, 2003, 48, 2739-2748.	5.2	53
112	Gradient liquid chromatography of leucine-enkephalin peptide and its metabolites with electrochemical detection using highly boron-doped diamond electrode. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2003, 791, 63-72.	2.3	23
113	Application of Diamond Microelectrodes for End-Column Electrochemical Detection in Capillary Electrophoresis. Analytical Chemistry, 2003, 75, 530-534.	6.5	77
114	Lutetium Monophthalocyanine and Diphthalocyanine Complexes and Lithium Naphthalocyanine as Catalysts for Electrochemical CO[sub 2] Reduction. Journal of the Electrochemical Society, 2003, 150, E608.	2.9	12
115	Microchip Capillary Electrophoresis Coupled with a Boron-Doped Diamond Electrode-Based Electrochemical Detector. Analytical Chemistry, 2003, 75, 935-939.	6.5	106
116	Highly Efficient and Selective Epoxidation of Alkenes by Photochemical Oxygenation Sensitized by a Ruthenium(II) Porphyrin with Water as Both Electron and Oxygen Donor. Journal of the American Chemical Society, 2003, 125, 5734-5740.	13.7	110
117	Electrochemical Behavior of Cobalt Oxide Films Deposited at Conductive Diamond Electrodes. Journal of the Electrochemical Society, 2003, 150, E337.	2.9	70
118	Response of Conductive Diamond Electrode to Pb2+/PbO2 Redox Process in HNO3 Aqueous Solution Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2003, 54, 64-68.	0.2	2
119	Homoepitaxial Single-Crystal Boron-Doped Diamond Electrodes for Electroanalysis. Journal of the Electrochemical Society, 2002, 149, E179.	2.9	47
120	ELECTROCHEMICAL DETECTION OF IONIC MERCURY AT BORON-DOPED DIAMOND ELECTRODES. Analytical Letters, 2002, 35, 355-368.	1.8	48
121	Radiationless Deactivation Process of 1-Dimethylamino-9-fluorenone Induced by Conformational Relaxation in the Excited State: A New Model Molecule for the TICT Process. Journal of Physical Chemistry A, 2002, 106, 10089-10095.	2.5	39
122	High-Density Adsorption of Cationic Porphyrins on Clay Layer Surfaces without Aggregation:  The Size-Matching Effect. Langmuir, 2002, 18, 2265-2272.	3.5	175
123	Microscopic Structure and Microscopic Environment of a Polyfluorinated Surfactant/Clay Hybrid Compound:Â Photochemical Studies of Rose Bengal. Langmuir, 2002, 18, 4232-4239.	3.5	32
124	Intercalation of Polyfluorinated Surfactants into Clay Minerals and the Characterization of the Hybrid Compounds. Langmuir, 2002, 18, 891-896.	3.5	91
125	Photochemical Energy Transfer of Cationic Porphyrin Complexes on Clay Surface. Journal of Physical Chemistry B, 2002, 106, 5455-5460.	2.6	117
126	Electrochemical generation of ferrate in acidic media at boron-doped diamond electrodes. Chemical Communications, 2002, , 486-487.	4.1	45

#	Article	IF	CITATIONS
127	Metal-Coated Colloidal Crystal Film as Surface-Enhanced Raman Scattering Substrateâ€. Langmuir, 2002, 18, 5043-5046.	3.5	55
128	Electrochemical Oxidation of Chlorophenols at a Boron-Doped Diamond Electrode and Their Determination by High-Performance Liquid Chromatography with Amperometric Detection. Analytical Chemistry, 2002, 74, 895-902.	6. 5	157
129	The electrochemical oxidation of homocysteine at boron-doped diamond electrodes with application to HPLC amperometric detection. Analyst, The, 2002, 127, 1164-1168.	3.5	25
130	Electrochemical Reduction of CO[sub 2] with Transition Metal Phthalocyanine and Porphyrin Complexes Supported on Activated Carbon Fibers. Journal of the Electrochemical Society, 2002, 149, D89.	2.9	78
131	Factors controlling the electrochemical potential window for diamond electrodes in non-aqueous electrolytes. Diamond and Related Materials, 2002, 11, 67-74.	3.9	42
132	Nanolithographic modification of diamond. Diamond and Related Materials, 2002, 11, 1788-1796.	3.9	8
133	Anodic Voltammetry of Xanthine, Theophylline, Theobromine and Caffeine at Conductive Diamond Electrodes and Its Analytical Application. Electroanalysis, 2002, 14, 721.	2.9	173
134	Decomposition of endocrine-disrupting chemicals in water by use of TiO2 photocatalysts immobilized on polytetrafluoroethylene mesh sheets. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 151, 207-212.	3.9	66
135	Production of syngas plus oxygen from CO2 in a gas-diffusion electrode-based electrolytic cell. Electrochimica Acta, 2002, 47, 3327-3334.	5.2	83
136	Electrochemical characteristics for redox systems at nano-honeycomb diamond. Electrochimica Acta, 2002, 47, 4373-4385.	5.2	22
137	Electrochemical examination of the ascorbic acid radical anion in non-aqueous electrolytes. Electrochimica Acta, 2002, 47, 4387-4392.	5.2	11
138	Electrochemical detection of tricyclic antidepressant drugs by HPLC using highly boron-doped diamond electrodes. Journal of Electroanalytical Chemistry, 2002, 521, 117-126.	3.8	118
139	Voltammetric Determination ofl-Cysteine at Conductive Diamond Electrodes. Analytical Chemistry, 2001, 73, 514-519.	6.5	273
140	Fabrication of Structured Porous Film by Electrophoresis. Journal of the American Chemical Society, 2001, 123, 175-176.	13.7	44
141	Electrochemical characterization of nanoporous honeycomb diamond electrodes in non-aqueous electrolytes. Diamond and Related Materials, 2001, 10, 620-626.	3.9	39
142	Relationships between surface character and electrochemical processes on diamond electrodes: dual roles of surface termination and near-surface hydrogen. Diamond and Related Materials, 2001, 10, 1804-1809.	3.9	79
143	Impedance Characteristics of the Nanoporous Honeycomb Diamond Electrodes for Electrical Double-Layer Capacitor Applications. Journal of the Electrochemical Society, 2001, 148, A668.	2.9	86
144	Radiationless Deactivation of an Intramolecular Charge Transfer Excited State through Hydrogen Bonding:Â Effect of Molecular Structure and Hardâ [^] Soft Anionic Character in the Excited State. Journal of Physical Chemistry A, 2001, 105, 10488-10496.	2.5	80

#	Article	IF	Citations
145	Varying the Optical Stop Band of a Three-Dimensional Photonic Crystal by Refractive Index Control. Langmuir, 2001, 17, 6751-6753.	3.5	91
146	Metal-Modified Diamond Electrode as an Electrochemical Detector for Glucose. Chemistry Letters, 2001, 30, 144-145.	1.3	35
147	Characterization of the Chromophore Orientation of Rhodamine B Amphiphiles in Langmuir–Blodgett Monolayers. Journal of Colloid and Interface Science, 2001, 233, 361-363.	9.4	16
148	Recent developments in electrochemical and photoelectrochemical CO2 reduction: involvement of the (CO2)2. ? dimer radical anion. Applied Organometallic Chemistry, 2001, 15, 113-120.	3.5	31
149	Electrochemical properties of Pt-modified nano-honeycomb diamond electrodes. Journal of Electroanalytical Chemistry, 2001, 514, 35-50.	3.8	121
150	Electrochemical approaches to alleviation of the problem of carbon dioxide accumulation. Pure and Applied Chemistry, 2001, 73, 1917-1927.	1.9	115
151	Hydroxyl Groups on Boron-Doped Diamond Electrodes and Their Modification with a Silane Coupling Agent. Electrochemical and Solid-State Letters, 2001, 4, H1.	2.2	83
152	Determination of Nitrite and Nitrogen Oxides by Anodic Voltammetry at Conductive Diamond Electrodes. Journal of the Electrochemical Society, 2001, 148, E112.	2.9	83
153	TiO2 photocatalysts and diamond electrodes. Electrochimica Acta, 2000, 45, 4683-4690.	5.2	208
154	Electroanalytical study of sulfa drugs at diamond electrodes and their determination by HPLC with amperometric detection. Journal of Electroanalytical Chemistry, 2000, 491, 175-181.	3.8	106
155	Surface carbonyl groups on oxidized diamond electrodes. Journal of Electroanalytical Chemistry, 2000, 492, 31-37.	3.8	101
156	The electrooxidation of organic acids at boron-doped diamond electrodes. Electrochemistry Communications, 2000, 2, 422-426.	4.7	63
157	Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000, 1, 1-21.	11.6	6,961
158	TiO2-mediated photodegradation of liquid and solid organic compounds. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 137, 53-62.	3.9	161
159	Recent topics in photoelectrochemistry: achievements and future prospects. Electrochimica Acta, 2000, 45, 2363-2376.	5.2	611
160	Nature of the photographic diamond surface phenomenon on boron-doped diamond. Electrochimica Acta, 2000, 45, 3375-3378.	5.2	7
161	Light Propagation in Composite Two-Dimensional Arrays of Polystyrene Spherical Particles. Langmuir, 2000, 16, 636-642.	3.5	35
162	Electrochemical Reduction of CO[sub 2] in the Micropores of Activated Carbon Fibers. Journal of the Electrochemical Society, 2000, 147, 3393.	2.9	53

#	Article	IF	CITATIONS
163	Binary cooperative complementary nanoscale interfacial materials. Pure and Applied Chemistry, 2000, 72, 73-81.	1.9	176
164	Electrochemical Oxidation of Histamine and Serotonin at Highly Boron-Doped Diamond Electrodes. Analytical Chemistry, 2000, 72, 1632-1638.	6.5	247
165	Selective Voltammetric and Amperometric Detection of Uric Acid with Oxidized Diamond Film Electrodes. Analytical Chemistry, 2000, 72, 1724-1727.	6.5	194
166	Electrochemical Characterization of the Nanoporous Honeycomb Diamond Electrode as an Electrical Double-Layer Capacitor. Journal of the Electrochemical Society, 2000, 147, 659.	2.9	110
167	Observation of Light Propagation in Single Layers of Composite Two-Dimensional Arrays. Langmuir, 2000, 16, 1180-1184.	3.5	12
168	Detection of Trace Lead at Boron-Doped Diamond Electrodes by Anodic Stripping Analysis. Electrochemical and Solid-State Letters, 1999, 2, 455.	2.2	40
169	Electrochemical Characterization of Highly Boronâ€Doped Diamond Microelectrodes in Aqueous Electrolyte. Journal of the Electrochemical Society, 1999, 146, 1469-1471.	2.9	57
170	Bandâ€Edge Movements of Semiconducting Diamond in Aqueous Electrolyte Induced by Anodic Surface Treatment. Journal of the Electrochemical Society, 1999, 146, 680-684.	2.9	83
171	Kinetic Investigations of Oxygen Reduction and Evolution Reactions on Lead Ruthenate Catalysts. Journal of the Electrochemical Society, 1999, 146, 4145-4151.	2.9	73
172	Introduction of Oxygen-Containing Functional Groups onto Diamond Electrode Surfaces by Oxygen Plasma and Anodic Polarization. Electrochemical and Solid-State Letters, 1999, 2, 522.	2.2	130
173	Control of the Dynamics of Photogenerated Carriers at the Boron-Doped Diamond/Electrolyte Interface by Variation of the Surface Termination. Electrochemical and Solid-State Letters, 1999, 2, 457.	2.2	14
174	Electrochemical selectivity for redox systems at oxygen-terminated diamond electrodes. Journal of Electroanalytical Chemistry, 1999, 473, 173-178.	3.8	239
175	Electroanalysis of dopamine and NADH at conductive diamond electrodes. Journal of Electroanalytical Chemistry, 1999, 473, 179-185.	3.8	133
176	The electrochemical response of highly boron-doped conductive diamond electrodes to Ce3+ ions in aqueous solution. Electrochimica Acta, 1999, 44, 3441-3449.	5.2	61
177	Electrochemical reduction of Cu2+ without surface trapping on synthetic conductive diamond electrodes. Chemical Physics Letters, 1999, 300, 409-413.	2.6	22
178	Investigations of ruthenium pyrochlores as bifunctional oxygen electrodes. Journal of Applied Electrochemistry, 1999, 29, 1463-1469.	2.9	56
179	Remote Bleaching of Methylene Blue by UV-Irradiated TiO2 in the Gas Phase. Journal of Physical Chemistry B, 1999, 103, 8033-8035.	2.6	157
180	Electrochemical Oxidation of NADH at Highly Boron-Doped Diamond Electrodes. Analytical Chemistry, 1999, 71, 2506-2511.	6.5	249

#	Article	IF	CITATIONS
181	Adhesion of Electroless Deposited Cu on ZnOâ€Coated Glass Substrates: The Effect of the ZnO Surface Morphology. Journal of the Electrochemical Society, 1999, 146, 2117-2122.	2.9	19
182	Electrochemical Behavior of Highly Conductive Boronâ€Doped Diamond Electrodes for Oxygen Reduction in Acid Solution. Journal of the Electrochemical Society, 1999, 146, 1081-1087.	2.9	131
183	Electrochemical Detection of Serotonin Using Conductive Diamond Electrodes. Chemistry Letters, 1999, 28, 1213-1214.	1.3	13
184	Effect of ZnO Film Thicknesses on the Adhesive Strength of Electroless Cu Deposits. Chemistry Letters, 1999, 28, 11-12.	1.3	1
185	ZnO Thin Film-Based New Electroless Metal Deposition. Electrochemistry, 1999, 67, 11-17.	1.4	1
186	Methanol-tolerant electrocatalysts for oxygen reduction in a polymer electrolyte membrane fuel cell. Journal of Applied Electrochemistry, 1998, 28, 673-682.	2.9	88
187	New Mesostructured Porous TiO2Surface Prepared Using a Two-Dimensional Array-Based Template of Silica Particles. Langmuir, 1998, 14, 6441-6447.	3.5	137
188	Effect of Heat Treatment on the Redox Properties of Iron Porphyrins Adsorbed on High Area Carbon in Acid Electrolytes:Â An in Situ Fe K-Edge X-ray Absorption Near-Edge Structure Study. Journal of Physical Chemistry B, 1998, 102, 4114-4117.	2.6	89
189	Electrochemical Behavior of Highly Conductive Boronâ€Doped Diamond Electrodes for Oxygen Reduction in Alkaline Solution. Journal of the Electrochemical Society, 1998, 145, 1870-1876.	2.9	324
190	Autoxidation of Acetaldehyde Initiated by TiO2Photocatalysis under Weak UV Illumination. Journal of Physical Chemistry B, 1998, 102, 2699-2704.	2.6	216
191	Photoelectrochemical Reduction of CO2in a High-Pressure CO2+ Methanol Medium at p-Type Semiconductor Electrodes. Journal of Physical Chemistry B, 1998, 102, 9834-9843.	2.6	64
192	Photoelectrochemical Reduction of  CO 2 at High Current Densities at pâ€InP Electrodes. Journal of the Electrochemical Society, 1998, 145, L82-L84.	2.9	21
193	Surface-Enhanced Raman Imaging (SERI) of Patterned Self-Assembled Monolayers of Various Derivatized Thiophenols on Silver. Bulletin of the Chemical Society of Japan, 1998, 71, 31-39.	3.2	8
194	Electrochemical Reduction of CO2in Micropores. Chemistry Letters, 1998, 27, 825-826.	1.3	11
195	Observation of Electrochemical C60Reduction of a Diamond Thin Film Electrode at Room Temperature. Chemistry Letters, 1998, 27, 503-504.	1.3	24
196	Surface Molecular Rearrangements on the (0001) Face of C70Single Crystals. Japanese Journal of Applied Physics, 1997, 36, 3903-3908.	1.5	3
197	Observation of Photocurrent from Bandâ€toâ€Band Excitation of Semiconducting pâ€Type Diamond Thin Film Electrodes. Journal of the Electrochemical Society, 1997, 144, L142-L145.	2.9	53
198	Electrochemical Modulation of Molecular Conversion in an Azobenzene-Terminated Self-Assembled Monolayer Film:Â An in Situ UVâ^'Visible and Infrared Study. Langmuir, 1997, 13, 4644-4651.	3 . 5	44

#	Article	IF	Citations
199	Electrostatically Induced Isomerization of Azobenzene Derivatives in Langmuirâ'Blodgett Films. Journal of Physical Chemistry B, 1997, 101, 7422-7427.	2.6	32
200	Structural investigation of azobenzene-containing self-assembled monolayer films. Journal of Electroanalytical Chemistry, 1997, 438, 213-219.	3.8	75
201	Investigation of the Surface Morphology and Photoisomerization of an Azobenzene-Containing Ultrathin Film. Langmuir, 1996, 12, 2052-2057.	3.5	60
202	Imaging of One-Dimensional Conducting Pt Complexes Using Atomic Force Microscopy. Chemistry Letters, 1995, 24, 879-880.	1.3	3
203	Novel in situ and ex situ techniques for the study of lithium/electrolyte interfaces. Journal of Power Sources, 1995, 54, 20-27.	7.8	11
204	In Situ Xâ€Ray Absorption Fine Structure Measurements of LaNi5 Electrodes in Alkaline Electrolytes. Journal of the Electrochemical Society, 1995, 142, 824-828.	2.9	19
205	In Situ La, Ce, and Nd Lâ€Edge Xâ€Ray Absorption Fine Structure Study of an Intermetallic Metal Hydride Electrode in an Operating Alkaline Battery. Journal of the Electrochemical Society, 1995, 142, L76-L78.	2.9	6
206	In Situ Extended X-ray Absorption Fine Structure of an Iron Porphyrin Irreversibly Adsorbed on an Electrode Surface. The Journal of Physical Chemistry, 1995, 99, 10359-10364.	2.9	20
207	Underpotential Deposition of Lithium on Polycrystalline Gold from a LiClO4/Poly(ethylene oxide) Solid Polymer Electrolyte in Ultrahigh Vacuum. The Journal of Physical Chemistry, 1995, 99, 11739-11741.	2.9	17
208	Electrochemistry in Ultrahigh Vacuum: Intercalation of Lithium into the Basal Plane of Highly Oriented Pyrolytic Graphite from a Poly(ethylene oxide)/LiClO4 Solid Polymer Electrolyte. The Journal of Physical Chemistry, 1995, 99, 11797-11800.	2.9	3
209	Electrochemical Insertion of Lithium into Pyrite from Nonaqueous Electrolytes at Room Temperature: An in Situ Fe K-Edge X-ray Absorption Fine Structure Study. The Journal of Physical Chemistry, 1995, 99, 3732-3735.	2.9	24
210	A Polymer Electrolyte for Operation at Temperatures up to 200°C. Journal of the Electrochemical Society, 1994, 141, L46-L48.	2.9	282
211	In situ x-ray absorption fine structure studies of foreign metal ions in nickel hydrous oxide electrodes in alkaline electrolytes. The Journal of Physical Chemistry, 1994, 98, 10269-10276.	2.9	55
212	Transition-Metal Oxide Electrocatalysts for O2 Electrodes: The Pyrochlores. , 1992, , 93-106.		8
213	Electrocatalysis for oxygen electrodes in fuel cells and water electrolyzers for space applications. Journal of Power Sources, 1990, 29, 413-422.	7.8	33
214	The electrochemistry of graphite and modified graphite surfaces: the reduction of O2. Electrochimica Acta, 1989, 34, 1733-1737.	5.2	142
215	Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction. Journal of Applied Electrochemistry, 1989, 19, 19-27.	2.9	622
216	Transition metal macrocycles supported on high area carbon: Pyrolysisâ€"mass spectrometry studies. Electrochimica Acta, 1986, 31, 1247-1258.	5.2	134

#	Article	IF	CITATIONS
217	Electrochemical Determination of Cation Radical Stabilities of Monomethylbenzo[a]pyrenes. Journal of the Electrochemical Society, 1983, 130, 597-603.	2.9	6
218	Electrochemically activated binding of benzo[a]pyrene and 6-methylbenzo[a]pyrene to DNA. Journal of the American Chemical Society, 1981, 103, 2123-2124.	13.7	6
219	Excited state intermediates probed by electrogenerated chemiluminescence. Reviews of Chemical Intermediates, 1981, 4, 43-79.	1.1	41
220	Algorithm for the determination of decay rate constants by reversal current chronopotentiometry. Analytical Chemistry, 1979, 51, 585-586.	6.5	5