Yuesi Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9411317/publications.pdf

Version: 2024-02-01

13099 20358 18,092 321 68 citations h-index papers

g-index 333 333 333 10513 docs citations times ranked citing authors all docs

116

#	Article	IF	CITATIONS
1	Drivers of improved PM _{2.5} air quality in China from 2013 to 2017. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24463-24469.	7.1	1,193
2	Persistent sulfate formation from London Fog to Chinese haze. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13630-13635.	7.1	1,044
3	Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. Science China Earth Sciences, 2014, 57, 14-25.	5.2	626
4	Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days. Scientific Reports, 2014, 4, 4172.	3.3	426
5	Mixing layer height and its implications for air pollution over Beijing, China. Atmospheric Chemistry and Physics, 2016, 16, 2459-2475.	4.9	335
6	Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017. National Science Review, 2020, 7, 1331-1339.	9.5	284
7	Fossil Fuel Combustion-Related Emissions Dominate Atmospheric Ammonia Sources during Severe Haze Episodes: Evidence from $\langle \sup 15 \langle \sup \rangle$ N-Stable Isotope in Size-Resolved Aerosol Ammonium. Environmental Science & Environmen	10.0	261
8	Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant and Soil, 2008, 311, 211-234.	3.7	248
9	Health impacts and economic losses assessment of the 2013 severe haze event in Beijing area. Science of the Total Environment, 2015, 511, 553-561.	8.0	237
10	Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	235
11	The heaviest particulate air-pollution episodes occurred in northern China in January, 2013: Insights gained from observation. Atmospheric Environment, 2014, 92, 546-556.	4.1	212
12	Impacts of soil moisture on nitrous oxide emission from croplands: a case study on the rice-based agro-ecosystem in Southeast China. Chemosphere, 2000, 2, 207-224.	1.2	206
13	Seasonal and diurnal variation in particulate matter (PM10 and PM2.5) at an urban site of Beijing: analyses from a 9-year study. Environmental Science and Pollution Research, 2015, 22, 627-642.	5.3	180
14	Chemical characterization and source identification of PM _{2.5} at multiple sites in the Beijing–Tianjin–Hebei region, China. Atmospheric Chemistry and Physics, 2017, 17, 12941-12962.	4.9	178
15	Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China. Atmospheric Research, 2016, 176-177, 64-74.	4.1	177
16	Long-range transport and regional sources of PM2.5 in Beijing based on long-term observations from 2005 to 2010. Atmospheric Research, 2015, 157, 37-48.	4.1	168
17	Size-resolved aerosol chemical analysis of extreme haze pollution events during early 2013 in urban Beijing, China. Journal of Hazardous Materials, 2014, 279, 452-460.	12.4	167
18	Aerosol optical depth (AOD) and Ãngström exponent of aerosols observed by the Chinese Sun Hazemeter Network from August 2004 to September 2005. Journal of Geophysical Research, 2007, 112, .	3.3	166

#	Article	IF	CITATIONS
19	VOC characteristics, emissions and contributions to SOA formation during hazy episodes. Atmospheric Environment, 2016, 141, 560-570.	4.1	161
20	Analysis of heavy pollution episodes in selected cities of northern China. Atmospheric Environment, 2012, 50, 338-348.	4.1	152
21	Identifying Ammonia Hotspots in China Using a National Observation Network. Environmental Science & Environmental & En	10.0	146
22	Characteristics of PM _{2.5} mass concentrations and chemical species in urban and background areas of China: emerging results from the CARE-China network. Atmospheric Chemistry and Physics, 2018, 18, 8849-8871.	4.9	144
23	Effects of environmental factors on N2O emission from and CH4 uptake by the typical grasslands in the Inner Mongolia. Chemosphere, 2005, 58, 205-215.	8.2	140
24	Seasonal variation and secondary formation of size-segregated aerosol water-soluble inorganic ions during pollution episodes in Beijing. Atmospheric Research, 2016, 168, 70-79.	4.1	139
25	Control of particulate nitrate air pollution in China. Nature Geoscience, 2021, 14, 389-395.	12.9	139
26	An unexpected catalyst dominates formation and radiative forcing of regional haze. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3960-3966.	7.1	132
27	Characteristics, source apportionment and reactivity of ambient volatile organic compounds at Dinghu Mountain in Guangdong Province, China. Science of the Total Environment, 2016, 548-549, 347-359.	8.0	125
28	A novel technique for quantifying the regional component of urban aerosol solely from its sawtooth cycles. Journal of Geophysical Research, 2008, 113 , .	3.3	121
29	The acute effects of fine particles on respiratory mortality and morbidity in Beijing, 2004–2009. Environmental Science and Pollution Research, 2013, 20, 6433-6444.	5.3	120
30	The vertical distribution of PM2.5 and boundary-layer structure during summer haze in Beijing. Atmospheric Environment, 2013, 74, 413-421.	4.1	116
31	The Campaign on Atmospheric Aerosol Research Network of China: CARE-China. Bulletin of the American Meteorological Society, 2015, 96, 1137-1155.	3.3	115
32	Trends in particulate matter and its chemical compositions in China from 2013–2017. Science China Earth Sciences, 2019, 62, 1857-1871.	5.2	111
33	Validation and understanding of Moderate Resolution Imaging Spectroradiometer aerosol products (C5) using groundâ€based measurements from the handheld Sun photometer network in China. Journal of Geophysical Research, 2007, 112, .	3.3	108
34	First observationâ€based estimates of cloudâ€free aerosol radiative forcing across China. Journal of Geophysical Research, 2010, 115, .	3.3	108
35	Characterization of the size-segregated water-soluble inorganic ions in the Jing-Jin-Ji urban agglomeration: Spatial/temporal variability, size distribution and sources. Atmospheric Environment, 2013, 77, 250-259.	4.1	106
36	Characteristics of atmospheric organic and elemental carbon aerosols in urban Beijing, China. Atmospheric Environment, 2016, 125, 293-306.	4.1	104

#	Article	IF	Citations
37	The empirical relationship between the PM2.5 concentration and aerosol optical depth over the background of North China from 2009 to 2011. Atmospheric Research, 2014, 138, 179-188.	4.1	97
38	Trace elements in particulate matter from metropolitan regions of Northern China: Sources, concentrations and size distributions. Science of the Total Environment, 2015, 537, 9-22.	8.0	97
39	Aerosol single scattering albedo estimated across China from a combination of ground and satellite measurements. Journal of Geophysical Research, 2007, 112, .	3.3	94
40	Ambient volatile organic compounds in a suburban site between Beijing and Tianjin: Concentration levels, source apportionment and health risk assessment. Science of the Total Environment, 2019, 695, 133889.	8.0	94
41	In situ measurements of trace gases and aerosol optical properties at a rural site in northern China during East Asian Study of Tropospheric Aerosols: An International Regional Experiment 2005. Journal of Geophysical Research, 2007, 112 , .	3.3	91
42	The Influence of Climate Factors, Meteorological Conditions, and Boundary-Layer Structure on Severe Haze Pollution in the Beijing-Tianjin-Hebei Region during January 2013. Advances in Meteorology, 2014, 2014, 1-14.	1.6	91
43	Haze insights and mitigation in China: An overview. Journal of Environmental Sciences, 2014, 26, 2-12.	6.1	91
44	Redefining the importance of nitrate during haze pollution to help optimize an emission control strategy. Atmospheric Environment, 2016, 141, 197-202.	4.1	90
45	Mechanism for the formation and microphysical characteristics of submicron aerosol during heavy haze pollution episode in the Yangtze River Delta, China. Science of the Total Environment, 2014, 490, 501-508.	8.0	89
46	Study on dissolved organic carbon in precipitation in Northern China. Atmospheric Environment, 2010, 44, 2350-2357.	4.1	88
47	Association between particulate matter and its chemical constituents of urban air pollution and daily mortality or morbidity in Beijing City. Environmental Science and Pollution Research, 2015, 22, 358-368.	5.3	88
48	Seasonal variations in aerosol optical properties over China. Journal of Geophysical Research, 2011, 116, .	3.3	87
49	Responses of CO2, CH4 and N2O fluxes to livestock exclosure in an alpine steppe on the Tibetan Plateau, China. Plant and Soil, 2012, 359, 45-55.	3.7	87
50	Characteristics of aerosol size distributions and chemical compositions during wintertime pollution episodes in Beijing. Atmospheric Research, 2016, 168, 1-12.	4.1	87
51	Aerosol chemical compositions in the North China Plain and the impact on the visibility in Beijing and Tianjin. Atmospheric Research, 2018, 201, 235-246.	4.1	85
52	Spatiotemporal patterns and source implications of aromatic hydrocarbons at six rural sites across China's developed coastal regions. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6669-6687.	3.3	84
53	The empirical correlations between PM2.5, PM10 and AOD in the Beijing metropolitan region and the PM2.5, PM10 distributions retrieved by MODIS. Environmental Pollution, 2016, 216, 350-360.	7.5	84
54	Characteristics of chemical composition and seasonal variations of PM2.5 in Shijiazhuang, China: Impact of primary emissions and secondary formation. Science of the Total Environment, 2019, 677, 215-229.	8.0	84

#	Article	IF	CITATIONS
55	Impact of air pollution control measures and regional transport on carbonaceous aerosols in fine particulate matter in urban Beijing, China: insights gained from long-term measurement. Atmospheric Chemistry and Physics, 2019, 19, 8569-8590.	4.9	81
56	Chemical composition and size distribution of airborne particulate matters in Beijing during the 2008 Olympics. Atmospheric Environment, 2012, 50, 278-286.	4.1	78
57	The characteristics, seasonal variation and source apportionment of VOCs at Gongga Mountain, China. Atmospheric Environment, 2014, 88, 297-305.	4.1	78
58	Mixing layer height on the North China Plain and meteorological evidence of serious air pollution in southern Hebei. Atmospheric Chemistry and Physics, 2018, 18, 4897-4910.	4.9	78
59	Nitrogen-regulated effects of free-air CO2 enrichment on methane emissions from paddy rice fields. Global Change Biology, 2006, 12, 1717-1732.	9.5	77
60	Ambient air benzene at background sites in China's most developed coastal regions: Exposure levels, source implications and health risks. Science of the Total Environment, 2015, 511, 792-800.	8.0	77
61	Characteristics of fine particulate matter and its sources in an industrialized coastal city, Ningbo, Yangtze River Delta, China. Atmospheric Research, 2018, 203, 105-117.	4.1	77
62	Modelling study of boundary-layer ozone over northern China - Part I: Ozone budget in summer. Atmospheric Research, 2017, 187, 128-137.	4.1	76
63	Seasonal variation and source apportionment of organic and inorganic compounds in PM2.5 and PM10 particulates in Beijing, China. Journal of Environmental Sciences, 2013, 25, 741-750.	6.1	74
64	The carbonaceous aerosol levels still remain a challenge in the Beijing-Tianjin-Hebei region of China: Insights from continuous high temporal resolution measurements in multiple cities. Environment International, 2019, 126, 171-183.	10.0	73
65	Exploring the regional pollution characteristics and meteorological formation mechanism of PM2.5 in North China during 2013–2017. Environment International, 2020, 134, 105283.	10.0	73
66	The Stove, Dome, and Umbrella Effects of Atmospheric Aerosol on the Development of the Planetary Boundary Layer in Hazy Regions. Geophysical Research Letters, 2020, 47, e2020GL087373.	4.0	73
67	Aerosol optical depth over the Tibetan Plateau and its relation to aerosols over the Taklimakan Desert. Geophysical Research Letters, 2008, 35, .	4.0	72
68	Size-resolved aerosol trace elements at a rural mountainous site in Northern China: Importance of regional transport. Science of the Total Environment, 2013, 461-462, 761-771.	8.0	72
69	Variability and reduction of atmospheric pollutants in Beijing and its surrounding area during the Beijing 2008 Olympic Games. Science Bulletin, 2010, 55, 1937-1944.	1.7	70
70	Nitrate-dominated PM _{2.5} and elevation of particle pH observed in urban Beijing during the winter of 2017. Atmospheric Chemistry and Physics, 2020, 20, 5019-5033.	4.9	70
71	Regional pollution and its formation mechanism over North China Plain: A case study with ceilometer observations and model simulations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14,574.	3.3	69
72	One year online measurements of water-soluble ions at the industrially polluted town of Nanjing, China: Sources, seasonal and diurnal variations. Chemosphere, 2016, 148, 526-536.	8.2	69

#	Article	IF	CITATIONS
73	Mortality and air pollution in Beijing: The long-term relationship. Atmospheric Environment, 2017, 150, 238-243.	4.1	69
74	Characterization of volatile organic compounds in the urban area of Beijing from 2000 to 2007. Journal of Environmental Sciences, 2012, 24, 95-101.	6.1	68
75	Microbial N Turnover and N-Oxide (N2O/NO/NO2) Fluxes in Semi-arid Grassland of Inner Mongolia. Ecosystems, 2007, 10, 623-634.	3.4	67
76	Plant and soil responses of an alpine steppe on the Tibetan Plateau to multi-level nitrogen addition. Plant and Soil, 2013, 373, 515-529.	3.7	66
77	Size-resolved aerosol water-soluble ions during the summer and winter seasons in Beijing: Formation mechanisms of secondary inorganic aerosols. Chemosphere, 2017, 183, 119-131.	8.2	66
78	In situ measurements of SO2, NOx, NOy, and O3 in Beijing, China during August 2008. Science of the Total Environment, 2011, 409, 933-940.	8.0	65
79	Isotopic evidence for enhanced fossil fuel sources of aerosol ammonium in the urban atmosphere. Environmental Pollution, 2018, 238, 942-947.	7.5	65
80	Estimates of Health Impacts and Radiative Forcing in Winter Haze in Eastern China through Constraints of Surface PM _{2.5} Predictions. Environmental Science & Eamp; Technology, 2017, 51, 2178-2185.	10.0	64
81	The variability of biomass burning and its influence on regional aerosol properties during the wheat harvest season in North China. Atmospheric Research, 2015, 157, 153-163.	4.1	63
82	Significant impact of coal combustion on VOCs emissions in winter in a North China rural site. Science of the Total Environment, 2020, 720, 137617.	8.0	63
83	Meteorological mechanism for a large-scale persistent severe ozone pollution event over eastern China in 2017. Journal of Environmental Sciences, 2020, 92, 187-199.	6.1	63
84	Characterization and source identification of fine particulate matter in urban Beijing during the 2015 Spring Festival. Science of the Total Environment, 2018, 628-629, 430-440.	8.0	62
85	Characteristics of fine particle explosive growth events in Beijing, China: Seasonal variation, chemical evolution pattern and formation mechanism. Science of the Total Environment, 2019, 687, 1073-1086.	8.0	61
86	Quantifying the impact of synoptic circulation patterns on ozone variability in northern China from April to October 2013–2017. Atmospheric Chemistry and Physics, 2019, 19, 14477-14492.	4.9	61
87	Considerable methane uptake by alpine grasslands despite the cold climate: ⟨i⟩in situ⟨/i⟩ measurements on the central Tibetan Plateau, 2008–2013. Global Change Biology, 2015, 21, 777-788.	9.5	60
88	Distribution and sources of solvent extractable organic compounds in PM2.5 during 2007 Chinese Spring Festival in Beijing. Journal of Environmental Sciences, 2009, 21, 142-149.	6.1	59
89	Characteristics of PM2.5 pollution in Beijing after the improvement of air quality. Journal of Environmental Sciences, 2021, 100, 1-10.	6.1	59
90	Revisiting the role of CH ₄ emissions from alpine wetlands on the Tibetan Plateau: Evidence from two in situ measurements at 4758 and 4320 m above sea level. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1741-1750.	3.0	58

#	Article	IF	CITATIONS
91	Effects of elevated CO2and N fertilization on CH4emissions from paddy rice fields. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	57
92	A new carrier gas type for accurate measurement of N2O by GC-ECD. Advances in Atmospheric Sciences, 2010, 27, 1322-1330.	4.3	57
93	Trends in aerosol optical properties over the Bohai Rim in Northeast China from 2004 to 2010. Atmospheric Environment, 2011, 45, 6317-6325.	4.1	56
94	Size distributions and health risks of particulate trace elements in rural areas in northeastern China. Atmospheric Research, 2016, 168, 191-204.	4.1	56
95	Assessing the formation and evolution mechanisms of severe haze pollution in the Beijing–Tianjin–Hebei region using process analysis. Atmospheric Chemistry and Physics, 2019, 19, 10845-10864.	4.9	56
96	Source Apportionment of Aerosol Ammonium in an Ammoniaâ∈Rich Atmosphere: An Isotopic Study of Summer Clean and Hazy Days in Urban Beijing. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5681-5689.	3.3	55
97	Characterization of black carbon in an urban-rural fringe area of Beijing. Environmental Pollution, 2017, 223, 524-534.	7.5	54
98	Continuous and comprehensive atmospheric observations in Beijing: a station to understand the complex urban atmospheric environment. Big Earth Data, 2020, 4, 295-321.	4.4	54
99	Levels and sources of hourly PM2.5-related elements during the control period of the COVID-19 pandemic at a rural site between Beijing and Tianjin. Science of the Total Environment, 2020, 744, 140840.	8.0	54
100	Influence of vegetation types and soil properties on microbial biomass carbon and metabolic quotients in temperate volcanic and tropical forest soils. Soil Science and Plant Nutrition, 2007, 53, 430-440.	1.9	53
101	Acid neutralization of precipitation in Northern China. Journal of the Air and Waste Management Association, 2012, 62, 204-211.	1.9	53
102	Carbon dioxide fluxes from an urban area in Beijing. Atmospheric Research, 2012, 106, 139-149.	4.1	53
103	The formation mechanism of air pollution episodes in Beijing city: Insights into the measured feedback between aerosol radiative forcing and the atmospheric boundary layer stability. Science of the Total Environment, 2019, 692, 371-381.	8.0	53
104	Evaluation of the MODIS aerosol optical depth retrieval over different ecosystems in China during EAST-AIRE. Atmospheric Environment, 2007, 41, 7138-7149.	4.1	52
105	Vertical observations and analysis of PM2.5, O3, and NO x at Beijing and Tianjin from towers during summer and Autumn 2006. Advances in Atmospheric Sciences, 2010, 27, 123-136.	4.3	52
106	Different HONO Sources for Three Layers at the Urban Area of Beijing. Environmental Science & Emp; Technology, 2020, 54, 12870-12880.	10.0	52
107	Time-series analysis of mortality effects from airborne particulate matter size fractions in Beijing. Atmospheric Environment, 2013, 81, 253-262.	4.1	51
108	Three-year study of CO2 efflux and CH4/N2O fluxes at an alpine steppe site on the central Tibetan Plateau and their responses to simulated N deposition. Geoderma, 2014, 232-234, 88-96.	5.1	50

#	Article	IF	CITATIONS
109	Source appointment of fine particle number and volume concentration during severe haze pollution in Beijing in January 2013. Environmental Science and Pollution Research, 2016, 23, 6845-6860.	5.3	50
110	Evolution of boundary layer ozone in Shijiazhuang, a suburban site on the North China Plain. Journal of Environmental Sciences, 2019, 83, 152-160.	6.1	50
111	Atmospheric levels, variations, sources and health risk of PM2.5-bound polycyclic aromatic hydrocarbons during winter over the North China Plain. Science of the Total Environment, 2019, 655, 581-590.	8.0	50
112	A comparison between measured and modeled N2O emissions from Inner Mongolian semi-arid grassland. Plant and Soil, 2003, 255, 513-528.	3.7	49
113	Water-soluble ions in PM2.5 during spring haze and dust periods in Chengdu, China: Variations, nitrate formation and potential source areas. Environmental Pollution, 2018, 243, 1740-1749.	7.5	49
114	Reductions of PM2.5 in Beijing-Tianjin-Hebei urban agglomerations during the 2008 Olympic Games. Advances in Atmospheric Sciences, 2012, 29, 1330-1342.	4.3	48
115	Two-year continuous measurements of carbonaceous aerosols in urban Beijing, China: Temporal variations, characteristics and source analyses. Chemosphere, 2018, 200, 191-200.	8.2	48
116	Characteristics and Sources of Hourly Trace Elements in Airborne Fine Particles in Urban Beijing, China. Journal of Geophysical Research D: Atmospheres, 2019, 124, 11595-11613.	3.3	48
117	Improving simulations of sulfate aerosols during winter haze over Northern China: the impacts of heterogeneous oxidation by NO2. Frontiers of Environmental Science and Engineering, 2016, 10, 1.	6.0	47
118	The observationâ€based relationships between PM _{2.5} and AOD over China. Journal of Geophysical Research D: Atmospheres, 2016, 121, 10,701.	3.3	47
119	Aerosol direct radiative forcing in desert and semi-desert regions of northwestern China. Atmospheric Research, 2016, 171, 56-65.	4.1	47
120	China's emission control strategies have suppressed unfavorable influences of climate on wintertime PM _{2.5} concentrations in Beijing since 2002. Atmospheric Chemistry and Physics, 2020, 20, 1497-1505.	4.9	47
121	Assessment and comparison of three years of Terra and Aqua MODIS Aerosol Optical Depth Retrieval (C005) in Chinese terrestrial regions. Atmospheric Research, 2010, 97, 229-240.	4.1	46
122	Observation of aerosol optical properties and particulate pollution at background station in the Pearl River Delta region. Atmospheric Research, 2014, 143, 216-227.	4.1	46
123	Effect of the "coal to gas―project on atmospheric NOX during the heating period at a suburban site between Beijing and Tianjin. Atmospheric Research, 2020, 241, 104977.	4.1	46
124	Bypassing the NOx titration trap in ozone pollution control in Beijing. Atmospheric Research, 2021, 249, 105333.	4.1	46
125	Fluxes of carbon dioxide and methane from swamp and impact factors in Sanjiang Plain, China. Science Bulletin, 2003, 48, 2749-2753.	1.7	45
126	Spatiotemporal characteristics of photosynthetically active radiation in China. Journal of Geophysical Research, 2007, 112 , .	3.3	45

#	Article	IF	Citations
127	Clear-sky aerosol optical depth over East China estimated from visibility measurements and chemical transport modeling. Atmospheric Environment, 2014, 95, 258-267.	4.1	45
128	Quantification of the impact of aerosol on broadband solar radiation in North China. Scientific Reports, 2017, 7, 44851.	3.3	45
129	The first validation of the precipitable water vapor of multisensor satellites over the typical regions in China. Remote Sensing of Environment, 2018, 206, 107-122.	11.0	45
130	Characteristics of ozone and its precursors in Northern China: A comparative study of three sites. Atmospheric Research, 2013, 132-133, 450-459.	4.1	44
131	Optical properties and size distribution of dust aerosols over the Tengger Desert in Northern China. Atmospheric Environment, 2005, 39, 5971-5978.	4.1	43
132	Vertical characteristics of VOCs in the lower troposphere over the North China Plain during pollution periods. Environmental Pollution, 2018, 236, 907-915.	7.5	43
133	Significant changes in autumn and winter aerosol composition and sources in Beijing from 2012 to 2018: Effects of clean air actions. Environmental Pollution, 2021, 268, 115855.	7.5	43
134	Seasonal characteristics of nitric oxide emission from a typical Chinese rice-wheat rotation during the non-waterlogged period. Global Change Biology, 2003, 9, 219-227.	9.5	41
135	Ultraviolet radiation spatio-temporal characteristics derived from the ground-based measurements taken in China. Atmospheric Environment, 2007, 41, 5707-5718.	4.1	41
136	Assessing the effects of trans-boundary aerosol transport between various city clusters on regional haze episodes in spring over East China. Tellus, Series B: Chemical and Physical Meteorology, 2022, 65, 20052.	1.6	41
137	Vehicular emissions in China in 2006 and 2010. Journal of Environmental Sciences, 2016, 48, 179-192.	6.1	41
138	Evaluation and uncertainty investigation of the NO ₂ , CO and NH ₃ modeling over China under the framework of MICS-AsiaÂIII. Atmospheric Chemistry and Physics, 2020, 20, 181-202.	4.9	41
139	Distinguishing the roles of meteorology, emission control measures, regional transport, and co-benefits of reduced aerosol feedbacks in "APEC Blueâ€. Atmospheric Environment, 2017, 167, 476-486.	4.1	40
140	Systematic low bias of passive samplers in characterizing nitrogen isotopic composition of atmospheric ammonia. Atmospheric Research, 2020, 243, 105018.	4.1	40
141	Variation characteristics of ultraviolet radiation derived from measurement and reconstruction in Beijing, China. Tellus, Series B: Chemical and Physical Meteorology, 2022, 62, 100.	1.6	39
142	Detailed budget analysis of HONO in Beijing, China: Implication on atmosphere oxidation capacity in polluted megacity. Atmospheric Environment, 2021, 244, 117957.	4.1	39
143	Source apportionment of PM2.5 and visibility in Jinan, China. Journal of Environmental Sciences, 2021, 102, 207-215.	6.1	38
144	Increased inorganic aerosol fraction contributes to air pollution and haze in China. Atmospheric Chemistry and Physics, 2019, 19, 5881-5888.	4.9	37

#	Article	IF	CITATIONS
145	Light absorption properties of brown carbon (BrC) in autumn and winter in Beijing: Composition, formation and contribution of nitrated aromatic compounds. Atmospheric Environment, 2020, 223, 117289.	4.1	37
146	Vehicular Emissions Enhanced Ammonia Concentrations in Winter Mornings: Insights from Diurnal Nitrogen Isotopic Signatures. Environmental Science & En	10.0	37
147	In situ measurement of PM1 organic aerosol in Beijing winter using a high-resolution aerosol mass spectrometer. Science Bulletin, 2012, 57, 819-826.	1.7	36
148	Impact of the coal banning zone on visibility in the Beijing-Tianjin-Hebei region. Science of the Total Environment, 2019, 692, 402-410.	8.0	36
149	Wintertime aerosol chemistry in Beijing during haze period: Significant contribution from secondary formation and biomass burning emission. Atmospheric Research, 2019, 218, 25-33.	4.1	36
150	Rapid formation of intense haze episodes via aerosol–boundary layer feedback in Beijing. Atmospheric Chemistry and Physics, 2020, 20, 45-53.	4.9	36
151	Revisiting the Concentration Observations and Source Apportionment of Atmospheric Ammonia. Advances in Atmospheric Sciences, 2020, 37, 933-938.	4.3	36
152	The empirical relationship between PM2.5 and AOD in Nanjing of the Yangtze River Delta. Atmospheric Pollution Research, 2017, 8, 233-243.	3.8	35
153	Methane and nitrous oxide emissions from three paddy rice based cultivation systems in Southwest China. Advances in Atmospheric Sciences, 2006, 23, 415-424.	4.3	34
154	Insight into the formation and evolution of secondary organic aerosol in the megacity of Beijing, China. Atmospheric Environment, 2020, 220, 117070.	4.1	34
155	Measurements and estimations of photosynthetically active radiation in Beijing. Atmospheric Research, 2007, 85, 361-371.	4.1	33
156	Chemical composition of size-segregated aerosols in Lhasa city, Tibetan Plateau. Atmospheric Research, 2016, 174-175, 142-150.	4.1	33
157	Aggravated ozone pollution in the strong free convection boundary layer. Science of the Total Environment, 2021, 788, 147740.	8.0	33
158	Vertically decreased VOC concentration and reactivity in the planetary boundary layer in winter over the North China Plain. Atmospheric Research, 2020, 240, 104930.	4.1	32
159	Haze pollution under a high atmospheric oxidization capacity in summer in Beijing: insights into formation mechanism of atmospheric physicochemical processes. Atmospheric Chemistry and Physics, 2020, 20, 4575-4592.	4.9	31
160	Validation of MODIS aerosol products by CSHNET over China. Science Bulletin, 2007, 52, 1708-1718.	1.7	30
161	Analysis of a long-term measurement of air pollutants (2007–2011) in North China Plain (NCP); Impact of emission reduction during the Beijing Olympic Games. Chemosphere, 2016, 159, 647-658.	8.2	30
162	Size-segregated particulate matter bound polycyclic aromatic hydrocarbons (PAHs) over China: Size distribution, characteristics and health risk assessment. Science of the Total Environment, 2019, 685, 116-123.	8.0	30

#	Article	IF	CITATIONS
163	In situ continuous observation of hourly elements in PM2.5 in urban beijing, China: Occurrence levels, temporal variation, potential source regions and health risks. Atmospheric Environment, 2020, 222, 117164.	4.1	30
164	Impact of urbanization on air quality in the Yangtze River Delta during the COVID-19 lockdown in China. Journal of Cleaner Production, 2021, 296, 126561.	9.3	30
165	Characterization of organic aerosols in Beijing using an aerodyne high-resolution aerosol mass spectrometer. Advances in Atmospheric Sciences, 2015, 32, 877-888.	4.3	29
166	Ion balance and acidity of size-segregated particles during haze episodes in urban Beijing. Atmospheric Research, 2018, 201, 159-167.	4.1	29
167	Thermal internal boundary layer and its effects on air pollutants during summer in a coastal city in North China. Journal of Environmental Sciences, 2018, 70, 37-44.	6.1	29
168	Mixing layer transport flux of particulate matter in Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 9531-9540.	4.9	29
169	Significant decreases in the volatile organic compound concentration, atmospheric oxidation capacity and photochemical reactivity during the National Day holiday over a suburban site in the North China Plain. Environmental Pollution, 2020, 263, 114657.	7.5	29
170	Effects of soil temperature on nitric oxide emission from a typical Chinese rice-wheat rotation during the non-waterlogged period. Global Change Biology, 2003, 9, 601-611.	9.5	28
171	Investigating the evolution of summertime secondary atmospheric pollutants in urban Beijing. Science of the Total Environment, 2016, 572, 289-300.	8.0	28
172	Characterization, mixing state, and evolution of single particles in a megacity of Sichuan Basin, southwest China. Atmospheric Research, 2018, 209, 179-187.	4.1	28
173	Global Importance of Hydroxymethanesulfonate in Ambient Particulate Matter: Implications for Air Quality. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032706.	3.3	28
174	The impact threshold of the aerosol radiative forcing on the boundary layer structure in the pollution region. Atmospheric Chemistry and Physics, 2021, 21, 5739-5753.	4.9	27
175	Elucidating the quantitative characterization of atmospheric oxidation capacity in Beijing, China. Science of the Total Environment, 2021, 771, 145306.	8.0	27
176	Influences of the clearness index on UV solar radiation for two locations in the Tibetan Plateau-Lhasa and Haibei. Advances in Atmospheric Sciences, 2008, 25, 885-896.	4.3	26
177	Chemical characteristics of PM2.5 during haze episodes in spring 2013 in Beijing. Urban Climate, 2017, 22, 51-63.	5.7	26
178	Anthropogenic aerosol optical and radiative properties in the typical urban/suburban regions in China. Atmospheric Research, 2017, 197, 177-187.	4.1	26
179	Characterization of submicron particles during autumn in Beijing, China. Journal of Environmental Sciences, 2018, 63, 16-27.	6.1	26
180	The aerosol optical properties and PM 2.5 components over the world's largest industrial zone in Tangshan, North China. Atmospheric Research, 2018, 201, 226-234.	4.1	26

#	Article	IF	CITATIONS
181	Emission characteristics of size distribution, chemical composition and light absorption of particles from field-scale crop residue burning in Northeast China. Science of the Total Environment, 2020, 710, 136304.	8.0	26
182	Exploring the inorganic and organic nitrate aerosol formation regimes at a suburban site on the North China Plain. Science of the Total Environment, 2021, 768, 144538.	8.0	26
183	Organic composition of gasoline and its potential effects on air pollution in North China. Science China Chemistry, 2015, 58, 1416-1425.	8.2	25
184	The PM2.5 threshold for aerosol extinction in the Beijing megacity. Atmospheric Environment, 2017, 167, 458-465.	4.1	25
185	Long-term trends in photosynthetically active radiation in Beijing. Advances in Atmospheric Sciences, 2010, 27, 1380-1388.	4.3	24
186	Characterization of fine particles during the 2014 Asia-Pacific economic cooperation summit: Number concentration, size distribution and sources. Tellus, Series B: Chemical and Physical Meteorology, 2022, 69, 1303228.	1.6	24
187	Atmospheric reactivity and oxidation capacity during summer at a suburban site between Beijing and Tianjin. Atmospheric Chemistry and Physics, 2020, 20, 8181-8200.	4.9	24
188	Nitrous oxide emissions from the wheat-growing season in eighteen Chinese paddy soils: an outdoor pot experiment. Biology and Fertility of Soils, 2002, 36, 411-417.	4.3	23
189	Aerosol optical properties affected by a strong dust storm over central and northern China. Advances in Atmospheric Sciences, 2010, 27, 562-574.	4.3	23
190	On-line measurement of water-soluble ions in ambient particles. Advances in Atmospheric Sciences, 2006, 23, 586-592.	4.3	22
191	Photometric measurements of spring aerosol optical properties in dust and non-dust periods in China. Atmospheric Environment, 2008, 42, 7981-7987.	4.1	22
192	Vertical ozone characteristics in urban boundary layer in Beijing. Environmental Monitoring and Assessment, 2013, 185, 5449-5460.	2.7	21
193	The Variations and Trends of MODIS C5 & C6 Products' Errors in the Recent Decade over the Background and Urban Areas of North China. Remote Sensing, 2016, 8, 754.	4.0	21
194	Impact of residual layer transport on air pollution in Beijing, China. Environmental Pollution, 2021, 271, 116325.	7. 5	21
195	Atmospheric ammonia and its effect on PM2.5 pollution in urban Chengdu, Sichuan Basin, China. Environmental Pollution, 2021, 291, 118195.	7. 5	21
196	Seasonal dynamics of soil CO2 effluxes with responses to environmental factors in lower subtropical forests of China. Science in China Series D: Earth Sciences, 2006, 49, 139-149.	0.9	20
197	Two ultraviolet radiation datasets that cover China. Advances in Atmospheric Sciences, 2017, 34, 805-815.	4.3	20
198	Greenhouse gas emissions as influenced by wetland vegetation degradation along a moisture gradient on the eastern Qinghai-Tibet Plateau of North-West China. Nutrient Cycling in Agroecosystems, 2018, 112, 335-354.	2.2	20

#	Article	IF	Citations
199	Typical polar organic aerosol tracers in PM2.5 over the North China Plain: Spatial distribution, seasonal variations, contribution and sources. Chemosphere, 2018, 209, 758-766.	8.2	20
200	PM2.5 Characteristics and Regional Transport Contribution in Five Cities in Southern North China Plain, During 2013–2015. Atmosphere, 2018, 9, 157.	2.3	20
201	Bias in ammonia emission inventory and implications on emission control of nitrogen oxides over North China Plain. Atmospheric Environment, 2019, 214, 116869.	4.1	20
202	Characteristics and mixing state of aerosol at the summit of Mount Tai (1534 m) in Central East China: First measurements with SPAMS. Atmospheric Environment, 2019, 213, 273-284.	4.1	20
203	Different roles of nitrate and sulfate in air pollution episodes in the North China Plain. Atmospheric Environment, 2020, 224, 117325.	4.1	20
204	Vertically increased NO3 radical in the nocturnal boundary layer. Science of the Total Environment, 2021, 763, 142969.	8.0	20
205	Significant contribution of spring northwest transport to volatile organic compounds in Beijing. Journal of Environmental Sciences, 2021, 104, 169-181.	6.1	20
206	Chemical composition, water content and size distribution of aerosols during different development stages of regional haze episodes over the North China Plain. Atmospheric Environment, 2021, 245, 118020.	4.1	19
207	Composition and sources of brown carbon aerosols in megacity Beijing during the winter of 2016. Atmospheric Research, 2021, 262, 105773.	4.1	19
208	Nationwide increase of polycyclic aromatic hydrocarbons in ultrafine particles during winter over China revealed by size-segregated measurements. Atmospheric Chemistry and Physics, 2020, 20, 14581-14595.	4.9	19
209	An Investigation on the Relationship Between Emission/Uptake of Greenhouse Gases and Environmental Factors in Serniarid Grassland. Advances in Atmospheric Sciences, 2003, 20, 119-127.	4.3	18
210	In situ measurements of NO, NO2, NOy, and O3 in Dinghushan (112°E, 23°N), China during autumn 2008. Atmospheric Environment, 2010, 44, 2079-2088.	4.1	18
211	The aerosol direct radiative forcing over the Beijing metropolitan area from 2004 to 2011. Journal of Aerosol Science, 2014, 69, 62-70.	3.8	18
212	Seasonal variation and sources of derivatized phenols in atmospheric fine particulate matter in North China Plain. Journal of Environmental Sciences, 2020, 89, 136-144.	6.1	18
213	Highly time-resolved chemical characterization and implications of regional transport for submicron aerosols in the North China Plain. Science of the Total Environment, 2020, 705, 135803.	8.0	18
214	Spatial and temporal variability of open biomass burning in Northeast China from 2003 to 2017. Atmospheric and Oceanic Science Letters, 2020, 13, 240-247.	1.3	18
215	Long-term variations of the PM2.5 concentration identified by MODIS in the tropical rain forest, Southeast Asia. Atmospheric Research, 2019, 219, 140-152.	4.1	17
216	Parameterized atmospheric oxidation capacity and speciated OH reactivity over a suburban site in the North China Plain: A comparative study between summer and winter. Science of the Total Environment, 2021, 773, 145264.	8.0	17

#	Article	IF	CITATIONS
217	Low particulate nitrate in the residual layer in autumn over the North China Plain. Science of the Total Environment, 2021, 782, 146845.	8.0	17
218	Evaluating the Effects of Springtime Dust Storms over Beijing and the Associated Characteristics of Sub-Micron Aerosol. Aerosol and Air Quality Research, 2017, 17, 680-692.	2.1	17
219	Air stagnation in China: Spatiotemporal variability and differing impact on PM2.5 and O3 during 2013–2018. Science of the Total Environment, 2022, 819, 152778.	8.0	17
220	Size distributions and elemental compositions of particulate matter on clear, hazy and foggy days in Beijing, China. Advances in Atmospheric Sciences, 2010, 27, 663-675.	4.3	16
221	Comparison of multi-empirical estimation models of photosynthetically active radiation under all sky conditions in Northeast China. Theoretical and Applied Climatology, 2014, 116, 119-129.	2.8	16
222	PAH contamination in road dust from a moderate city in North China: The significant role of traffic emission. Human and Ecological Risk Assessment (HERA), 2017, 23, 1072-1085.	3.4	16
223	The spatial representativeness of mixing layer height observations in the North China Plain. Atmospheric Research, 2018, 209, 204-211.	4.1	16
224	Seasonal variations in the highly time-resolved aerosol composition, sources and chemical processes of background submicron particles in the North China Plain. Atmospheric Chemistry and Physics, 2021, 21, 4521-4539.	4.9	16
225	Chemistry of new particle formation and growth events during wintertime in suburban area of Beijing: Insights from highly polluted atmosphere. Atmospheric Research, 2021, 255, 105553.	4.1	16
226	Molecular Composition of Oxygenated Organic Molecules and Their Contributions to Organic Aerosol in Beijing. Environmental Science & Eamp; Technology, 2022, 56, 770-778.	10.0	16
227	Concentrations and origins of atmospheric lead and other trace species at a rural site in northern China. Journal of Geophysical Research, 2010, 115, .	3.3	15
228	Relationship between net radiation and broadband solar radiation in the Tibetan Plateau. Advances in Atmospheric Sciences, 2012, 29, 135-143.	4.3	15
229	The impact of relative humidity on the size distribution and chemical processes of major water-soluble inorganic ions in the megacity of Chongqing, China. Atmospheric Research, 2017, 192, 19-29.	4.1	15
230	Secondary organic aerosols in Jinan, an urban site in North China: Significant anthropogenic contributions to heavy pollution. Journal of Environmental Sciences, 2019, 80, 107-115.	6.1	15
231	Modelling study of boundary-layer ozone over northern China - Part II: Responses to emission reductions during the Beijing Olympics. Atmospheric Research, 2017, 193, 83-93.	4.1	14
232	Molecular composition of organic aerosol over an agricultural site in North China Plain: Contribution of biogenic sources to PM2.5. Atmospheric Environment, 2017, 164, 448-457.	4.1	14
233	Chemical characteristics and source apportionment of PM2.5 in a petrochemical city: Implications for primary and secondary carbonaceous component. Journal of Environmental Sciences, 2021, 103, 322-335.	6.1	14
234	Evaluation and Evolution of MAX-DOAS-observed Vertical NO2 Profiles in Urban Beijing. Advances in Atmospheric Sciences, 2021, 38, 1188-1196.	4.3	14

#	Article	IF	CITATIONS
235	The difference in the boundary layer height between urban and suburban areas in Beijing and its implications for air pollution. Atmospheric Environment, 2021, 260, 118552.	4.1	14
236	Annual nonmethane hydrocarbon trends in Beijing from 2000 to 2019. Journal of Environmental Sciences, 2022, 112, 210-217.	6.1	14
237	Isoprene Mixing Ratios Measured at Twenty Sites in China During 2012–2014: Comparison With Model Simulation. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033523.	3.3	14
238	Significant reduction in atmospheric organic and elemental carbon in PM2.5 in 2+26 cities in northern China. Environmental Research, 2022, 211, 113055.	7. 5	14
239	Annual variation of carbon flux and impact factors in the tropical seasonal rain forest of xishuangbanna, SW China. Science in China Series D: Earth Sciences, 2006, 49, 150-162.	0.9	13
240	Optical properties of aerosols over a tropical rain forest in Xishuangbanna, South Asia. Atmospheric Research, 2016, 178-179, 187-195.	4.1	13
241	Reply to Comment on "Fossil Fuel Combustion-Related Emissions Dominate Atmospheric Ammonia Sources during Severe Haze Episodes: Evidence from ¹⁵ N-Stable Isotope in Size-Resolved Aerosol Ammonium†Environmental Science & Technology, 2016, 50, 10767-10768.	10.0	13
242	Estimating N2O emissions from soils under natural vegetation in China. Plant and Soil, 2019, 434, 271-287.	3.7	13
243	A new approach of the normalization relationship between PM2.5 and visibility and the theoretical threshold, a case in north China. Atmospheric Research, 2020, 245, 105054.	4.1	13
244	Vertical Evolution of Boundary Layer Volatile Organic Compounds in Summer over the North China Plain and the Differences with Winter. Advances in Atmospheric Sciences, 2021, 38, 1165-1176.	4.3	13
245	Environmental and health benefits of establishing a coal banning area in the Beijing-Tianjin-Hebei region of China. Atmospheric Environment, 2021, 247, 118191.	4.1	13
246	Variation characteristics of air combined pollution in Beijing City. Atmospheric Research, 2022, 274, 106197.	4.1	13
247	Characteristics of CO2, CH4 and N2O emissions from winter-fallowed paddy fields in hilly areas of South China. Frontiers of Agriculture in China, 2007, 1, 418-423.	0.2	12
248	Nonmethane hydrocarbon measurements at a suburban site in Changsha City, China. Science of the Total Environment, 2009, 408, 312-317.	8.0	12
249	Multilevel measurements of fluxes and turbulence over an urban landscape in Beijing. Tellus, Series B: Chemical and Physical Meteorology, 2022, 65, 20421.	1.6	12
250	Observational Studies and a Statistical Early Warning of Surface Ozone Pollution in Tangshan, the Largest Heavy Industry City of North China. International Journal of Environmental Research and Public Health, 2013, 10, 1048-1061.	2.6	12
251	Decreased gaseous carbonyls in the North China plain from 2004 to 2017 and future control measures. Atmospheric Environment, 2019, 218, 117015.	4.1	12
252	Aerosol optical characteristics and radiative forcing in urban Beijing. Atmospheric Environment, 2019, 212, 41-53.	4.1	12

#	Article	IF	CITATIONS
253	Characteristics of chemical profile, sources and PAH toxicity of PM2.5 in beijing in autumn-winter transit season with regard to domestic heating, pollution control measures and meteorology. Chemosphere, 2021, 276, 130143.	8.2	12
254	A closure study of aerosol optical properties as a function of RH using a κ-AMS-BC-Mie model in Beijing, China. Atmospheric Environment, 2019, 197, 1-13.	4.1	11
255	Elucidating roles of near-surface vertical layer structure in different stages of PM2.5 pollution episodes over urban Beijing during 2004–2016. Atmospheric Environment, 2021, 246, 118157.	4.1	11
256	The influence of aerosols on the NO2 photolysis rate in a suburban site in North China. Science of the Total Environment, 2021, 767, 144788.	8.0	11
257	Insights into the chemistry of aerosol growth in Beijing: Implication of fine particle episode formation during wintertime. Chemosphere, 2021, 274, 129776.	8.2	11
258	High gaseous carbonyl concentrations in the upper boundary layer in Shijiazhuang, China. Science of the Total Environment, 2021, 799, 149438.	8.0	11
259	Characterization and source identification of submicron aerosol during serious haze pollution periods in Beijing. Journal of Environmental Sciences, 2022, 112, 25-37.	6.1	11
260	Decadal changes in ozone in the lower boundary layer over Beijing, China. Atmospheric Environment, 2022, 275, 119018.	4.1	11
261	Case study of the effects of aerosol chemical composition and hygroscopicity on the scattering coefficient in summer, Xianghe, southeast of Beijing, China. Atmospheric Research, 2019, 225, 81-87.	4.1	10
262	Characteristics and Source Apportionment of Metallic Elements in PM2.5 at Urban and Suburban Sites in Beijing: Implication of Emission Reduction. Atmosphere, 2019, 10, 105.	2.3	10
263	Seasonal variation and secondary formation of size-segregated aerosol water-soluble inorganic ions in a coast megacity of North China Plain. Environmental Science and Pollution Research, 2020, 27, 26750-26762.	5. 3	10
264	Physiochemistry characteristics and sources of submicron aerosols at the background area of North China Plain: Implication of air pollution control in heating season. Atmospheric Research, 2021, 249, 105291.	4.1	10
265	Estimated contribution of vehicular emissions to carbonaceous aerosols in urban Beijing, China. Atmospheric Research, 2021, 248, 105153.	4.1	10
266	Reduced light absorption of black carbon (BC) and its influence on BC-boundary-layer interactions during "APEC Blue― Atmospheric Chemistry and Physics, 2021, 21, 11405-11421.	4.9	10
267	Concurrent measurements of size-segregated particulate sulfate, nitrate and ammonium using quartz fiber filters, glass fiber filters and cellulose membranes. Atmospheric Environment, 2016, 145, 293-298.	4.1	9
268	Optical properties and source analysis of aerosols over a desert area in Dunhuang, Northwest china. Advances in Atmospheric Sciences, 2017, 34, 1017-1026.	4.3	9
269	Source apportionment and health risk assessment of trace elements in the heavy industry areas of Tangshan, China. Air Quality, Atmosphere and Health, 2019, 12, 1303-1315.	3.3	9
270	Ammonia should be considered in field experiments mimicking nitrogen deposition. Atmospheric and Oceanic Science Letters, 2020, 13, 248-251.	1.3	9

#	Article	IF	CITATIONS
271	Long-term variation in CO2 emissions with implications for the interannual trend in PM2.5 over the last decade in Beijing, China. Environmental Pollution, 2020, 266, 115014.	7.5	9
272	Exploring the variation of black and brown carbon during COVID-19 lockdown in megacity Wuhan and its surrounding cities, China. Science of the Total Environment, 2021, 791, 148226.	8.0	9
273	Formation and evolution of secondary organic aerosols derived from urban-lifestyle sources: vehicle exhaust and cooking emissions. Atmospheric Chemistry and Physics, 2021, 21, 15221-15237.	4.9	9
274	Oscillation cumulative volatile organic compounds on the northern edge of the North China Plain: Impact of mountain-plain breeze. Science of the Total Environment, 2022, 821, 153541.	8.0	9
275	Impact of Formation Pathways on Secondary Inorganic Aerosol During Haze Pollution in Beijing: Quantitative Evidence From Highâ€Resolution Observation and Modeling. Geophysical Research Letters, 2021, 48, .	4.0	9
276	The climatological characteristics of photosynthetically active radiation in arid and semi-arid regions of China. Journal of Atmospheric Chemistry, 2012, 69, 175-186.	3.2	8
277	Simulated spatial distribution and seasonal variation of atmospheric methane over China: Contributions from key sources. Advances in Atmospheric Sciences, 2014, 31, 283-292.	4.3	8
278	Source apportionment of PM2.5 and its optical properties during a regional haze episode over north China plain. Atmospheric Pollution Research, 2021, 12, 89-99.	3.8	8
279	ROx Budgets and O3 Formation during Summertime at Xianghe Suburban Site in the North China Plain. Advances in Atmospheric Sciences, 2021, 38, 1209-1222.	4.3	8
280	Analysis of photosynthetically active radiation and applied parameterization model for estimating of PAR in the North China Plain. Journal of Atmospheric Chemistry, 2016, 73, 345-362.	3.2	7
281	Trends of photosynthetically active radiation over China from 1961 to 2014. International Journal of Climatology, 2018, 38, 4007-4024.	3.5	7
282	The spatial-temporal distribution characteristics of atmospheric chloromethane according to data from the CARE-China network. Atmospheric Environment, 2021, 260, 118484.	4.1	7
283	Variation characteristics of ultraviolet radiation over the north china plain. Advances in Atmospheric Sciences, 2014, 31, 110-117.	4.3	6
284	Spatial and seasonal variations of sugars (alcohol) in China: Emerging results from the CARE-China network. Atmospheric Environment, 2019, 209, 136-143.	4.1	6
285	Size distribution and formation processes of aerosol water-soluble organic carbon during winter and summer in urban Beijing. Atmospheric Environment, 2021, 244, 117983.	4.1	6
286	Uncertainties of Simulated Aerosol Direct Radiative Effect Induced by Aerosol Chemical Components: A Measurementâ€Based Perspective From Urbanâ€Forest Transition Region in East China. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033688.	3.3	6
287	Photolysis rate in the Beijing-Tianjin-Hebei region: Reconstruction and long-term trend. Atmospheric Research, 2021, 256, 105568.	4.1	6
288	Eddy covariance measurements of ozone flux above and below a southern subtropical forest canopy. Science of the Total Environment, 2021, 791, 148338.	8.0	6

#	Article	IF	Citations
289	Vertical evolution of black and brown carbon during pollution events over North China Plain. Science of the Total Environment, 2022, 806, 150950.	8.0	6
290	Estimate of productivity in ecosystem of the broad-leaved Korean pine mixed forest in Changbai Mountain. Science in China Series D: Earth Sciences, 2006, 49, 74-88.	0.9	5
291	Simulation and validation of the aerosol optical thickness over China in 2006. Journal of Meteorological Research, 2012, 26, 330-344.	1.0	5
292	Using synoptic classification and trajectory analysis to assess air quality during the winter heating period in Ürümqi, China. Advances in Atmospheric Sciences, 2012, 29, 307-319.	4.3	5
293	Reconstruction of daily ultraviolet radiation for nine observation stations in China. Journal of Atmospheric Chemistry, 2014, 71, 303-319.	3.2	5
294	Small-scale spatial variations of gaseous air pollutants – A comparison of path-integrated and in situ measurement methods. Atmospheric Environment, 2014, 92, 566-575.	4.1	5
295	Observations of air quality on the outskirts of an urban agglomeration during the implementation of pollution reduction measures. Atmospheric Pollution Research, 2014, 5, 789-795.	3.8	5
296	Optical, Radiative and Chemical Characteristics of Aerosol in Changsha City, Central China. Advances in Atmospheric Sciences, 2020, 37, 1310-1322.	4.3	5
297	Episode-Based Analysis of Size-Resolved Carbonaceous Aerosol Compositions in Wintertime of Xinxiang: Implication for the Haze Formation Processes in Central China. Applied Sciences (Switzerland), 2020, 10, 3498.	2.5	5
298	Comparative research on visibility and light extinction of PM2.5 components during 2014–17 in the North China plain. Atmospheric and Oceanic Science Letters, 2021, 14, 100034.	1.3	5
299	A comprehensive evaluation of aerosol extinction apportionment in Beijing using a high-resolution time-of-flight aerosol mass spectrometer. Science of the Total Environment, 2021, 783, 146976.	8.0	5
300	Real-time physiochemistry of urban aerosols during a regional haze episode by a single-particle aerosol mass spectrometer: Mixing state, size distribution and source apportionment. Atmospheric Pollution Research, 2020, 11, 1329-1338.	3.8	5
301	Significant contribution of secondary particulate matter to recurrent air pollution: Evidence from in situ observation in the most polluted city of Fen-Wei Plain of China. Journal of Environmental Sciences, 2022, 114, 422-433.	6.1	5
302	Progress in quantitative research on the relationship between atmospheric oxidation and air quality. Journal of Environmental Sciences, 2023, 123, 350-366.	6.1	5
303	Insights into the characteristics of aerosols using an integrated single particle–bulk chemical approach. Atmospheric Research, 2021, 250, 105374.	4.1	4
304	A new parameterization of uptake coefficients for heterogeneous reactions on multi-component atmospheric aerosols. Science of the Total Environment, 2021, 781, 146372.	8.0	4
305	Effects of different stagnant meteorological conditions on aerosol chemistry and regional transport changes in Beijing, China. Atmospheric Environment, 2021, 258, 118483.	4.1	4
306	Interannual evolution of elemental carbon-containing particles in winter in the atmosphere of Chengdu, China. Science of the Total Environment, 2022, 804, 150133.	8.0	4

#	Article	IF	CITATIONS
307	The environmental benefit of Beijing-Tianjin-Hebei coal banning area for North China. Journal of Environmental Management, 2022, 311, 114870.	7.8	4
308	Comments on "Half-century nitrogen deposition increase across China: A gridded time-series dataset for regional environmental assessments―by Chaoqun Lu and Hanqin Tian. Atmospheric Environment (2014), 97:68–74. Atmospheric Environment, 2015, 101, 350-351.	4.1	3
309	Evolution and meteorological causes of fine particulate explosive growth events in Beijing, China, from 2013 to 2017. Atmospheric and Oceanic Science Letters, 2020, 13, 55-62.	1.3	3
310	The effects of number and mass concentration of aerosol components on scattering coefficients in Xianghe, southeast of Beijing, China – A case study. Atmospheric Environment, 2022, 272, 118938.	4.1	3
311	Estimation of Daily Ultraviolet Radiation in Beijing Using a Semiempirical Method. Photochemistry and Photobiology, 2013, 89, 1255-1261.	2.5	2
312	The impact of ammonium on the distillation of organic carbon in PM2.5. Science of the Total Environment, 2022, 803, 150012.	8.0	2
313	Distribution of soluble heavy metal concentrations in natural acid soils at depths under tropical, sub-tropical and temperate forests of China. Diqiu Huaxue, 2006, 25, 228-228.	0.5	1
314	The attenuation effect on ultraviolet radiation caused by aerosol and cloud in Lhasa, Tibetan Plateau of China. Advances in Space Research, 2015, 56, 111-118.	2.6	1
315	Reshaping the size distribution of aerosol elemental carbon by removal of coarse mode carbonates. Atmospheric Environment, 2019, 214, 116852.	4.1	1
316	Evaluating the size distribution characteristics and sources of atmospheric trace elements at two mountain sites: comparison of the clean and polluted regions in China. Environmental Science and Pollution Research, 2020, 27, 42713-42726.	5.3	1
317	Effects of tree species and soil depths on ethylene and methane consumption in tropical and temperate forest soils. Diqiu Huaxue, 2006, 25, 179-179.	0.5	0
318	Establishment and evaluation of a method for analyzing atmospheric volatile organic compounds. Advances in Atmospheric Sciences, 2007, 24, 679-687.	4.3	0
319	Chemical Composition During Severe Haze Events in Northern China. , 2017, , 245-264.		0
320	Preface to the Special Issue on Atmospheric Oxidation Capacity, Ozone, and PM2.5 Pollution: Quantification Methods, Formation Mechanisms, Simulation, and Control. Advances in Atmospheric Sciences, 2021, 38, 1051-1052.	4.3	0
321	Regional standardized particle size distributions for developing a Chinese filter testing standard used in building ventilation. Journal of Building Engineering, 2021, 44, 102972.	3.4	O